

Версия 1.6

Отчёт по тестированию

Содержание

Содержание	1
Статическое нагружение	7
Тесты с точным аналитическим решением	7
Тест 1.1.1: Одноосное растяжение пластины с круговым вырезом	7
Тест 1.1.2: Всестороннее растяжение пластины с круговым вырезом	11
Тест 1.1.3: Одноосное растяжение пластины с эллиптическим вырезом	15
Тест 1.1.4: Всестороннее растяжение пластины с эллиптическим вырезом	19
Тест 1.1.5: Нагружение цилиндра внутренним давлением	23
Тест 1.1.6: Круглая цилиндрическая труба под воздействием внутреннего и внешнего дае (2D)	лений 27
Тест 1.1.7: Круглая цилиндрическая труба под воздействием внутреннего и внешнего дае (3D)	лений 31
Тест 1.1.8: Растяжение балки	35
Тест 1.1.9: Задача Буссинеска	37
Тест 1.1.10: Равномерно нагруженная круглая пластина, защемленная по контуру	
Тест 1.1.11: Равномерно нагруженная круглая пластина, свободно опертая по контуру	43
Тест 1.1.12: Круглая пластина, нагруженная концентрически	47
Тест 1.1.13: Квадратная пластина, защемленная по контуру и нагруженная в центре	49
Тест 1.1.14: Квадратная пластина, два противоположных края которой свободно оперты, других свободны	два 51
Tecт 1.1.15: Квадратная свободно опертая пластина под совместным действием равноме равноме распределенной поперечной нагрузки и равномерного растяжения	рно 55
Тест 1.1.16: Консольная балка с сосредоточенной силой на свободном конце	59
Тест 1.1.17: Консольная балка с сосредоточенным моментом на свободном конце	63
Тест 1.1.18: Балка с распределенной нагрузкой	67
Тест 1.1.19: Определение усилий в стержневой системе	71
Тест 1.1.20: Консольная балка с распределенной нагрузкой на свободном конце	73
Тест 1.1.21: Вертикальный консольный стержень	75
Тесты с известным численным решением	77
Тест 1.2.1: Нагружение эллипсоидальной пластинки (2D)	77
Тест 1.2.2: Нагружение эллипсоидальной пластинки (3D)	79
Тест 1.2.3: Цилиндр под внутренним давлением	81
Тест 1.2.4: Нагружение сферической оболочки	85
Тест 1.2.5: Осевая нагрузка для тонкостенного цилиндра	89
Тест 1.2.6: Точечная сила для цилиндрической оболочки	91

Тест 1.2.7: Гидростатическое давление для тонкостенного цилиндра	93
Тест 1.2.8: Усеченная сферическая оболочка	95
Тест 1.2.9: Арка с шарнирным опиранием	99
Тест 1.2.10: Арка с защемлением	101
Тест 1.2.11: Консольная рама	102
Тест 1.2.12: Деформация балки под действием осевой силы	103
Тест 1.2.13: Консольная балка с распределенной нагрузкой	104
Тест 1.2.14: Изгиб тонкостенной трубы под собственным весом (балки)	105
Тест 1.2.15: Изгиб тонкостенной трубы под собственным весом (оболочки)	106
Тест 1.2.16: Свод крыши под собственным весом	107
Тест 1.2.17: Пространственная пластинчатая система (3D)	109
Тест 1.2.18: Равномерно нагруженная пластина, защемленная по контуру	111
Тест 1.2.19: Трехступенчатая шарнирно опертая балка, нагруженная сосредоточенными сил	ами 113
Тест 1 2 20: Определение силы реакции балки	115
Тест 1 2 21: Определение напражений для балки	116
Тест 1 2 22: Изгиб конической пластины	117
Линамическое нагружение	119
Тесты с точным аналитическим решением	119
Тест 2.1.1: Задача Стокса	119
Тест 2.1.2: Взрывное давление в сферической полости	
Анализ собственных частот	123
Тесты с известным аналитическим или экспериментальным решением	123
Тест 3.1.1: Собственные частоты квадратной пластинки с защемлённой стороной	123
Тест 3.1.2: Собственные частоты свободной квадратной пластинки	127
Тест 3.1.3: Собственные частоты квадратной пластинки с защемлённием по периметру	131
Тест 3.1.4: Собственные частоты тонкой пластики в плоскости	133
Тест 3.1.5: Собственные частоты консольной пластики с разными толщинами	135
Тест 3.1.6: Собственные частоты сферической оболочки	137
Тест 3.1.7: Собственные частоты колена полой трубы	139
Тест 3.1.8: Собственные частоты изогнутого пространственного стержня (задача Ховгаарда)) 141
Тест 3.1.9: Собственные частоты трёхмерной рамы	143
Тест 3.1.10: Собственные частоты треугольной пластики (2D)	145
Тест 3.1.11: Собственные частоты круглой пластинки (3D)	147
Тест 3.1.12: Собственные частоты консольной балки (3D)	149
Тест 3.1.13: Собственные частоты тонкой полусферы (3D)	151

Тест 3.1.14: Собственные частоты армированной оболочки	153
Тест 3.1.15: Собственные частоты консольной балки, предварительно нагруженной силой (3) 155
Тесты с известным численным решением	157
Тест 3.2.1: Собственные частоты свободно опёртой квадратной пластинки (3D)	157
Тест 3.2.2: Собственные частоты свободно опёртой прямоугольной балки (3D)	159
Тест 3.2.3: Собственные частоты свободной квадратной пластинки	161
Тест 3.2.4: Собственные частоты свободно опёртой квадратной пластинки	163
Тест 3.2.5: Собственные частоты цилиндрической пластинки с защемлением	165
Тест 3.2.6: Собственные частоты консольной пластинки	167
Тест 3.2.7: Собственные частоты свободно опёртой прямоугольной балки	169
Тест 3.2.8: Собственные частоты креста в плоскости	171
Тест 3.2.9: Собственные частоты двойного креста в плоскости	173
Тест 3.2.10: Собственные частоты кругового кольца	175
Нелинейные задачи	177
Тесты с точным аналитическим решением	177
Тест 4.1.1. Большие перемещения квадратной мембраны	177
Тест 4.1.2. Полый шар под действием давления	179
Тесты с известным численным решением	183
Тест 4.2.1. Изгиб консольной балки	183
Тест 4.2.2. Цилиндр, нагруженный внутренним давлением (а)	185
Тест 4.2.3. Цилиндр, нагруженный внутренним давлением (б)б)	189
Тест 4.2.4. Толстостенная труба под действием температурной нагрузки	193
Тест 4.2.5. Растяжение ортотропного куба	196
Тест 4.2.6. Цилиндр под давлением. Материал Муни-Ривлина (2D)	197
Тест 4.2.7. Разрушение куба под действием давления	198
Линейно-упругая устойчивость	200
Тесты с точным аналитическим решением	200
Тест 5.1.1: Устойчивость консольного тела	200
Тест 5.1.2: Устойчивость шарнирно опертой пластины	204
Тест 5.1.3: Устойчивость квадратной пластины при двустороннем сжатии	206
. Тест 5.1.4: Устойчивость балки, заделанной на одном конце и шарнирно опертой на другом	208
Тест 5.1.5: Консольное тело, нагруженное двумя сжимающими силами	211
Тест 5.1.6: Устойчивость шарнирно опертой балки	213
Тест 5.1.7: Устойчивость цилиндрической оболочки	215
Тест 5.1.8: Устойчивость балки, закрепленной на концах, от температурного воздействия	217

Задачи теплопроводности и термоупругости	221
Тесты с известным аналитическим решением	221
Тест 6.1.1: Полая сфера при постоянном температурном нагружении (3D)	.221
Тест 6.1.2: Сплошная сфера при постоянном температурном нагружении (3D)	. 223
Тест 6.1.3: Полый цилиндр с постоянным температурным нагружением (2D)	. 225
Тест 6.1.4: Сплошной диск с постоянным температурным нагружением(2D)	. 227
Тесты с известным численным решением	229
Тест 6.2.1: Полый цилиндр под воздействием постоянной температуры на внутреннюю и внешнюю поверхность (2D)	. 229
Тест 6.2.2: Полый цилиндр под воздействием постоянной температуры на внутреннюю и внешнюю поверхность (3D)	.233
Тест 6.2.3: Полый цилиндр под воздействием конвекции на внутреннюю и внешнюю поверхно (2D)	ость . 237
Тест 6.2.4: Полый цилиндр под воздействием конвекции на внутреннюю и внешнюю поверхно (3D)	ость . 240
Тест 6.2.5: Полый цилиндр из двух материалов под воздействием конвекции на внутреннюю и внешнюю поверхность (2D)	۱ .244
Тест 6.2.6: Полый цилиндр из двух материалов под воздействием конвекции на внутреннюю и внешнюю поверхность (3D)	۱ . 246
Тест 6.2.7: Теплопроводность цилиндрической стены (2D)	. 248
Тест 6.2.8: Теплопроводность цилиндрической стены (3D)	. 250
Тест 6.2.9: Одномерная стена под воздействием постоянной конвекции (2D)	. 252
Тест 6.2.10: Одномерная стена под воздействием постоянной конвекции (3D)	. 256
Тест 6.2.11: Цилиндрический стержень под воздействием теплового потока (балочная модель)260
Тест 6.2.12: Цилиндрический стержень под воздействием конвективного теплообмена (балочн модель)	ная . 262
Тест 6.2.13: Одномерная нестационарная теплопередача	. 264
Контактные задачи	268
Тест 7.1. Контакт цилиндрического ролика (2D)	. 268
Тест 7.2. 3Д-Штамп (цилиндр с закругленными гранями)	. 274
Тест 7.3. Нагружение штифта (3Д)	. 282
Тест 7.4. Задача Герца для двух полусфер	. 286
Расчет эффективных свойств композитов	288
Тест 8.1. Однослойный волокнистый композит (N _{нитией} =1)	. 288
Тест 8.2. Двуслойный слоисто-волокнистый композит	. 290
Тест 8.3. Сплошной куб из однородного материала Гука (3D)	. 292
Тест 8.4. Сплошной куб из ортотропного материала	. 294

Статическое нагружение

Тесты с точным аналитическим решением

Тест 1.1.1: Одноосное растяжение пластины с круговым вырезом

Рассматривается двумерная задача об одноосном растяжении плоской неограниченной пластины с круговым вырезом.

Геометрическая модель (размеры указаны в метрах):

- Ввиду симметрии задачи рассматривается 1/4 пластины
- BC = 5 м
- Диаметр отверстия 0.5 м
- Используются полярные координаты

Граничные условия:

- Нулевые перемещения вдоль оси Х на прямой АВ
- Нулевые перемещения вдоль оси Y на прямой ED
- P₀ = 1 МПа

Параметры материала:

- Изотропный
- Модуль упругости Е = 200 Гпа
- Коэффициент Пуассона $\nu = 0.3$

- Пять типов конечных элементов (пять отдельных тестов):
 - 3-узловые треугольники Tri3 (93 874 элементов)
 - 6-узловые треугольники Tri6 (93 874 элементов)
 - 4-узловые четырёхугольники Quad4 (16 052 элементов)
 - 8-узловые четырёхугольники Quad8 (16 052 элементов)
 - 9-узловые четырёхугольники Quad9 (16 052 элементов)
- Пять типов спектральных элементов (15 отдельных тестов):
 - З-узловые треугольники Tri3s
 - 2-ого порядка (5 615 элементов)
 - 3-го порядка (5 615 элементов)
 - 4-ого порядка (5 615 элементов)
 - 6-узловые треугольники Tri6
 - 2-ого порядка (3 110 элементов)
 - 3-го порядка (3 110 элементов)
 - 4-ого порядка (3 110 элементов)
 - 4-узловые четырёхугольники Quad4s
 - 2-ого порядка (16 052 элементов)
 - 3-го порядка (16 052 элементов)
 - 4-ого порядка (16 052 элементов)

- 8-узловые четырёхугольники Quad8s
 - 2-ого порядка (13 434 элементов)
 - 3-го порядка (10 175 элементов)
 - 4-ого порядка (8 052 элементов)
- 9-узловые четырёхугольники Quad9s
 - 2-ого порядка (10 175 элементов)
 - 3-го порядка (8 052 элементов)
 - 4-ого порядка (6 841 элементов)

Напряжение σ_θ в точке Е (0.25;0;0) равно 3 МПа с точностью 1%

Значения вычислены по формуле [1]:

$$\sigma_{\theta}^{max} = 3P_0.$$

Результаты:

- Полученные максимальные значения компонент тензора напряжений
 а^{max} представлены в таблице:
 - Конечные элементы

		Численный анализ						
	Теоретическое			FIDESYS				
величина	значение	Tri3	Tri3 Tri6		ANSYS	1		
		Значение, Па	Значение, Па Ошибка Значение, Па Ошибка				Ошибка	
$\sigma_{ heta}^{max}$,МПа	3	3.0288	0.96%	3.0208	0.69%	2.9736	0.88%	

					Численнь	ий анализ			
_	Теоретическое	FIDESYS							
Величина	значение	Quad4 ³		Quad8		Quad9		ANSYS ²	
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	Значение	Ошибка
$\sigma_{ heta}^{max}$,МПа	3	3.0358	1.10%	3.022	0.73%	3.0214	0.71%	2.9736	0.88%

¹ Анализ проводился на четырехугольной сетке (тип элемента PLANE182, количество элементов 77 805).

² Анализ проводился на четырехугольной сетке (тип элемента PLANE182, количество элементов 77 805).

³ При расчете методом спектральных элементов не рекомендуется использовать данный тип элемнтов на задачах с криволинейной геометрией.

- Спектральные элементы

				Численны	ій анализ					
	Теоретическое		FIDESYS (quad4s) ⁴							
Величина	значение	2-й по	рядок	3-й порядок		4-й порядок				
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка			
$\sigma_{ heta}^{max}$,МПа	3	3.0217	0.723%	3.0305	1.017%	3.0343	1.143%			

				Численны	ій анализ					
D	Теоретическое		FIDESYS (quad8s)							
Величина	значение	2-й по	2-й порядок 3-й порядок		рядок	4-й порядок				
		Значение Ошибка Значение Ошибка Значение Ошиб					Ошибка			
$\sigma_{ heta}^{max}$,МПа	3	3.0203	0.677%	3.0214	0.713%	3.0218	0.727%			

				Численны	ій анализ			
-	Теоретическое			FIDESYS	(quad9s)			
Величина	значение	2-й по	2-й порядок		3-й порядок		4-й порядок	
		Значение Ошибка Значение Ошибка Значение Оши					Ошибка	
$\sigma_{ heta}^{max}$,МПа	3	3.0215	0.717%	3.0214	0.713%	3.021	0.7%	

				Численны	й анализ					
-	Теоретическое		FIDESYS (tri3s)⁵							
Величина	значение	2-й по	рядок	3-й по	оядок 4-й порядок					
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка			
$\sigma_{ heta}^{max}$,МПа	3	3.025	0.83%	3.089	2.97%	3.143	4.77%			

				Численны	ій анализ				
	Теоретическое		FIDESYS (tri6s)						
Величина	значение	2-й по	рядок	3-й по	рядок	4-й порядок			
		Значение Ошибка Значение Ошибка Значени					Ошибка		
$\sigma_{ heta}^{max}$,МПа	3	3.031	1%	3.026	0.87%	3.021	0.7%		

⁴ При расчете методом спектральных элементов не рекомендуется использовать данный тип элемнтов на задачах с криволинейной геометрией.

⁵ При расчете методом спектральных элементов не рекомендуется использовать данный тип элемнтов на задачах с криволинейной геометрией.

 На картинке ниже представлен фрагмент исходной модели вблизи точки E с полем распределения напряжений σ_θ при разбиении на треугольные элементы (Tri3).

Тест 1.1.2: Всестороннее растяжение пластины с круговым вырезом

Рассматривается двумерная задача о всестороннем растяжении плоской неограниченной пластины с круговым вырезом.

Геометрическая модель (размеры указаны в метрах):

- Ввиду симметрии задачи рассматривается 1/4 часть пластины
- BC = 5 м
- Диаметр отверстия 0.5 м
- Используются полярные координаты

Граничные условия:

- Нулевые перемещения вдоль оси Х на прямой АВ
- Нулевые перемещения вдоль оси Y на прямой ED
- P₀ = 1 Мпа

Параметры материала:

- Изотропный
- Модуль упругости Е = 200 Гпа
- Коэффициент Пуассона $\nu = 0.3$

- Измельчённая на линиях АЕ и ED (вблизи точки E)
- Пять типов конечных элементов (пять отдельных тестов):
 - 3-узловые треугольники Tri3 (93 874 элементов)
 - 6-узловые треугольники Tri6 (93 874 элементов)
 - 4-узловые четырёхугольники Quad4 (16 052 элементов)
 - 8-узловые четырёхугольники Quad8 (16 052 элементов)
 - 9-узловые четырёхугольники Quad9 (16 052 элементов)
- Пять типов спектральных элементов (15 отдельных тестов):
 - 3-узловые треугольники Tri3s
 - 2-ого порядка (3 110 элементов)
 - 3-го порядка (5 615 элементов)
 - 4-ого порядка (5 615 элементов)
 - 6-узловые треугольники Tri6
 - 2-ого порядка (3 110 элементов)
 - 3-го порядка (3 110 элементов)
 - 4-ого порядка (3 110 элементов)
 - 4-узловые четырёхугольники Quad4s
 - 2-ого порядка (16 052 элементов)
 - 3-го порядка (16 052 элементов)
 - 4-ого порядка (16 052 элементов)
 - 8-узловые четырёхугольники Quad8s
 - 2-ого порядка (13 434 элементов)
 - 3-го порядка (10 175 элементов)

- 4-ого порядка (8 052 элементов)
- 9-узловые четырёхугольники Quad9s
 - 2-ого порядка (10 175 элементов)
 - 3-го порядка (8 052 элементов)
 - 4-ого порядка (6 841 элементов)

• Напряжение σ_{θ} на границе вырезанной окружности равно 2 МПа с точностью 1%

Значения вычислены по формуле [1]:

$$\sigma_{\theta}^{max} = 2P_0$$

Результаты:

- Полученные максимальные значения компонент тензора напряжений представлены в таблице:
 - Конечные элементы

		Численный анализ						
	Теоретическое			FIDESYS		,		
величина	значение	Tri3	Tri3 Tri6			ANSYS	D	
		Значение, Па	начение, Па Ошибка Значение, Па Ошибка				Ошибка	
$\sigma_{ heta}^{max}$,МПа	2	2.0086	0.43%	1.9957	0.215%	1.9849	0.75%	

					Численнь	ий анализ			
Волицина	Теоретическое значение								
Величина		Quad4		Q	Quad8		Quad9		ANSYS ⁷
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	Значение	Ошибка
$\sigma_{ heta}^{max}$,МПа	2	2.0132	0.66%	2.0065	0.325%	2.0061	0.305%	1.9849	0.75%

⁶ Анализ проводился на четырехугольной сетке (тип элемента PLANE182, количество элементов 77 805).

⁷ Анализ проводился на четырехугольной сетке (тип элемента PLANE182, количество элементов 77 805).

- Спектральные элементы

			Численный анализ							
Величина	Теоретическое значение		FIDESYS (tri3s) ⁸							
Величина		2-ого порядка		3-ого	порядка	4-ого порядка				
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка			
$\sigma_{ heta}^{max}$,МПа	2	2.01177 0.59% 2.05 2.5% 2.086								

			Численный анализ							
Величина	Теоретическое значение		FIDESYS (tri6s)							
Величина		2-ого порядка		3-ого	порядка	4-ого порядка				
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка			
$\sigma_{ heta}^{max}$,МПа	2	2.0059	0.3%	2.0044	0.22%	2.0045	0.22%			

		Численный анализ								
Величина	Теоретическое значение		FIDESYS (quad4s) ⁹							
Величина		2-ого порядка		3-ого	порядка	4-ого порядка				
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка			
$\sigma_{ heta}^{max}$,МПа	2	2.0056	0.49%	2.0126	0.63%					

			Численный анализ							
Величина	Теоретическое значение		FIDESYS (quad8s)							
Величина		2-ого по	рядка	3-ого	порядка	4-ого порядка				
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка			
$\sigma_{ heta}^{max}$,МПа	2	2.0082 0.41% 2.0045 0.225% 2.0064					0.32%			

			Численный анализ							
Величина	Теоретическое значение		FIDESYS (quad9s)							
		2-ого порядка		3-ого	порядка	4-ого порядка				
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка			
$\sigma_{ heta}^{max}$,МПа	2	2.0054	0.27%	2.0045	0.225%	2.0055	0.275%			

⁸ При расчете на спектральные элементы данный тип элементов не рекомендуется использовать на задачах с криволинейной геометрией.

⁹ При расчете на спектральные элементы данный тип элементов не рекомендуется использовать на задачах с криволинейной геометрией.

• На картинке ниже представлена исходная модель с полем распределения напряжений при разбиении на треугольные элементы. Максимальные значения напряжений достигаются на контуре отверстия, где сравнивались аналитические и численные результаты:

Тест 1.1.3: Одноосное растяжение пластины с эллиптическим вырезом

Рассматривается двумерная задача об одноосном растяжении плоской неограниченной пластины с эллиптическим вырезом.

Геометрическая модель (размеры указаны в метрах):

- Ввиду симметрии задачи рассматривается четверть пластины
- BC = 25 м
- Размеры отверстия а = 1.5 м, b = 0.5 м
- Используется полярная система координат

Граничные условия:

- Нулевые перемещения вдоль оси Х на прямой АВ
- Нулевые перемещения вдоль оси Y на прямой ED
- Давление на сторону ВС величиной Р₀ = 1 Мпа

Параметры материала:

- Изотропный
- Модуль упругости Е = 200 Гпа
- Коэффициент Пуассона ν = 0.3

- Измельчённая на линиях AB, AE и ED (вблизи точек A и E)
- Пять типов конечных элементов (5 отдельных тестов):
 - 3-узловые треугольники Tri3 (329 961 элемент)
 - 6-узловые треугольники Tri6 (130 774 элементав)
 - 4-узловые четырёхугольники Quad4 (22 959 элементов)
 - 8-узловые четырёхугольники Quad8 (22 959 элементов)
 - 9-узловые четырёхугольники Quad9 (22 959 элементов)
- Пять типов спектральных элементов Зго порядка (5 отдельных тестов):
 - 3-узловые треугольники Tri3s 3-го порядка (329 961 элемент)
 - 6-узловые треугольники Tri6 3-го порядка (130 774 элемента)
 - 4-узловые четырёхугольники Quad4s 3-го порядка (22 959 элементов)
 - 8-узловые четырёхугольники Quad8s 3-го порядка (22 959 элементов)
 - 9-узловые четырёхугольники Quad9s 3-го порядка (22 959 элементов)

Напряжение σ_θ в точке Е (1.5;0;0) равно 7 МПа с точностью 1%

Значения вычислены по формуле [1]:

$$\sigma_{\theta}^{max} = \left(1 + 2\frac{a}{b}\right)P_0$$

Результаты:

- Полученные максимальные значения компонент тензора напряжений представлены в таблице:
- Конечные элементы

			Численн	ый анализ				
Велич	Теоретическ		FID					
ина	ое значение, Па	Tri3	5	Tri	6	ANSYS		
		Значение, Па	Значение, Па Ошибка Значение, Па Ошибка				Ошибка	
$\sigma_{ heta}^{max}$	7 000 000	7 057 330	0.82%	7 046 770	0.67%	6 981 100	0.27%	

				Численный	і анализ				
Велич	Теоретическ								
ина	ое значение, Па	Quad	Quad4 Quad8 Quad9 Значение, Па Ошибка Значение, Па Ошибка Значение, Па Ошибка				ANSYS		
		Значение, Па					Значение, Па	Ошибка	
σ_{θ}^{max}	7 000 000	6 961 680	0.55%	7 050 180	0.72%	7 046 390	0.66%	6 981 100	0.27%

- Спектральные элементы 3го порядка

			Численн	ый анализ			
Велич	Теоретическ						
ина	ое значение, Па	Tri3	S	Tri6	S	ANSYS	
		Значение, Па	Ошибка	Значение, Па	Ошибка	Значение, Па	Ошибка
σ_{θ}^{max}	7 000 000	7 233 060	3.33%	7 047 260	0.67%	6 981 100	0.27%

			Численный анализ						
Велич	Теоретическ		FIDESYS						
ина	ое значение, Па	Quad ₄	Quad4s Quad8s Quad9s				ANSYS		
		Значение, Па	начение, Па Ошибка Значение, Па Ошибка Значение, Па Ошибка						Ошибка
$\sigma_{ heta}^{max}$	7 000 000	7 125 660	1.79%	7 046 110	0.66%	7 046 070	0.66%	6 981 100	0.27%

• На картинке ниже представлено распределение напряжений вблизи точки Е, в которой достигается максимальное напряжение, при разбиении на треугольные элементы:

Тест 1.1.4: Всестороннее растяжение пластины с эллиптическим вырезом

Рассматривается двумерная задача о всестороннем растяжении плоской неограниченной пластины с эллиптическим вырезом.

Геометрическая модель (размеры указаны в метрах):

- Ввиду симметрии задачи рассматривается четверть пластины
- BC = 25 м
- Размеры отверстия а = 1.5 м, b = 0.5 м
- Используется полярная система координат

Граничные условия:

- Нулевые перемещения вдоль оси Х на прямой АВ
- Нулевые перемещения вдоль оси Y на прямой ED
- Давление на сторону ВС величиной P₀ = 1 Мпа
- Давление на сторону СD величиной P₀ = 1 Мпа

Параметры материала:

- Изотропный
- Модуль упругости Е = 200 Гпа
- Коэффициент Пуассона $\nu = 0.3$

- Измельчённая на линиях AB, AE и ED (вблизи точек A и E)
- Пять типов конечных элементов (5 отдельных тестов):
 - 3-узловые треугольники Tri3 (329 961 элемент)
 - 6-узловые треугольники Tri6 (130 774 элемента)
 - 4-узловые четырёхугольники Quad4 (22 959 элементов)
 - 8-узловые четырёхугольники Quad8 (22 959 элементов)
 - 9-узловые четырёхугольники Quad9 (22 959 элементов)
- Пять типов спектральных элементов Зго порядка (5 отдельных тестов):
 - 3-узловые треугольники Tri3s 3-го порядка (329 961 элемент)
 - 6-узловые треугольники Tri6 3-го порядка (130 774 элемента)
 - 4-узловые четырёхугольники Quad4s 3-го порядка (22 959 элементов)
 - 8-узловые четырёхугольники Quad8s 3-го порядка (22 959 элементов)
 - 9-узловые четырёхугольники Quad9s 3-го порядка (22 959 элементов)

• Напряжение σ_θ в точке Е (1.5;0;0) равно 6 МПа с точностью 1%.

Значения вычислены по формуле [1]:

$$\sigma_{\theta}^{max} = 2P_0 \frac{a}{b}.$$

Результаты:

- Полученные максимальные значения компонент тензора напряжений представлены в таблице:
- Конечные элементы

Велич	Теоретическ							
ина	ое значение, Па	Tri3	5	Trie	6	ANSYS		
		Значение, Па	Значение, Па Ошибка Значение, Па Ошибка				Ошибка	
$\sigma_{ heta}^{max}$	6 000 000	6 052 780	0.88%	6 036 700	0.61%	5 988 500	0.19%	

	Теоретическ								
Ponu									
ина	ч ое значение, Quad4 Quad8 Quad9					ANSYS			
	110	Значение, Па	Вначение, Па Ошибка Значение, Па Ошибка Значение, Па Ошибка					Значение, Па	Ошибка
$\sigma_{ heta}^{max}$	7 000 000	5 979 590	0.34%	6 041 130	0.68%	6 035 400	0.59%	5 988 500	0.19%

- Спектральные элементы 3го порядка

	Теоретическ ое значение, Па		Численн				
Велич			FID				
ина		Tri3	S	Trið	os	ANSYS	ANSYS ачение, Па Ошибка
		Значение, Па	Ошибка	Значение, Па	Ошибка	Значение, Па	Ошибка
$\sigma_{ heta}^{max}$	6 000 000	6 195 100	3.25%	6 035 500	0.59%	5 988 500	0.19%

Велич	Теоретическ		FIDESYS							
ина	ое значение, Па	Quad4s		Quada	Bs	Quad	9s	ANSYS		
		Значение, Па	Ошибка	Значение, Па	Ошибка	Значение, Па	Ошибка	Значение, Па	Ошибка	
$\sigma_{ heta}^{max}$	7 000 000	6 102 400	5 102 400 1.71% 6 035 280 0.59% 6 035 280 0.59%					5 988 500	0.19%	

• На картинке ниже представлено распределение напряжений вблизи точки Е, в которой достигается максимальное напряжение, при разбиении на треугольные элементы:

Тест 1.1.5: Нагружение цилиндра внутренним давлением

Рассматривается двумерная задача о нагружении внутренним давлением круглого толстостенного цилиндра.

Геометрическая модель (размеры указаны в метрах):

- Ввиду симметрии задачи рассматривается четверть пластины
- R_н = 1 м, R_в = 0,75 м
- Используется полярная система координат

Граничные условия:

- Нулевые перемещения вдоль оси Х на прямой АВ
- Нулевые перемещения вдоль оси Y на прямой CD
- P₀ = 1 Мпа

Параметры материала:

- Изотропный
- Модуль упругости Е = 210 Гпа
- Коэффициент Пуассона v = 0.3

- Измельчённая на линиях AD, DC и DC (вблизи точек D и C)
- Пять типов конечных элементов (пять отдельных тестов):
 - 3-узловые треугольники Tri3 (4 934 элемента)
 - 6-узловые треугольники Tri6 (2 258 элементов)
 - 4-узловые четырёхугольники Quad4 (2 236 элементов)
 - 8-узловые четырёхугольники Quad8 (2 236 элементов)
 - 9-узловые четырёхугольники Quad9 (2 236 элементов)
- Три типа спектральных элементов(девять отдельных тестов):
 - 4-узловые четырёхугольники Quad4s
 - 2-ого порядка (2 336 элементов)
 - 3-го порядка (2 336 элементов)
 - 4-ого порядка (2 336 элементов)
 - 8-узловые четырёхугольники Quad8s
 - 2-ого порядка (964 элементов)
 - 3-го порядка (765 элементов)
 - 4-ого порядка (707 элементов)
 - 9-узловые четырёхугольники Quad9s
 - 2-ого порядка (937 элементов)
 - 3-го порядка (708 элементов)
 - 4-ого порядка (650 элементов)

- Напряжение σ_{θ} на внутренней поверхности цилиндра равно 3,571429 МПа с точностью 1%
- Напряжение σ_r на внутренней поверхности цилиндра равно -1 МПа с точностью 1%

Значения вычислены по формулам [1]:

$$\sigma_{\theta}|_{r=R_B} = P_0 \frac{1 + \frac{R_B^2}{R_H^2}}{1 - \frac{R_B^2}{R_H^2}}$$
$$\sigma_r|_{r=R_B} = -P_0$$

Результаты:

- Полученные значения компонент тензора напряжений представлены в таблице:
- Конечные элементы

				Чи	сленный анализ			
Величина	Теоретическое			FIDESYS				
величина	значение	Tri3			Tri6	ANSYS		
		Значение, Па	Ошибка	Значение, Па	Ошибка	Значение	Ошибка	
$\sigma_{ heta} _{r=R_B}$, кПа	3 571.4	3 583.33	0.33%	3 571.3	<0.01%	3 560.9	0.29%	
$\sigma_r _{r=R_B}$, кПа	-1 000	-980.67	1.93%	-999.9	0.01%	-995.6	0.44%	

			Численный анализ									
Величина	Теоретическое											
величина	значение	Quad4		Qua	d8	Quad9		AN	SYS ¹¹			
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	Значение	Ошибка			
$\sigma_{ heta} _{r=R_B}$, кПа	3 571.4	3 583.4	0.34%	3 551.5	0.56%	3 551.5	0.56%	3 560.9	0.29%			
$\sigma_r _{r=R_B}$, кПа	-1 000	-970.9	2.91%	-980.13	1.9%	-980.13	1.9%	-995.6	0.44%			

- Спектральные элементы

Величина	Теоретическое	Численный анализ Fidesys (quad4s) ¹²							
	значение	Элементы 2-го	о порядка	Элементы 3	-го порядка	Элементы 4	-го порядка		
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка		
σ _θ _{r=R_B} , кПа	3 571.4	3 570	0.04%	3 590	0.52%	3 600	0.8%		
$\sigma_r _{r=R_B},$ кПа	-1 000	-999	0.014%	-995	0.416%	-994	0.513%		

Величина	Теоретическое	Численный анализ Fidesys (quad8s)								
Величина	значение	Элементы 2-г	о порядка	Элементы 3-	го порядка	Элементы 4	-го порядка			
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка			
σ _θ _{r=R_B} , кПа	3 571.4	3 570	0.04%	3 570	0.04%	3 570	0.04%			
$\sigma_r _{r=R_B},$ кПа	-1 000	-999	0.042%	-1 000	0%	-1 000	0%			

¹⁰ Анализ проводился на четырехугольной сетке (тип элемента PLANE182, количество элементов 77 805).

¹¹ Анализ проводился на четырехугольной сетке (тип элемента PLANE182, количество элементов 77 805).

¹² При расчете на спектральные элементы, данный тип элементов не рекомендуется использовать на задачах с криволинейной геометрией.

Величина	Теоретическое значение	Численный анализ Fidesys (quad9s)								
		Элементы 2-г	о порядка	Элементы 3	-го порядка	Элементы 4	-го порядка			
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка			
σ _θ _{r=R_B} , кПа	3 571.4	3 570	0.04%	3 570	0.04%	3 570	0.04%			
$\sigma_r _{r=R_B},$ кПа	-1 000	-999	0.042%	-1 000	0%	-1 000	0%			

 На картинке ниже представлена исходная модель с полем распределения напряжений *σ*_θ при разбиении на треугольные элементы. Максимальные значения напряжений достигаются на внутренней поверхности цилиндра, где сравнивались аналитические и численные результаты:

Тест 1.1.6: Круглая цилиндрическая труба под воздействием внутреннего и внешнего давлений (2D)

Рассматривается двумерная задача о нагружении внутренним и внешним давлениями круглого толстостенного цилиндра.

Геометрическая модель (размеры указаны в метрах):

- Ввиду симметрии задачи рассматривается четверть пластины
- R_H= 1 м, R_B = 0,75 м
- Используется полярная система координат

Граничные условия:

- Нулевые перемещения вдоль оси Х на прямой АВ
- Нулевые перемещения вдоль оси Y на прямой CD
- P_H= 1 Мпа, P_B= 0.1 Мпа

Параметры материала:

- Изотропный
- Модуль упругости Е = 210 Гпа
- Коэффициент Пуассона $\nu = 0.3$

- Измельчённая на линиях AB, AD и DC (вблизи точек D и C)
- Пять типов конечных элементов (5 отдельных тестов):
 - 3-узловые треугольники Tri3 (128 310 элементов)
 - 6-узловые треугольники Tri6 (31 535 элементов)
 - 4-узловые четырёхугольники Quad4 (15 432 элемента)
 - 8-узловые четырёхугольники Quad8 (15 432 элемента)
 - 9-узловые четырёхугольники Quad9 (15 432 элементов)
- Пять типов спектральных элементов Зго порядка (5 отдельных тестов):
 - 3-узловые треугольники Tri3s 3-го порядка (31 535 элементов)
 - 6-узловые треугольники Tri6 3-го порядка (31 535 элементов)
 - 4-узловые четырёхугольники Quad4s 3-го порядка (15 432 элемента)
 - 8-узловые четырёхугольники Quad8s 3-го порядка (15 432 элемента)
 - 9-узловые четырёхугольники Quad9s 3-го порядка (15 432 элемента)

- Напряжение *σ*_θ на внутренней поверхности цилиндра равно -4.2 МПа с точностью 1%.
- Напряжение σ_r на внутренней поверхности цилиндра равно -0.1 МПа с точностью 1%.
- Напряжение *σ*_θ на внешней поверхности цилиндра равно -3.3 МПа с точностью 1%.
- Напряжение *σ*_{*r*} на внешней поверхности цилиндра равно -1 МПа с точностью 1%.

Значения вычислены по формулам [1]

$$\sigma_{\theta} = \frac{R_{\rm B}^2 P_{\rm B} - R_{\rm H}^2 P_{\rm H}}{R_{\rm H}^2 - R_{\rm B}^2} + \frac{R_{\rm B}^2 R_{\rm H}^2 (P_{\rm B} - P_{\rm H})}{R_{\rm H}^2 - R_{\rm B}^2} \frac{1}{r^2}$$
$$\sigma_r = \frac{R_{\rm B}^2 P_{\rm B} - R_{\rm H}^2 P_{\rm H}}{R_{\rm H}^2 - R_{\rm B}^2} - \frac{R_{\rm B}^2 R_{\rm H}^2 (P_{\rm B} - P_{\rm H})}{R_{\rm H}^2 - R_{\rm B}^2} \frac{1}{r^2}$$

Результаты:

- Полученные значения компонент тензора напряжений представлены в таблице:
 - Конечные элементы

		Численный анализ							
Величина	Теоретическое значение		FID						
		Tr	i3		Tri6	ANSYS	15		
		Значение, Па	Ошибка	Значение, Па	Ошибка	Значение	Ошибка		
$\sigma_{\theta} _{r=R_B}$	-4 214 285	-4 215 030	0.02%	-4 214 280	0.0001%	4 204 800	0.24%		
$\sigma_r _{r=R_B}$	-100 000	-100 158	0.13%	- 100 004	0.004%	-103 940	3.9%		

¹³ Анализ проводился на четырехугольной сетке (тип элемента PLANE182, количество элементов 77 805).

$\sigma_{\theta} _{r=R_{H}}$	-3 314 286	-3 313 450	0.02%	-3 314 280	0.0002%	3 324 100	0.3%
$\sigma_r _{r=R_H}$	-1 000 000	-999 756	0.02%	-1 000 000	0%	988 870	1.1%

				Ч	исленный	анализ				
	Теоретическо			FIDESY	′S					
величина	е значение	Quad4		Quad	18	Qu	ad9	ANSYS ¹⁴		
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	
$\sigma_{\theta} _{r=R_B}$	-4 214 285	-4 211 140	0.07%	-4 214 400	0.003%	-4 214 290	0.0001%	4 204 800	0.24%	
$\sigma_r _{r=R_B}$	-100 000	-104 707	4.7%	-100 068	0.07%	-100 009	0.009%	-103 940	3.9%	
$\sigma_{\theta} _{r=R_{H}}$	-3 314 286	-3 314 490	0.006%	-3 314 190	0.003%	-3 314 290	0.0001%	3 324 100	0.3%	
$\sigma_r _{r=R_H}$	-1 000 000	-998 187	0.18%	-999 816	0.018%	-1 000 000	0%	988 870	1.1%	

Спектральные элементы Зго порядка _

			Численн	ый анализ				
Велич	Теоретическ		FID	ESYS				
ина	ое значение, Па	Tri3	S	Trið	ós	ANSYS		
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	
$\sigma_{\theta} _{r=R_B}$	-4 214 285	-4 216 290	0.05%	-4 214 290	0.0001%	4 204 800	0.24%	
$\sigma_r _{r=R_B}$	-100 000	-100 320	0.32%	-100 000	0%	-103 940	3.9%	
$\sigma_{\theta} _{r=R_{H}}$	-3 314 286	-3 313 720	0.02%	-3 314 290	0.0001%	3 324 100	0.3%	
$\sigma_r _{r=R_H}$	-1 000 000	-998 897	0.11%	-1 000 000	0%	988 870	1.1%	

Велич				Численны	й анализ				
	Теоретическ			FIDE	SYS				
ина	ое значение, Па	Quad4s		Quad8s		Quad9s		ANSYS	
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	Значение	Ошибка
$\sigma_{\theta} _{r=R_B}$	-4 214 285	-4 216 290	0.05%	-4 214 290	0.0001%	-4 214 290	0.0001 %	4 204 800	0.24%
$\sigma_r _{r=R_B}$	-100 000	-100 238	0.24%	-100 000	0%	-100 000	0%	-103 940	3.9%

¹⁴ Анализ проводился на четырехугольной сетке (тип элемента PLANE182, количество элементов 77 805).

$\sigma_{\theta} _{r=R_{H}}$	-3 314 286	-3 313 930	0.01%	-3 314 290	0.0001%	-3 314 290	0.0001 %	3 324 100	0.3%
$\sigma_r _{r=R_H}$	-1 000 000	-999 888	0.01%	-1 000 000	0%	-1 000 000	0%	988 870	1.1%

• На картинке ниже представлена исходная модель с полем распределения напряжений *σ_r* при разбиении на треугольные элементы:

Tecm 1.1.7: Круглая цилиндрическая труба под воздействием внутреннего и внешнего давлений (3D)

Рассматривается задача о бесконечной цилиндрической трубе, находящейся под воздействием внутреннего давления.

Геометрическая модель (размеры указаны в метрах):

- Ввиду симметрии задачи рассматривается четверть широкого среза трубы
- Толщина среза 0.5 м
- Используется цилиндрическая система координат

Граничные условия:

- Нулевые перемещения вдоль оси Х на поверхности АВВ'А'
- Нулевые перемещения вдоль оси Y на поверхности CDD'C'
- Нулевые перемещения вдоль оси Z на поверхностях ABCD и A'B'C'D'
- Давление на поверхность АА'D'D величиной 1 Мпа
- Давление на поверхность В'В'С'С величиной 0.5 Мпа

Параметры материала:

- Изотропный
- Модуль упругости Е = 200 ГПа
- Коэффициент Пуассона v = 0.3

- Девять типов конечных элементов (девять отдельных тестов):
 - 4-узловые тетраэдры Tetra4 (2 058 954 элемента)
 - 10-узловые тетраэдры Tetra10 (65 452 элемента)
 - 8-узловые гексаэдры Hex8 (682 030 элементов)
 - 20-узловые гексаэдры Нех20 (415 540 элементов)
 - 27-узловые гексаэдры Нех27 (415 540 элементов)
 - 6-узловые призмы WEDGE6 (198 132 элементов)
 - 15-узловые призмы WEDGE15 (26 367 элементов)
 - 5-узловые пирамиды PYRAMID5 и 4-узловые тетраэдры TETRA4 (198 132 элементов)
 - 13-узловые пирамиды PYRAMID13 и 10-узловые тетраэдры TETRA10 (8 456 элементов)

- Напряжение σ_{rr} в точке N (1;0;0) равно -1.00 МПа с точностью 1%
- Напряжение $\sigma_{\theta\theta}$ в точке N (1;0;0) равно 0.33 МПа с точностью 1%
- Напряжение σ_{zz} в точке N (1;0;0) равно -0.2 МПа с точностью 1%

Значения вычислены по следующим формулам [1]:

$$\sigma_{rr} = \sigma_{11} = \frac{a^2 p_a}{b^2 - a^2} \left(1 - \frac{b^2}{r^2} \right) - \frac{b^2 p_b}{b^2 - a^2} \left(1 - \frac{a^2}{r^2} \right)$$

$$\sigma_{\theta\theta} = r^2 \sigma_{22} = \frac{a^2 p_a}{b^2 - a^2} \left(1 + \frac{b^2}{r^2} \right) - \frac{b^2 p_b}{b^2 - a^2} \left(1 + \frac{a^2}{r^2} \right) \qquad \sigma_{zz} = \sigma_{33} = \frac{\lambda}{\lambda + \mu} \frac{a^2 p_a - b^2 p_b}{b^2 - a^2}$$

Результаты:

• Полученные значения напряжений представлены в таблицах:

– Конечные элементы

		Численный анализ							
Величина	Теоретическое значение		FID	ANSYS ¹⁵					
		Тетраэдры (Т	FETRA4)	Тетраэдры	(TETRA10)	Тетраэдры			
		Значение	Ошибка	Значение Ошибка		Значение	Ошибка		
<i>σ_{rr}</i> ,МПа	-1	-0.999	0.1%	-0.999	0.1%	-1	<0.01%		
σ _{θθ} ,МПа	0.333	0.334	-0.22%	0.333	<0.01%	0.333	<0.01%		
σ _{zz} ,МПа	-0.200	-0.198	0.59%	-0.199	0.5%	-0.200	<0.01%		

¹⁵ Анализ проводился на следующих сетках:

тетраэдальной (тип элемента SOLID187, количество элементов 1 626 578, количество узлов 2 243 852);

 \mathbf{c}

	Теоретическое значение	Численный анализ									
Величина				ANSYS ¹⁶							
		Гексаэдры (НЕХ8)		Гексаэдры (НЕХ20)		Гексаэдры (НЕХ27)		Гексаэдры			
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	Значение	Ошибка		
σ _{rr} ,МПа	-1	-0.999	0.1%	-0.999	0.1%	-0.979	2%	-0.999	0.1%		
$\sigma_{ heta heta}$,МПа	0.333	0.334	-0.22%	0.333	<0.01%	0.312	6.29%	0.334	0.35%		
<i>σ_{zz}</i> ,МПа	-0.200	-0.198	0.59%	-199 701	0.15%	-200 052	0.30%	-199 810	0.1%		

Величина	Теоретическое значение	Численный анализ									
		FIDESYS									
		Призмы (WEDGE6)		При (WED)	змы GE15)	Пира (PYRA	миды MID5)	Пирамиды (PYRAMID13)			
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	Значение	Ошибка		
<i>σ_{rr}</i> ,МПа	-1	-0.996	0.4%	-0.999	0.01%	-1	<0.01%	-0.998	0.2%		
$\sigma_{ heta heta}$,МПа	0.333	0.338	1.5%	0.332	0.03%	0.333	<0.01%	0.333	<0.01%		
<i>σ_{zz}</i> ,МПа	-0.200	-0.197	1.5%	-0.2	<0.01%	-0.200	<0.01%	-0.199	0.5%		

• На картинке представлена исходная модель с полем распределения перемещений по оси R (цилиндрическая с/к), а так же точка N, в которой сравнивались аналитические и численные результаты:

¹⁶ Анализ проводился на следующих сетках:

⁻ гексаэдральной (тип элемента SOLID185, количество элементов 1 620 000, количество узлов 1 682 358).

Тест 1.1.8: Растяжение балки

В задаче рассматривается подвешенная балка с квадратным сечением, закреплённая в верхней секции. Осевая растягивающая сила приложена к свободному концу балки.

Геометрическая модель:

- Высота балки L = 10 in
- Ширина балки d = 2 in

Граничные условия:

- Нулевые перемещения вдоль всех осей на плоскости Y = 0
- Осевая сила P = 10 000 lb, приложенная во все узлы плоскости Y = L

Параметры материала:

- Изотропный
- Модуль упругости E = 10.4·10⁶ psi
- Коэффициент Пуассона v = 0.3

Сетка:

Рассматривалось два варианта расчетной схемы:

- 8-узловые гексаэдры Hex8 (7 элементов)
- Спектральные элементы гексаэдры Hex8s (четыре отдельных теста)
 - 3-ого порядка (7 элементов)
 - 4-го порядка (7 элементов)
 - 5-ого порядка (7 элементов)
 - 6-ого порядка (7 элементов)

Критерий прохождения теста [28]:

• Напряжение σ_{уу} в точке В (1;L/2;1) равно 4444 psi с точностью 1%

Результаты:

• В таблице приведены результаты расчёта FIDESYS, ANSYS [28]:

		0	Объемная схема (гексаэдры)						
Величина	Теоретическое значение	FIDESYS (I Гексаэд	НЕХ8) (ры	ANSYS					
		Значение	Ошибка	Значение	Ошибка				
σ _{yy} , psi	4444	4431.8	0.27%	4441	1%				

- Спектральные элементы:

Величина		Численный анализ FIDESYS (HEX8s)								
	Теоретическое значение	Элементы 3-го порядка		Элементы 4-го порядка		Элементы 5-го порядка		Элементы 6-го порядка		
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	
σ _{yy} , psi	4444	4458.41	0.32%	4464.19	0.45%	4461.8	0.4%	4464.15	0.45%	

• На картинке ниже представлена деформированная модель с полем распределения напряжений по оси Y:

Тест 1.1.9: Задача Буссинеска

В задаче рассматривается бесконечное упругое полупространство z≥0, в некоторой точке которой приложена сосредоточенная сила. Задача будет ограничена объёмом параллелепипеда 50мх25мх25м, в центр которого приложена точечная сила F, направленная по оси Z.

Геометрическая модель:

- Длина больших ребер параллелепипеда L = 50 м
- Высота ребер параллелепипеда h = 25 м
- Используются цилиндрические координаты
- Начало координат в точке М

Граничные условия:

- Закрепление по всем перемещениям для плоскостей АА'В'В, ВВ'С'С, СС'D'D и А'В'С'D'.
- В точке M (середина стророны ABCD) приложена сила F величиной 100 кH, направленная по оси Z

Параметры материала:

- Изотропный
- Модуль упругости Е = 200 ГПа
- Коэффициент Пуассона v = 0.3

Сетка:

• 8-узловые гексаэдры (1 000 188 элементов)

Критерии прохождения теста:

Напряжение σ_z в точке (5, 0.3, 5) равно -337.619 Па с точностью 1%

Значения вычислены по следующим формулам [3]:

$$\sigma_Z = \frac{3F}{2\pi} \frac{z^3}{R^5}$$

где $R = \sqrt{z^2 + r^2}$

Результаты:

• Полученные значения компонент тензора напряжений представлены в таблице:

	T	Численнь	ій анализ
Величина	теоретическое значение, Па	FIDE	SYS
		Значение, Па	Ошибка
σ_Z	-337.619	-337.741	0.04 %

• На картинке ниже представлен график распределения напряжений σ_z вдоль линии z=5:

Тест 1.1.10: Равномерно нагруженная круглая пластина, защемленная по контуру

Рассматривается задача об изгибе круглой пластинки под действием равномерно распределенной по всей поверхности пластинки нагрузки.

Геометрическая модель:

- Ввиду симметрии задачи рассматривается четверть пластины
- Радиус R=1 м
- Толщина h=0.01 м
- Используются сферические координаты

Граничные условия:

- Нулевые перемещения вдоль оси X на прямой OA (U_x=R_y=R_z=0)
- Нулевые перемещения вдоль оси Y на прямой OB (U_y=R_x=R_z=0)
- Закрепление по всем перемещениям и поворотам на кривой AB
- Равномерно распределенная нагрузка по всей поверхности ОАВ q = 10 кПа

Параметры материала:

- Изотропный
- Модуль упругости Е = 200 ГПа
- Коэффициент Пуассона v = 0.3

Сетка:

- Измельчённая в окрестности точки О
- Пять типов элементов (пять отдельных тестов):
 - 3-узловые треугольные оболочки TriShell3 (1 670 элементов)
 - 6-узловые треугольные оболочки TriShell6 (1 670 элементов)
 - 4-узловые четырёхугольные оболочки Shell4 (1 976 элементов)
 - 8-узловые четырёхугольные оболочки Shell8 (1 976 элементов)
 - 9-узловые четырёхугольные оболочки Shell9 (1 976 элементов)

Критерии прохождения теста:

- Перемещения *u_z* в точке O (0, 0, 0) равно -8.53125 мм с точностью 3%
- Момент М_r в точке О (0, 0, 0) равен 812.5 Н с точностью 3%
- Момент M_r в точке В (1, 0, 0) равен -1 250 Н с точностью 3%
- Напряжение на верхней поверхности σ_R в точке В (1, 0, 0) равно 75 МПа с точностью 3%

Значения вычислены по следующим формулам [19]:

$$\begin{split} u_{z}|_{r=0} &= -rac{qR^{4}}{64D},$$
где $D = rac{Eh^{3}}{12(1-v^{2})} M_{r}|_{r=0} = rac{qR^{2}}{16}(1+v), \ M_{r}|_{r=R} &= -rac{qR^{2}}{8}, \ \sigma_{R}|_{r=R} = rac{3qR^{2}}{4h^{2}}. \end{split}$

Результаты:

• Полученные значения компонент тензора напряжений представлены в таблице:

		Численный анализ									
Величина	Теор. значе		FIC	ANSVC17							
	ние	TRISH	IELL3	AND TO"							
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка				
$u_z _{r=0}$, mm	-8.531	-8.54	<0.01%	-8.536	<0.01%	-8.468	0.74				
$ \mathbf{M}_r _{r=0}, \mathbf{H}$	812.5	812.776	<0.01%	812.521	<0.01%	808.88	0.45%				
$M_r _{r=R}, H$	-1 250	-1 206.76	3.46%	-1277.91	0.02%	1 233.19	1.35%				
$σ_R _{r=R},$ ΜΠα	75	72.40	3.47%	76.67	0.02%	74.2	1.07%				

					Численнь	ій анализ			
Величина	Теор. значе								
	ние	SHE	SHELL4 SHELL8 SHELL9			ANS	15		
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	Значение	Ошибка
$u_z _{r=0}$, mm	-8.531	-8.435	1.13%	-8.551	0.23%	-8.535	< 0.01%	-8.468	0.74
$M_r _{r=0}, H$	812.5	812.785	0.04%	812.473	<0.01%	816.428	0.5%	808.88	0.45%
$M_r _{r=R}$, H	-1 250	-1 203.73	1.54%	-1 224.18	2%	-1250.92	0.1%	1 233.19	1.35%
σ _R _{r=R} , МПа	75	72.222	3.70%	73.451	2%	75.055	0.1%	74.2	1.07%

¹⁷ Анализ проводился на четырехугольной сетке (тип элемента SHELL181, 1 690 элементов).

¹⁸ Анализ проводился на четырехугольной сетке (тип элемента SHELL181, 1 690 элементов).

 На картинке ниже представлена исходная модель с полем распределения напряжений σ_R на верхней поверхности :

Тест 1.1.11: Равномерно нагруженная круглая пластина, свободно опертая по контуру

Рассматривается задача об изгибе круглой пластинки, свободно опертой по контуру, под действием равномерно распределенной по всей поверхности пластинки нагрузки.

Геометрическая модель:

- Ввиду симметрии задачи рассматривается четверть пластины
- Радиус R=1 м
- Толщина h=0.01 м
- Используются сферические координаты

Граничные условия:

- Нулевые перемещения вдоль оси X на прямой OA (U_x=R_y=R_z=0)
- Нулевые перемещения вдоль оси Y на прямой OB (U_y=R_x=R_z=0)
- Закрепление по всем перемещениям на кривой АВ
- Равномерно распределенная нагрузка по всей поверхности ОАВ q = 10 кПа

Параметры материала:

- Изотропный
- Модуль упругости Е = 200 ГПа
- Коэффициент Пуассона v = 0.3

Сетка:

- Измельчённая в окрестности точки О
- Пять типов элементов (пять отдельных тестов):
 - 3-узловые треугольные оболочки TriShell3 (1 670 элементов)
 - 6-узловые треугольные оболочки TriShell6 (1 670 элементов)
 - 4-узловые четырёхугольные оболочки Shell4 (1 976 элементов)
 - 8-узловые четырёхугольные оболочки Shell8 (1 976 элементов)
 - 9-узловые четырёхугольные оболочки Shell9 (1 976 элементов)

Критерии прохождения теста:

- Перемещения u_z в точке О (0, 0, 0) равно -0.03478 м с точностью 1%
- Моменты М_r и М_t в точке О (0, 0, 0) равны 2062.5 Н с точностью 1%
- Напряжения на нижней поверхности σ_R и σ_{θ} в точке В (0, 0, 0) равны 123 МПа с точностью 1%

Значения вычислены по следующим формулам [19]:

$$\begin{split} u_{Z}|_{r=0} &= -rac{(5+
u)qR^{4}}{64(1+
u)D}, \$$
где $D = rac{Eh^{3}}{12(1-
u^{2})} \ M_{r}|_{r=0} &= M_{t}|_{r=0} = rac{qR^{2}}{16}(3+
u), \ \sigma_{R}|_{r=0} &= \sigma_{\theta}|_{r=0} = rac{3(3+
u)qR^{2}}{8h^{2}}. \end{split}$

Результаты:

• Полученные значения представлены в таблицах:

		Численный анализ								
Величина	Теор.		FID	• ANSYS ¹⁹						
	значение	TRISF	IELL3							
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка			
$u_z _{r=0}$, м	-0.034781	-0.034777	0.01%	-0.034788	0.02%	-0.03489	0%			
$M_r _{r=0}$, H	2 062.5	2 062.12	0.02%	2 062.64	0.01%	2 062.0	0.02%			
$M_t _{r=0}$, H	2 062.5	2 062.16	0.02%	2 062.62	0.01%	2 062.0	0.02%			
$σ_R _{r=0}$, ΜΠα	123	123.73	0.59%	123.76	0.62%	123.72	0.59%			
$\sigma_{ heta} _{r=0}$, МПа	123	123.73	0.59%	123.76	0.62%	123.72	0.59%			

			Численный анализ									
Величина	Теор.		FIDESYS									
	значение	Shell4		Shell8		Shell9		ANSTS-				
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	Значение	Ошибка			
$u_z _{r=0}$, M	-0.034781	-0.03477	0.03%	-0.03479	0.03%	-0.034795	0.04%	-0.03489	0%			
$ M_r _{r=0}, H$	2 062.5	2 062.57	<0.01%	2 062.72	0.01%	2 072.91	0.50%	2 062.0	0.02%			
$ M_t _{r=0}, H$	2 062.5	2 062.57	<0.01%	2 062.72	0.01%	2 072.23	0.47%	2 062.0	0.02%			
$\sigma_R _{r=0},$ ΜΠa	123	123.755	0.61%	123.76	0.62%	124.375	1.12%	123.72	0.59%			
$\sigma_{ heta} _{r=0},$ ΜΠa	123	123.755	0.61%	123.76	0.62%	124.334	1.08%	123.72	0.59%			

¹⁹ Анализ проводился на четырехугольной сетке (тип элемента SHELL181, 1 690 элементов).

²⁰ Анализ проводился на четырехугольной сетке (тип элемента SHELL181, 1 690 элементов).

• На картинке ниже представлена исходная модель с полем распределения напряжений *σ*_R на нижней поверхности :

Тест 1.1.12: Круглая пластина, нагруженная концентрически

Рассматривается задача об изгибе круглой пластинки под действием нагрузки, равномерно распределенной по внутренней части пластинки, ограниченной радиусом R_i.

Геометрическая модель:

- Ввиду симметрии задачи рассматривается четверть пластины
- Радиус R=1 м
- Радиус R_i =0.5 м
- Толщина h=0.01 м
- Используются сферические координаты

Граничные условия:

- Нулевые перемещения вдоль оси X на прямой OA (U_x=R_y=R_z=0)
- Нулевые перемещения вдоль оси Y на прямой OB (U_y=R_x=R_z=0)
- Закрепление по всем перемещениям на кривой АВ
- Равномерно распределенная нагрузка по поверхности ОА`В` q = 10 кПа

Параметры материала:

- Изотропный
- Модуль упругости Е = 200 ГПа
- Коэффициент Пуассона v = 0.3

Сетка:

- Пять типов элементов (пять отдельных тестов):
 - 3-узловые треугольные оболочки TriShell3 (2 546 элементов)
 - 6-узловые треугольные оболочки TriShell6 (2 546 элементов)
 - 4-узловые четырёхугольные оболочки Shell4 (1 541 элементов)
 - 8-узловые четырёхугольные оболочки Shell8 (1 541 элементов)
 - 9-узловые четырёхугольные оболочки Shell9 (1 541 элементов)

Критерии прохождения теста:

• Перемещение u_z в точке О (0, 0, 0) равно -0.016941 м с точностью 1%

Значения вычислены по следующим формулам [19]:

$$\begin{split} u_{z}|_{r=0} &= -\frac{P}{16\pi D} \Big[\frac{3+\nu}{1+\nu} R_{o}^{2} + R_{i}^{2} ln \frac{R_{i}}{R_{o}} - \frac{7-3\nu}{4(1+\nu)} R_{i}^{2} \Big], \\ \text{где } D &= \frac{Eh^{3}}{12(1-\nu^{2})}, P = \pi R_{i}q, \end{split}$$

Результаты:

• Полученные значения представлены в таблице:

		Численный анализ										
Величина	Теор.		FID	ANSYS ²¹								
	значение	TRISH	IELL3	TRISH	ELL6							
		Значение	Значение Ошибка Значение Ошибка Значение Ошибка									
$u_z _{r=0}$, M	-0.01694	-0.01693	0.01693 0.06% -0.01694 <0.01% -0.016937 0.02%									

					Численны	й анализ					
Величина	Теор.	FIDESYS							ANSVS ²²		
	значение	Shel	l 4	She	118	She			5		
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	Значение	Ошибка		
$u_z _{r=0}$, M	-0.01694	-0.016936	016936 0.01% -0.01694 <0.01% -0.01695 0.06% -0.016937 0.02								

На картинке ниже представлена исходная модель с полем распределения перемещений u_z на нижней поверхности :

²¹ Анализ проводился на четырехугольной сетке (тип элемента SHELL181, 1 951 элементов).

²² Анализ проводился на четырехугольной сетке (тип элемента SHELL181, 1 951 элементов).

Тест 1.1.13: Квадратная пластина, защемленная по контуру и нагруженная в центре

Рассматривается задача об изгибе квадратной пластинки, защемленной по всему контуру, под действием сосредоточенной нагрузки, приложенной в центре пластинки.

Геометрическая модель:

- Сторона а=1 м
- Толщина h=0.01 м

Граничные условия:

- Закрепление по всем перемещениям и поворотам на всех сторонах пластины
- Сосредоточенная сила в точке О Р=100 кН

Параметры материала:

- Изотропный
- Модуль упругости Е = 200 ГПа
- Коэффициент Пуассона v = 0.3

Сетка:

- Измельчённая в окрестности точки О
- Пять типов элементов (пять отдельных тестов):
 - 3-узловые треугольные оболочки TriShell3 (2 850 элементов)
 - 6-узловые треугольные оболочки TriShell6 (2 850 элементов)
 - 4-узловые четырёхугольные оболочки Shell4 (2 704 элементов)
 - 8-узловые четырёхугольные оболочки Shell8 (2 704 элементов)
 - 9-узловые четырёхугольные оболочки Shell9 (2 704 элементов)

Критерии прохождения теста:

• Перемещение u_z в точке О (0, 0, 0) равно -0.030576 м с точностью 2%

Значения вычислены по следующим формулам [19]:

$$u_z|_{x=y=0} = -0.0056 \frac{Pa^2}{D}$$
, где $D = \frac{Eh^3}{12(1-\nu^2)}$,

Результаты:

• Полученные значения представлены в таблице:

		Численный анализ						
Величина	Teop.		FID	ANSYS ²³				
	значение	TRISH	IELL3	TRISH	ELL6			
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	
$u_z _0$, M	-0.030576	-0.0305	0.25%	-0.030922	1.13%	-0.03077	0.69%	

		Численный анализ							
Величина	Теор.		ΔΝΟ	/S ²⁴					
	значение	She	14	She	118	She	118	ANSTS	
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	Значение	Ошибка
$u_z _{x=y=0}$, M	-0.030576	-0.03076	3076 0.60% -0.03087 0.96% -0.03084 -0.86% -0.03077						

• На картинке ниже представлена исходная модель с полем распределения перемещений u_z :

²³ Анализ проводился на четырехугольной сетке (тип элемента SHELL181, 2 500 элементов). Анализ проводился на четырехугольной сетке (тип элемента SHELL181, 2 500 элементов).

Тест 1.1.14: Квадратная пластина, два противоположных края которой свободно оперты, два других свободны

Рассматривается задача об изгибе квадратной пластинки, свободно опертой по двум противоположным краям и свободной по двум другим, под действием равномерно

распределенной по всей поверхности пластинки нагрузки.

Геометрическая модель:

- Ввиду симметрии задачи рассматривается четверть пластины
- Сторона а=1 м
- Толщина h=0.01 м

Граничные условия:

- Закрепление по всем перемещениям на стороне ВС
- Нулевые перемещения вдоль оси X на прямой OA (U_x=R_y=R_z=0)
- Нулевые перемещения вдоль оси Y на прямой OB (U_y=R_x=R_z=0)
- Равномерно распределенная нагрузка по всей поверхности ОАВ q = 10 кПа

Параметры материала:

- Изотропный
- Модуль упругости Е = 200 ГПа
- Коэффициент Пуассона v = 0.3

Сетка:

- Измельчённая в окрестности точки О
- Пять типов элементов (пять отдельных тестов):
 - 3-узловые треугольные оболочки TriShell3 (2 916 элементов)
 - 3-узловые треугольные оболочки TriShell3 (2 916 элементов)
 - 4-узловые четырёхугольные оболочки Shell4 (3 025 элементов)
 - 4-узловые четырёхугольные оболочки Shell4 (3 025 элементов)
 - 4-узловые четырёхугольные оболочки Shell4 (3 025 элементов)

Критерии прохождения теста:

- Перемещение u_z в точке O (0, 0, 0) равно -0.007147 м с точностью 1%
- Момент *M_x* в точке О (0, 0, 0) равен 1 225 Н с точносьтю 1%
- Момент *M_y* в точке О (0, 0, 0) равен 270 Н с точносьтю 1%
- Перемещение \mathbf{u}_z в точке А (0, 0.5, 0) равно -0.008239 м с точностью 1%
- Момент *M_x* в точке А (0, 0.5,0) равен 1 318 Н с точностью 1%

Значения вычислены по следующим формулам [19]:

$$\begin{split} u_z|_{x=y=0} &= -0.1309 \frac{qa^4}{D}, \, u_z|_{y=rac{a}{2},x=0} = -0.01509 \frac{qa^4}{D},$$
 где $D = rac{Eh^3}{12(1-
u^2)}, \ M_x|_{x=y=0} &= 0.1225qa^2, \, M_y|_{x=y=0} = 0.0271qa^2, \ M_x|_{y=rac{a}{2},x=0} = 0.1318qa^2. \end{split}$

Результаты:

• Полученные значения представлены в таблице:

				Численный	і анализ			
Величина	Teop.		FIDE					
	значение	Trishe	113	Trishe	ell6	ANSTS		
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	
$u_{z} _{x=y=0}$, M	-0.007147	-0.007148	0.01%	-0.007152	0.07%	-0.00715	0.04%	
$M_x _{x=y=0}, H$	1 225	1 224.9	0.01%	1 225.28	-0.02%	-1 225.0	0%	
$M_{y}\big _{x=y=0}$, H	271	270.038	0.35%	268.987	0.74%	-269.02	0.73%	
$u_z _{y=\frac{a}{2},x=0},M$	-0.008239	-0.00819	0.59%	-0.008214	0.30%	0.00821	0.035%	
$M_{x} _{y=\frac{a}{2},x=0}$, H	1 318	1 297.10	1.59%	1 312.69	0.40%	-1 307.6	0.79%	

²⁵ Анализ проводился на четырехугольной сетке (тип элемента SHELL181, 2 500 элементов).

					Численны	й анализ						
Величин	Теор. значение	FIDESYS							ANSVS ²⁶			
а		Shell4		Shell8		Shell9						
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	Значение	Ошибка			
$u_z _{x=y=0},$ M	-0.007147	-0.007149	0.03%	-0.007152	0.07%	-0.007151	-0.06%	-0.00715	0.04%			
$\begin{array}{c} M_x _{x=y=0}\\ , H \end{array}$	1 225	1 225.16	0.01%	1 225.34	0.03%	1 225.48	-0.04%	-1 225.0	0%			
$\left. \begin{array}{c} M_{y} \right _{x=y=0} \\ , H \end{array} \right.$	271	269.25	0.65%	269.20	0.66%	268.8	0.81%	-269.02	0.73%			
$u_z _{y=\frac{a}{2},x=0},M$	-0.008239	-0.00821	0.35%	-0.008212	0.33%	-0.008215	0.29%	0.00821	0.035%			
$\begin{bmatrix} M_x _{y=\frac{a}{2},x=0} \\ , H \end{bmatrix}$	1 318	1 311.33	0.51%	1 308.94	0.69%	1 317.64	0.03%	-1 307.6	0.79%			

• На картинке ниже представлена исходная модель с полем распределения поля моментов M_x :

²⁶ Анализ проводился на четырехугольной сетке (тип элемента SHELL181, 2 852 элементов).

Тест 1.1.15: Квадратная свободно опертая пластина под совместным действием равномерно распределенной поперечной нагрузки и равномерного растяжения

Рассматривается задача об изгибе квадратной пластинки, свободно опертой по двум противоположным краям и свободной по двум другим, под действием равномерно распределенной по всей поверхности пластинки нагрузки.

Геометрическая модель:

- Ввиду симметрии задачи рассматривается четверть пластины
- Сторона а=1 м
- Толщина h=0.01 м

Граничные условия:

- Нулевые перемещения вдоль оси Z на прямой BC
- Нулевые перемещения U_y и U_z на прямой AB
- Нулевые перемещения вдоль оси X на прямой OA (U_x=R_y=R_z=0)
- Нулевые перемещения вдоль оси Y на прямой OB (U_y=R_x=R_z=0)
- Равномерно распределенная нагрузка по прямой ВС вдоль оси Х Р = 723 048 Н/м
- Равномерно распределенная нагрузка по всей поверхности ОАВ q = 10 кПа

Параметры материала:

- Изотропный
- Модуль упругости Е = 200 ГПа
- Коэффициент Пуассона v = 0.3

Сетка:

- Измельчённая в окрестности точки О
- Пять типов элементов (пять отдельных тестов):
 - 3-узловые треугольные оболочки TriShell3 (2 916 элементов)
 - 6-узловые треугольные оболочки TriShell6 (2 916 элементов)
 - 4-узловые четырёхугольные оболочки Shell4 (3 025 элементов)
 - 8-узловые четырёхугольные оболочки Shell8 (3 025 элементов)
 - 9-узловые четырёхугольные оболочки Shell9 (3 025 элементов)

Критерии прохождения теста:

- Перемещение \mathbf{u}_z в точке О (0, 0, 0) равно -2.250 мм с точностью 1.5%
- Момент *M_x* в точке О (0, 0, 0) равен 480 Н с точносьтю 1.5%
- Момент *M*_v в точке О (0, 0, 0) равен 480 Н с точносьтю 1.5%

Значения вычислены по следующим формулам [19]:

$$u_{z}|_{x=y=0} = -0.045 \frac{qa^{4}}{Eh^{3}},$$

$$M_{x}|_{x=y=0} = 0.048qa^{2}, M_{y}|_{x=y=0} = 0.048qa^{2},$$

Результаты:

• Полученные значения представлены в таблице:

				Численный	і анализ					
Величина	Теор. значение		FIDE	ANSVS ²⁷						
		Trishell3		Trishell6		AN313				
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка			
$u_z _{x=y=0}$, mm	-2.250	-2.223	1.20%	-2.234	0.71%	-2.234	0.71%			
$M_x _{x=y=0}$, H	480	479.77	0.05%	481.29	0.27%	481.16	0.24%			
$M_y\Big _{x=y=0}$, H	480	479.77	0.05%	481.29	0.27%	481.16	0.24%			

		Численный анализ								
Величина	Теор.	FIDESYS								
	значение	Shell4		Shell8		Shell9				
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	
$u_{z} _{x=y=0}$, mm	-2.250	-2.233	0.76%	-2.2331	0.75%	-2.2377	0.55%	-2.234	0.71%	
$M_x _{x=y=0}$, H	480	481.117	0.23%	481.091	0.23%	482.482	-0.52%	481.16	0.24%	
$M_y\big _{x=y=0}, H$	480	481.117	0.23%	481.091	0.23%	482.482	-0.52%	481.16	0.24%	

²⁷ Анализ проводился на четырехугольной сетке (тип элемента SHELL181, 2 500 элементов).

²⁸ Анализ проводился на четырехугольной сетке (тип элемента SHELL181, 2 500 элементов).

• На картинке ниже представлена деформированная модель с полем распределения перемещений u_x :

Тест 1.1.16: Консольная балка с сосредоточенной силой на свободном конце

Рассматривается задача об изгибе балки, защемленной на одном конце и приложенной сосредоточенной силой на другом. При этом приводятся решения для четырех видов поперечных сечений – прямоугольник, круг, труба, двутавр (четыре отдельных теста).

Граничные условия:

- Нулевые перемещения и повороты вдоль всех осей в точке О
- Сосредоточенная сила в точке А Р = 1 кН

Параметры материала:

- Изотропный
- Модуль упругости Е = 200 ГПа
- Коэффициент Пуассона v = 0.3

Сетка:

• Линейные балочные элементы Beam2 (10 элементов)

Критерии прохождения теста:

- Для прямоугольного сечения:
 - Перемещение u_v в точке A (20, 0, 0) равно -0.025 м с точностью 1%
 - Угол поворота сечения θ в точке А (20, 0, 0) равен -0.0019 рад с точностью 1%
- Для круглого сечения:
 - Перемещение u_{ν} в точке A (20, 0, 0) равно -0.169851 м с точностью 1%
 - Угол поворота сечения θ в точке А (20, 0, 0) равен -0.012739 рад с точностью 1%
- Для сечения труба:
 - Перемещение u_v в точке A (20, 0, 0) равно -0.011318 м с точностью 1%
 - Угол поворота сечения θ в точке А (20, 0, 0) равен -0.000849 рад с точностью 1%
- Для сечения двутавр:
 - Перемещение u_{ν} в точке A (20, 0, 0) равно -0.006667 м с точностью 1%
 - Угол поворота сечения θ в точке A (20, 0, 0) равен -0.000500 рад с точностью 1%
- Для сечения швеллер:
 - Перемещение и_v в точке А (20, 0, 0) равно -3.65Е-03 м с точностью 1%
 - Угол поворота сечения θ в точке A (20, 0, 0) равен -2.74E-04 рад с точностью 1%
- Для сечения уголок:
 - Перемещение u_v в точке A (20, 0, 0) равно -5.45Е-03 м с точностью 1%
 - Угол поворота сечения θ в точке A (20, 0, 0) равен -4.09E-04 рад с точностью 1%
- Для сечения тавр:
 - Перемещение u_v в точке A (20, 0, 0) равно -1.30Е-02 м с точностью 1%
 - Угол поворота сечения θ в точке A (20, 0, 0) равен -9.74E-04 рад с точностью 1%
- Для Z-сечения:
 - Перемещение u_v в точке А (20, 0, 0) равно -1.89Е-03 м с точностью 1%

- Угол поворота сечения θ в точке A (20, 0, 0) равен -1.42E-04 рад с точностью 1%
- Для сечения полый прямоугольник:
 - Перемещение u_v в точке А (20, 0, 0) равно -6.54Е-05 м с точностью 1%
 - Угол поворота сечения θ в точке A (20, 0, 0) равен -4.9040E-06 рад с точностью 1%

Значения вычислены по следующим формулам [20]:

$$u_{y}|_{x=L} = -\frac{PL^{3}}{3EI_{z}}, \ \theta_{z}|_{x=L} = -\frac{PL^{2}}{2EI_{z}}$$

Результаты:

• Полученные значения представлены в таблице:

		Toop	Численный анализ					
Сечение	Величина	значение	FIDESYS		ANSYS ²⁹			
			Значение	Ошибка	Значение	Ошибка		
Прямоугольник	$\left.u_{y}\right _{x=L}$, м	-2.5E-02	-2.5000E-02	0%	-2.49E-02	0.40%		
прямоугольник	$\theta_z _{x=L}$	-1.90E-03	-1.8750E-03	1.32%	-1.8750E-03	1.32%		
Круг	$\left.u_{y}\right _{x=L}$, M	-1.69E-01	-1.6977E-01	0.05%	-1.6978E-01	0.04%		
круг	$\theta_z _{x=L}$	-1.2739E-02	-1.2732E-02	0%	-1.2759E-02	0.16%		
Труба	$\left.u_{y}\right _{x=L}$, M	-1.1318E-02	-1.1318E-02	0%	-1.1325E-02	0.06%		
Груба	$\theta_z _{x=L}$	-8.4900E-04	-8.4900E-04	0%	-8.51E-04	0.24%		
Двутавр	$\left.u_{y}\right _{x=L}$, M	-6.6670E-03	-6.6570E-03	0.15%	-6.6480E-03	0.28%		
	$\theta_z _{x=L}$	-5.0000E-04	-4.9900E-04	0.20%	-4.99E-04	0.20%		
	$\left.u_{y}\right _{x=L}$, м	-3.65E-03	-3.6480E-03	0.05%	-3.647E-03	0.08%		
швеллер	$\theta_z _{x=L}$	-2.74E-04	-2.7360E-04	0.15%	-2.7358E-04	0.15%		
Уголок	$\left.u_{y}\right _{x=L}$, м	-5.45E-03	-5.4439E-03	0.11%	-5.4488E-03	0.02%		
Лолок	$\theta_z _{x=L}$	-4.09E-04	-4.0829E-04	0.17%	-4.0866E-04	0.08%		
Tapp	$\left.u_{y}\right _{x=L}$, м	-1.30E-02	-1.2981E-02	0.14%	-1.3080E-02	-0.62%		
тавр	$\theta_z _{x=L}$	-9.74E-04	-9.7361E-04	0.04%	-9.7360E-04	0.04%		
7-0000000	$\left.u_{y}\right _{x=L}$, m	-1.89E-03	-1.8906E-03	-0.03%	-1.8907E-03	-0.04%		
2-сечение	$\theta_z _{x=L}$	-1.42E-04	-1.4179E-04	0.15%	-1.4180E-04	0.14%		
Полый	$\left.u_{y}\right _{x=L}$, м	-6.54E-05	-6.5386E-05	0.02%	-6.6229E-05	-1.27%		
прямоугольник	$\theta_z _{x=L}$	-4.90E-06	-4.9040E-06	-0.08%	-4.9040E-06	-0.08%		

²⁹ Анализ проводился на четырехугольной сетке (тип элемента BEAM4, 10 элементов).

• На картинке ниже представлена исходная модель с полем распределения перемещений u_y для прямоугольного сечения:

Тест 1.1.17: Консольная балка с сосредоточенным моментом на свободном конце

Рассматривается задача об изгибе балки, защемленной на одном конце и приложенным сосредоточенным моментом на другом. При этом приводятся решения для четырех видов поперечных сечений – прямоугольник, круг, труба, двутавр (четыре отдельных теста).

Геометрическая модель:

Граничные условия:

- Нулевые перемещения и повороты вдоль всех осей в точке О
- Сосредоточенный момент в точке А М = 1 кН·м

Параметры материала:

- Изотропный
- Модуль упругости Е = 200 ГПа
- Коэффициент Пуассона v = 0.3

Сетка:

• Линейные балочные элементы Beam2 (10 элементов)

Критерии прохождения теста:

- Для прямоугольного сечения:
 - Перемещение u_{ν} в точке A (20, 0, 0) равно 1.875Е-03 м с точностью 1%
 - Угол поворота сечения θ в точке A (20, 0, 0) равен 1.875Е-04 рад с точностью 1%
- Для круглого сечения:
 - Перемещение u_y в точке A (20, 0, 0) равно 1.274Е-02 м с точностью 1%
 - Угол поворота сечения θ в точке A (20, 0, 0) равен 1.274Е-03 рад с точностью 1%
- Для сечения труба:
 - Перемещение u_{ν} в точке A (20, 0, 0) равно 8.950Е-04 м с точностью 1%
 - Угол поворота сечения θ в точке А (20, 0, 0) равен 8.953Е-05рад с точностью 1%
- Для сечения двутавр:
 - Перемещение u_v в точке A (20, 0, 0) равно 5.000Е-04 м с точностью 1%
 - Угол поворота сечения θ в точке A (20, 0, 0) равен 5.000Е-05 рад с точностью 1%
- Для сечения швеллер:
 - Перемещение u_v в точке А (20, 0, 0) равно 2.740Е-04 м с точностью 1%
 - Угол поворота сечения θ в точке A (20, 0, 0) равен 2.736E-05 рад с точностью 1%
- Для сечения уголок:
 - Перемещение u_{ν} в точке А (20, 0, 0) равно 4.090Е-04 м с точностью 1%
 - Угол поворота сечения θ в точке A (20, 0, 0) равен 4.087E-05 рад с точностью 1%
- Для сечения тавр:
 - Перемещение u_v в точке А (20, 0, 0) равно 9.740Е-04 м с точностью 1%
 - Угол поворота сечения θ в точке A (20, 0, 0) равен 9.737E-05 рад с точностью 1%
- Для Z-сечения:
 - Перемещение u_v в точке А (20, 0, 0) равно 1.420Е-04 м с точностью 1%
 - Угол поворота сечения θ в точке A (20, 0, 0) равен 1.418E-05 рад с точностью 1%

- Для сечения полый прямоугольник:
 - Перемещение u_v в точке А (20, 0, 0) равно 5.000Е-06 м с точностью 1%
 - Угол поворота сечения θ в точке A (20, 0, 0) равен 4.900E-07 рад с точностью 1%

Значения вычислены по следующим формулам [20]:

$$u_y \Big|_{x=L} = \frac{ML^2}{2EI_z}, \ \theta_z \Big|_{x=L} = -\frac{ML}{EI_z}$$

Результаты:

• Полученные значения представлены в таблице:

		Teer	Численный анализ				
Сечение	Величина	геор. значение	FIDES	YS	ANSY	S ³⁰	
			Значение	Ошибка	Значение	Ошибка	
Прамоугольник	$\left.u_{y}\right _{x=L}$, м	1.875E-03	1.875E-03	<0.01%	1.875E-03	<0.01%	
Прямоугольник	$\theta_z _{x=L}$	1.875E-04	1.875E-04	<0.01%	1.875E-04	<0.01%	
Круг	$\left.u_{y}\right _{x=L}$, м	1.274E-02	1.273E-02	0.05%	1.276E-02	0.16%	
Круг	$\theta_z _{x=L}$	1.274E-03	1.273E-03	0.05%	1.276E-03	0.16%	
Труба	$\left.u_{y}\right _{x=L}$, м	8.950E-04	8.488E-04	5.16%	8.506E-04	4.96%	
Труба	$\theta_z _{x=L}$	8.953E-05	8.488E-05	5.19%	8.506E-05	4.99%	
Двутавр	$\left.u_{y}\right _{x=L}$, м	5.000E-04	4.993E-04	0.15%	4.993E-04	0.15%	
	$\theta_z _{x=L}$	5.000E-05	4.993E-05	0.15%	4.993E-05	0.15%	
	$\left.u_{y}\right _{x=L}$, м	2.740E-04	2.736E-04	0.15%	2.736E-04	0.15%	
шьскиер	$\theta_z _{x=L}$	2.736E-05	2.736E-05	0.01%	2.736E-05	0.01%	
Уголок	$\left.u_{y}\right _{x=L}$, м	4.090E-04	4.083E-04	0.17%	4.087E-04	0.08%	
JIONOK	$\theta_z _{x=L}$	4.087E-05	4.083E-05	0.10%	4.087E-05	0.01%	
Tapp	$\left.u_{y}\right _{x=L}$, м	9.740E-04	9.736E-04	0.04%	9.736E-04	0.04%	
Тавр	$\theta_z _{x=L}$	9.737E-05	9.736E-05	0.01%	9.736E-05	0.01%	
7-соцонио	$\left.u_{y}\right _{x=L}$, м	1.420E-04	1.418E-04	0.15%	1.418E-04	0.14%	
2-сечение	$\theta_z _{x=L}$	1.418E-05	1.418E-05	<0.01%	1.418E-05	<0.01%	
Полый	$\left.u_{y}\right _{x=L}$, м	5.000E-06	4.904E-06	1.92%	4.904E-06	1.92%	
прямоугольник	$\theta_z _{x=L}$	4.900E-07	4.904E-07	0.08%	4.904E-07	0.08%	

³⁰ Анализ проводился на четырехугольной сетке (тип элемента BEAM4, 10 элементов).

• На картинке ниже представлена исходная модель с полем распределения перемещений u_y для круглого сечения:

Тест 1.1.18: Балка с распределенной нагрузкой

Рассматривается задача об изгибе балки под действием равномерно распределенной нагрузки. При этом приводятся решения для четырех видов поперечных сечений – прямоугольник, круг, труба, двутавр (четыре отдельных теста).

Геометрическая модель:

Граничные условия:

- Нулевые перемещения вдоль всех осей в точках А и В
- Распределенная нагрузка на прямой АВ q=1 кН/м

Параметры материала:

- Изотропный
- Модуль упругости Е = 200 ГПа
- Коэффициент Пуассона v = 0.3

Сетка:

• Линейные балочные элементы Beam2 (10 элементов)

Критерии прохождения теста:

- Для прямоугольного сечения:
 - Перемещение u_v в точке С (10, 0, 0) равно -1.950Е-01 м с точностью 1%
 - Угол поворота сечения θ в точке A (0, 0, 0) равен -3.130Е-02 рад с точностью 1%
- Для круглого сечения:
 - Перемещение u_v в точке С (10, 0, 0) равно -0.1327 м с точностью 1%
 - Угол поворота сечения θ в точке A (0, 0, 0) равен -2.120Е-01 рад с точностью 1%
- Для сечения труба:
 - Перемещение u_v в точке С (10, 0, 0) равно -9.330Е-02 м с точностью 1%
 - Угол поворота сечения θ в точке A (0, 0, 0) равен -1.490Е-02 рад с точностью 1%
- Для сечения двутавр:
 - Перемещение u_y в точке С (10, 0, 0) равно -5.210Е-02 м с точностью 1%
 - Угол поворота сечения θ в точке A (0, 0, 0) равен -8.330E-03 рад с точностью 1%
- Для сечения швеллер:
 - Перемещение u_v в точке А (20, 0, 0) равно -2.850Е-02м с точностью 1%
 - Угол поворота сечения θ в точке A (20, 0, 0) равен -4.560E-03 рад с точностью 1%
- Для сечения уголок:
 - Перемещение u_v в точке А (20, 0, 0) равно -4.260Е-02 м с точностью 1%
 - Угол поворота сечения θ в точке A (20, 0, 0) равен -6.810E-03 рад с точностью 1%
- Для сечения тавр:
 - Перемещение u_{ν} в точке A (20, 0, 0) равно -1.010Е-01 м с точностью 1%
 - Угол поворота сечения θ в точке A (20, 0, 0) равен -1.620Е-02 рад с точностью 1%
- Для Z-сечения:
 - Перемещение u_v в точке А (20, 0, 0) равно -1.480Е-02 м с точностью 1%

- Угол поворота сечения θ в точке A (20, 0, 0) равен -2.360E-03 рад с точностью 1%
- Для сечения полый прямоугольник:
 - Перемещение u_v в точке А (20, 0, 0) равно -5.110Е-04 м с точностью 1%
 - Угол поворота сечения θ в точке A (20, 0, 0) равен -8.170E-05 рад с точностью 1%

Значения вычислены по следующим формулам [20]:

$$u_{y}|_{x=\frac{L}{2}} = -\frac{5}{384} \frac{qL^{4}}{EI_{z}}, \ \theta_{z}|_{x=0} = -\frac{1}{24} \frac{qL^{3}}{EI_{z}}$$

Результаты:

• Полученные значения представлены в таблице:

Concerne	Bernung	Теор.	FIDESYS			
Сечение	величина	значение	Значение	Ошибка		
Прамоугольник	$u_{y} _{x=\frac{L}{2}}$, M	-1.950E-01	-1.933E-01	0.86%		
	$\theta_z _{x=L}$	-3.130E-02	-3.093E-02	1.17%		
Круг	$u_{y} _{x=\frac{L}{2}}, M$	-1.330E+00	-1.313E+00	1.30%		
Круг	$\theta_z _{x=L}$	-2.120E-01	-2.101E-01	0.91%		
Труба	$u_{y} _{x=\frac{L}{2}}$, M	-9.330E-02	-8.752E-02	6.20%		
ipyou	$\theta_z _{x=L}$	-1.490E-02	-1.400E-02	6.01%		
Лвутаво	$u_{y} _{x=\frac{L}{2}}$, M	-5.210E-02	-5.147E-02	1.20%		
другарр	$\theta_z _{x=L}$	-8.330E-03	-8.237E-03	1.12%		
Швеллер	$u_{y} _{x=\frac{L}{2}}, M$	-2.850E-02	-2.821E-02	1.03%		
швеллер	$\theta_z _{x=L}$	-4.560E-03	-4.514E-03	1.02%		
Уголок	$u_{y} _{x=\frac{L}{2}}, M$	-4.260E-02	-4.210E-02	1.18%		
710/lok	$\theta_z _{x=L}$	-6.810E-03	-6.736E-03	1.08%		
Tapn	$u_{y} _{x=\frac{L}{2}}$, M	-1.010E-01	-1.004E-01	0.61%		
Тар	$\theta_z _{x=L}$	-1.620E-02	-1.606E-02	0.85%		
7-сечение	$u_{y} _{x=\frac{L}{2}}, M$	-1.480E-02	-1.462E-02	1.22%		
∠-сечение	$\theta_z _{x=L}$	-2.360E-03	-2.339E-03	0.87%		
Полый	$u_{y} _{x=\frac{L}{2}}$, M	-5.110E-04	-5.056E-04	1.05%		
прямоугольник	$\theta_z _{x=L}$	-8.170E-05	-8.091E-05	0.97%		

 На картинке ниже представлена исходная модель с полем распределения углов поворота сечения θ_z для круглого сечения:

Тест 1.1.19: Определение усилий в стержневой системе

Решается задача о статическом нагружении стержневой системы сосредоточенной силой.

Геометрическая модель:

- Длина стержней l=1.414 м
- Сечение балки эллипс d=0.01 м
- Углы α₁=α₂=45° α_p=90°

Граничные условия:

- Нулевые перемещения и углы поворота вдоль всех осей в точках А и В
- Сосредоточенная сила в точке В вдоль оси Y F=-10³ H

Параметры материала:

- Изотропный
- Модуль упругости Е = 2 ГПа
- Коэффициент Пуассона v = 0.3

Сетка:

• Линейные балочные элементы Beam2

Критерий прохождения теста:

- Усилие N₁ для первого стержня равно 707.106 Н с точностью 1%
- Усилие N₂ для второго стержня равно 707.106 Н с точностью 1%

Значения вычислены по следующим формулам [31]:

$$N_1 = -P \frac{\cos(\alpha_2 + \alpha_p)}{\sin(\alpha_1 + \alpha_2)} \qquad N_2 = P \frac{\cos(\alpha_1 - \alpha_p)}{\sin(\alpha_1 + \alpha_2)}$$

Для приведенных выше значений α_1 , α_2 и α_p

$$N_1 = N_2 = \frac{P}{\sqrt{2}}$$

Результаты:

• В таблице приведены результаты расчёта FIDESYS:

	Критерий	Численный анализ			
Величина	прохожден	FIDESYS			
	ия теста	Значение	Ошибка		
N ₁ , H	707.106	704.465	0.37%		
N2, H	707.106	704.465	0.37%		

Тест 1.1.20: Консольная балка с распределенной нагрузкой на свободном конце

Рассматривается задача об изгибе консольной балки, половина которой нагружена распределенной нагрузкой. При этом приводится решение для прямоугольного поперечного сечения.

Геометрическая модель:

Сечение:

Граничные условия:

- Нулевые перемещения и повороты вдоль всех осей в точке С
- Распределенная нагрузка на прямой АВ q=10 кН/м

Параметры материала:

- Изотропный
- Модуль упругости Е = 200 ГПа
- Коэффициент Пуассона *v* = 0.3

Сетка:

• Линейные балочные элементы Beam2 (400 элементов)

Критерии прохождения теста:

– Перемещение u_{ν} в точке A (0, 0, 0) равно -0.519 м с точностью 1%

Значения вычислены по следующим формулам [20]:

$$y_A = \frac{41}{24} * \frac{ql^4}{El_z}$$

Результаты:

• Полученные значения представлены в таблице:

		Teop	Численный анализ		
Сечение	Величина	значение	FIDESYS		
			Значение	Ошибка	
Прямоугольник	<i>у_А</i> , м	-0.519	-0.522	0.58%	

• На картинке ниже представлена исходная модель с полем распределения перемещений u_y для прямоугольного сечения:

Перемещения

Тест 1.1.21: Вертикальный консольный стержень

Рассматривается задача об изгибе вертикального консольного стержня, нагруженного продольной и поперечной сосредоточенными нагрузками на свободном конце. При этом приводится решение для прямоугольного поперечного сечения.

Геометрическая модель:

Сечение:

Граничные условия:

- Нулевые перемещения и повороты вдоль всех осей на нижнем конце стержня
- Сосредоточенная продольная сила N = 10 000 кН на вехнем конце стержня

Параметры материала:

- Изотропный
- Модуль упругости Е = 30 ГПа
- Коэффициент Пуассона *v* = 0.3

Сетка:

• Линейные балочные элементы Beam2 (10 элементов)

Критерии прохождения теста:

- Перемещение u_v в точке А (0, 10, 0) равно -0.01333 м с точностью 1%
- Напряжение (балки) о в точке A (0, 10, 0) равно -4е7 Па с точностью 1%

Значения вычислены по следующим формулам [20]:

$$u_{y}\big|_{x=L} = -\frac{Nl}{Ebh},$$

$$\sigma = -\frac{N}{bh}.$$

Результаты:

• Полученные значения представлены в таблице:

		Teon	Численный анализ		
Сечение	Величина	значение	FIDESYS		
			Значение	Ошибка	
Прямоугольник	$\left.u_{y}\right _{x=L}$, м	-0.01333	-0.01333	<0.01%	
	$\sigma_y _{x=L}$, Па	-4e7	4e7	<0.01%	

• На картинке ниже представлена исходная модель с полем распределения перемещений u_y для прямоугольного сечения:

Тесты с известным численным решением

Тест 1.2.1: Нагружение эллипсоидальной пластинки (2D)

NAFEMS test "Elliptic Membrane", TestNoLE1, Date/Issue1986-07-01/1 [5]. Пример взят с сайта NAFEMS: <u>http://www.caesarsystems.co.uk/NAFEMS_benchmarks/le1.html</u>.

Решается задача о статическом нагружении двумерной эллипсоидальной пластинки.

Геометрическая модель(размеры указаны в метрах):

Граничные условия:

- Нулевые перемещения вдоль оси Х на стороне АВ
- Нулевые перемещения вдоль оси Y на стороне CD
- Давление на сторону ВС величиной 10 МПа

Параметры материала:

- Изотропный
- Модуль упругости Е = 210 ГПа
- Коэффициент Пуассона v = 0.3

Сетка:

• 8-узловые четырёхугольники Quad8 (68 элементов)

Критерий прохождения теста:

• Напряжение σ_{νν} в точке D равно 92.7 МПа [5] с точностью 2%

Результаты:

- Полученное значение σ_{yy} в точке D 91.37 МПа отличается от требуемого 92.7 МПа на 1.43%
- На картинке ниже представлена деформированная модель с полем напряжения σ_{уу}:

Тест 1.2.2: Нагружение эллипсоидальной пластинки (3D)

NAFEMS test "ThickPlatePressure", TestNoLE10, Date/Issue1990-06-15/2 [5].

Решается задача о статическом нагружении эллипсоидальной пластинки.

Геометрическая модель(размеры указаны в метрах):

Граничные условия:

- Нулевые перемещения вдоль оси Х на поверхности АВВ'А'
- Нулевые перемещения вдоль оси Y на поверхности CDD'C'
- Нулевые перемещения вдоль осей Х и У на поверхности СВВ'С'
- Нулевые перемещения вдоль оси Z на средней линии поверхности CBB'C'
- Давление на поверхность ABCD величиной 1 МПа

Параметры материала:

- Изотропный
- Модуль упругости Е = 210 ГПа
- Коэффициент Пуассона v = 0.3

Сетка:

• 20-узловые гексаэдры Hex20 (60 элементов)

Критерий прохождения теста:

Напряжение σ_{уу} в точке D равно -5.38МПа[5] с точностью 2%

Результаты:

- Полученное значение σ_{yy} в точке D -5.2948 Мпа отличается от требуемого -5.38 МПа на 1.61%.
- На картинке ниже представлена деформированная модель с полем распределения перемещений по оси Z:

Тест 1.2.3: Цилиндр под внутренним давлением

R.J. Roark et W.C. Young, Formulas for stress and strain, 5e edition, New York, McGraw-Hill, 1975.

Решается задача о нагружении цилиндрической оболочки внутренним давлением.

Геометрическая модель(размеры указаны в метрах):

- Ввиду симметрии задачи рассматривается четверть оболочки
- Длина L=4 м
- Радиус R=1 м
- Толщина h=0.02 м

Граничные условия:

- Нулевые перемещения вдоль оси X на прямой AB (U_x=R_y=R_z=0)
- Нулевые перемещения вдоль оси Y на прямой DC (U_y=R_x=R_z=0)
- Нулевые перемещения вдоль оси Z в точке A
- Давление на поверхность ABCD величиной 10 кПа

Параметры материала:

- Изотропный
- Модуль упругости Е = 210 ГПа
- Коэффициент Пуассона v = 0.3

Сетка:

- Пять типов элементов (пять отдельных тестов):
 - 3-узловые треугольные оболочки TriShell3 (1 166 элементов)
 - 6-узловые треугольные оболочки TriShell6 (1 166 элементов)
 - 4-узловые четырёхугольные оболочки Shell4 (1 092 элементов)
 - 8-узловые четырёхугольные оболочки Shell8 (1 092 элементов)
 - 9-узловые четырёхугольные оболочки Shell9 (1 092 элементов)

Критерий прохождения теста:

- Напряжение σ₃₃ в точке E (0,1,0) равно 0 Па с точностью 1%
- Напряжение σ₁₁ в точке Е (0,1,0) равно 5·10⁵ Па с точностью 1%
- Перемещение u₂ в точке E (0,1,0) равно 2.38·10⁻⁶ м с точностью 1%
- Перемещение и₃ в точке В (0,1,-2) равно 2.86·10⁻⁶ м с точностью 1%

Результаты:

• В таблице приведены результаты расчёта FIDESYS и ЛИРА [8]:

	Теор. значени	Численный анализ							
Величина			FIDE	ПИРА					
	е	Trishell3 Trishell6				ЛИРА			
		Значение Ошибка		Значение	Ошибка	Значение	Ошибка		
$\sigma_{11} _E$, Па	5·10 ⁵	498354	0.33%	500824	0.16%	4.957·10 ⁵	0.86%		
$u_2 _E$, м	2.38·10 ⁻⁶	2.30431·10 ⁻⁶	3.18%	2.352·10 ⁻⁶	1.18%	2.3619·10 ⁻⁶	0.76%		
$u_{3} _{B},$ м	2.86·10 ⁻⁶	2.79248·10 ⁻⁶	2.36%	2.84216·10 ⁻⁶	0.62%	2.8327·10 ⁻⁶	0.95%		

		Численный анализ									
Величин	Теор. значени		FIADA								
а	e	Shell	.4	Shell	3	ЛИРА					
		Значение	Ошибка	Значение Ошибка		Значение	Ошибка	Значение	Ошибка		
$\sigma_{11} _E$, Па	5·10 ⁵	498952	0.21%	500492	0.10%	499470	0.11%	4.957·10 ⁵	0.86%		
$u_2 _E$, м	2.38·10 ⁻⁶	2.379·10 ⁻⁶	0.03%	2.381·10 ⁻⁶	0.04%	2.381·10 ⁻⁶	0.04%	2.3619·10 ⁻⁶	0.76%		
$u_{3} _{B}$, м	2.86.10-6	2.855·10 ⁻⁶	0.17%	2.8571·10 ⁻⁶	0.10%	2.8571·10 ⁻⁶	0.10%	2.8327·10 ⁻⁶	0.95%		

 На картинке ниже представлена деформированная модель с полем распределения напряжений *σ*₁₁:

Тест 1.2.4: Нагружение сферической оболочки

NAFEMS test "ThickPlatePressure", TestNoLE10, Date/Issue1990-06-15/2 [5].

Решается задача о статическом нагружении сферической оболочки.

Геометрическая модель (размеры указаны в метрах):

Граничные условия:

- Нулевые перемещения вдоль оси Х на прямой СЕ
- Нулевые перемещения вдоль оси Y на прямой AE
- Нулевые перемещения вдоль оси Z в точке E
- Сосредоточенная сила в точке А вдоль оси Х F_A=2 кН
- Сосредоточенная сила в точке C вдоль оси Y $F_{C}\text{=-2}\ \kappa H$

Параметры материала:

- Изотропный
- Модуль упругости E = 68.25·10³ МПа
- Коэффициент Пуассона v = 0.3
- Толщина 0.04

Сетка:

- Пять типов элементов (пять отдельных тестов):
 - 3-узловые треугольные оболочки TriShell3 (5 422 элементов)
 - 6-узловые треугольные оболочки TriShell6 (5 422 элементов)
 - 4-узловые четырёхугольные оболочки Shell4 (4 800 элементов)
 - 8-узловые четырёхугольные оболочки Shell8 (4 800 элементов)
 - 9-узловые четырёхугольные оболочки Shell9 (4 800 элементов)

Критерий прохождения теста:

• Перемещение u_x в точке А равно 0.185 [5] с точностью 1.5%

Результаты:

- Полученное значение u_x в точке А при разбиении на 3-узловые треугольные оболочки 0.184106 отличается от требуемого 0.185 м на 0.48%
- Полученное значение u_x в точке А при разбиении на 6-узловые четырехугольные оболочки 0.185046 отличается от требуемого 0.185 м на 0.02%
- Полученное значение u_x в точке А при разбиении на 4-узловые четырехугольные оболочки 0.184834 отличается от требуемого 0.185 м на 0.09%
- Полученное значение u_x в точке А при разбиении на 8-узловые четырехугольные оболочки 0.184934 отличается от требуемого 0.185 м на 0.04%
- Полученное значение u_x в точке А при разбиении на 8-узловые четырехугольные оболочки 0.185044 отличается от требуемого 0.185 м на 0.02%

• На картинке ниже представлена деформированная модель с полем распределения перемещений по оси Х:

Тест 1.2.5: Осевая нагрузка для тонкостенного цилиндра

Societe Francaise des Mecaniciens, Guide de validation des progiciels de calcul de structures, (Paris, Afnor Technique, 1990.) Test No. SSLS07/89 [6].

Решается задача о нагружении цилиндрической оболочки нагрузкой, действующей вдоль оси цилиндра.

Геометрическая модель:

- В виду симметрии рассматривается 1/8 часть цилиндра
- Длина L = 8 м, радиус R = 1 м
- Толщина оболочки t = 0.02 м

Граничные условия:

- На стороне CD перемещения $u_v = R_x = R_z = 0$
- На стороне CB *u_x*=R_y=R_z=0
- На стороне AD u_z =R_x=R_y=0
- q = 500 000 H/m²

Параметры материала:

- Изотропный
- Модуль упругости E = 2.1·10¹¹ Па
- Коэффициент Пуассона v = 0.3

Сетка:

- 4-узловые четырехугольные элементы Shell4 (200 элементов)
- 8-узловые четырехугольные элементы Shell8 (200 элементов)
- 9-узловые четырехугольные элементы Shell9 (200 элементов)

Критерий прохождения теста [6]:

- Перемещение u_z в точке А равно -7.140·10⁻⁷ м с точностью 3%
- Перемещение *u_y* в точке А равно 9.520.10⁻⁶ м с точностью 3%
- Напряжение σ_{11} в точке А равно О Па с точностью 3%
- Напряжение σ_{22} в точке А равно 5·10⁵ Па с точностью 3%

Результаты:

• В таблице приведены результаты расчёта FIDESYS и NASTRAN[6]:

		Численный анализ									
Величин	Критерий прохожден		ПИРА								
а	ия теста	Shell4		Shell	3	Shells)	717177	•		
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	Значение	Ошибка		
<i>u_z</i> , м	-7.140·10 ⁻⁷	-7.1428·10 ⁻⁷	0.04%	-7.001·10 ⁻⁷	1.95%	-7.002·10 ⁻⁷	1.97%	0.202	0%		
и _у , м	9.520·10 ⁻⁶	9.5238·10 ⁻⁶	0.04%	9.5238·10 ⁻⁶	0.04%	9.5238·10 ⁻⁶	0.04%	4.957·10 ⁵	0.86%		
$\sigma_{\!11}$ Па	0	3.6·10 ⁻⁹	<0.01%	-	-	-	-	2.3619·10 ⁻⁶	0.76%		
<i>σ</i> ₂₂ , Па	5·10 ⁵	5·10 ⁵	0%	5.001·10 ⁵	0.03%	5.002	0.03%	2.8327·10 ⁻⁶	0.95%		

Тест 1.2.6: Точечная сила для цилиндрической оболочки

Societe Francaise des Mecaniciens, Guide de validation des progiciels de calcul de structures, (Paris, Afnor Technique,1990.) Test No. SSLS20/89 [6].

Решается задача о нагружении цилиндрической оболочки точечной силой.

Геометрическая модель:

- В виду симметрии рассматривается 1/8 часть модели
- Длина L = 5.175 м, радиус R = 4.953 м
- Толщина оболочки t = 0.094 м

Граничные условия:

- На стороне CD перемещения $u_z = R_x = R_y = 0$
- На стороне CB *u_x*=R_y=R_z=0
- На стороне AD u_{v} =R_x=R_z=0
- Fy = -25 H

Параметры материала:

- Изотропный
- Модуль упругости E = 10.5 · 10⁶ Па
- Коэффициент Пуассона v = 0.3125

Сетка:

- Пять типов элементов (пять отдельных тестов):
 - 3-узловые треугольные оболочки TriShell3 (562 элемента)
 - 6-узловые треугольные оболочки TriShell6 (562 элемента)
 - 4-узловые четырёхугольные оболочки Shell4 (247 элементов)
 - 8-узловые четырёхугольные оболочки Shell8 (247 элементов)
 - 9-узловые четырёхугольные оболочки Shell9 (247 элементов)

Критерий прохождения теста [6]:

Перемещение u_v в точке D равно -113.9·10⁻³ м с точностью 3%

Результаты:

• В таблице приведены результаты расчёта FIDESYS и NASTRAN[6]:

		Численный анализ						
Величина	Критерий прохождени		FID	NASTR	2A NI			
	я теста	TRISHELL3 TRISHELL6				NASTRAN		
		Значение	Значение Ошибка Значение Ошибка				Ошибка	
<i>u_y</i> ∙10 ⁻³ , м	-113.9	-112.826	-112.826 0.94% -114.089 0.17% -114.4					

		Численный анализ								
Величи	Критерий прохожде	FIDESYS							ΝΑΣΤΡΑΝ	
на	ния теста	Shell4		Shel	.18	Shell9		NAS I NAN		
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	
<i>u_y</i> , м	-113.9·10 ⁻³	-0.113002	0.79%	-0.113929	-0.03%	-0.113854	0.04%	-113.3	0.53%	

Тест 1.2.7: Гидростатическое давление для тонкостенного цилиндра

Societe Francaise des Mecaniciens, Guide de validation des progiciels de calcul de structures, (Paris, Afnor Technique, 1990.) Test No. SSLS08/89 [32].

Решается задача о нагружении цилиндра гидростатическим давлением.

Геометрическая модель:

- В виду симметрии рассматривается 1/8 часть модели
- Радиус R = 1 м
- Толщина оболочки t = 0.002 м
- Высота оболочки L = 4 м

Граничные условия:

- На стороне AB перемещения u_z = R_x=R_y=0
- На стороне AC *u_x*=R_y=R_z=0
- На стороне BD *u_y*=R_x=R_z=0
- Давление на поверхности ABCD p = -20000-z/L Па

Параметры материала:

- Изотропный
- Модуль упругости E = 2.1.10¹¹ Па
- Коэффициент Пуассона *v* = 0.3

Сетка:

- 8-узловые четырехугольные элементы Shell8 (200 элементов)
- 9-узловые четырехугольные элементы Shell9 (200 элементов)

Критерий прохождения теста [6]:

- Напряжение σ_x в точке (0, R, L/2) равно 5.0·10⁵ Па с точностью 1%
- Перемещение u_v в точке (0, R, L/2) равно 2.38·10⁻⁶ м с точностью 1%
- Перемещение u_z в точке (0, R, L) равно -2.86·10⁻⁶ м с точностью 1%

Результаты:

• В таблице приведены результаты расчёта FIDESYS и I-DEAS[32]:

		Численный анализ								
Величина	Критерий прохождения									
	теста	Shell8		Shell)	1-01	AJ			
		Значение Ошибка		Значение	Ошибка	Значение	Ошибка			
$\sigma_{\!x}$, Па	5.0·10 ⁵	5.0206·10 ⁵	0.41%	4.97731·10 ⁵	0.45%	4.98·10 ⁵	0.4%			
и _у , м	2.38·10 ⁻⁶	2.3809·10 ⁻⁶	0.04%	2.38085	0.04%	2.38·10 ⁻⁶	<0.01%			
<i>u_z</i> , м	-2.86·10 ⁻⁶	-2.85709·10 ⁻⁶	0.10%	-2.85679·10 ⁻⁶	0.11%	-2.86·10 ⁻⁶	<0.01%			

• На картинке ниже представлена деформированная модель с полем распределения перемещений по оси Z:

Тест 1.2.8: Усеченная сферическая оболочка

Societe Francaise des Mecaniciens, Guide de validation des progiciels de calcul de structures, (Paris, Afnor Technique,1990.) Test No. SSLS21/89 [6].

Решается задача о нагружении усеченной сферической оболочки двумя уравновешивающими силами.

Геометрическая модель:

- В виду симметрии рассматривается 1/8 часть модели
- Радиус R = 10 м
- Радиус r = 1.8 м
- Толщина оболочки t = 0.04 м

Граничные условия:

- На стороне CD перемещения u_z = R_x=R_y=0
- На стороне AB *u_x*=R_y=R_z=0
- На стороне BD u_{v} =R_x=R_z=0
- F = 2 H
- В силу симметрии прикладывается половина указанного значения силы

Параметры материала:

- Изотропный
- Модуль упругости Е = 6.285.10⁷ Па
- Коэффициент Пуассона v = 0.3

Сетка:

- Пять типов элементов (пять отдельных тестов):
 - 3-узловые треугольные оболочки TriShell3 (688 элемента)
 - 6-узловые треугольные оболочки TriShell6 (234 элемента)
 - 4-узловые четырёхугольные оболочки Shell4 (100 элементов)
 - 8-узловые четырёхугольные оболочки Shell8 (100 элементов)
 - 9-узловые четырёхугольные оболочки Shell9 (100 элементов)

Критерий прохождения теста [6]:

• Перемещение u_z в точке В равно 9.4·10⁻² м с точностью 3%

Результаты:

• В таблице приведены результаты расчёта FIDESYS и NASTRAN[6]:

				Численный	і анализ				
Величина	Критерий прохожде ния теста		FID	NASTRAN					
		TRISHE	ELL3	TRISH	IELL6	NASTRAN			
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка		
$u_z \cdot 10^{\text{-2}}$,м	9.4	8.8	8.8 6.4% 9.73209 3.53% 10.2						

		Численный анализ								
Величина	Критерий прохождения теста	FIDESYS							NASTRAN	
		Shell4		She	Shell8		119	NAJINAN		
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	
<i>u_z</i> ∙10 ⁻² ,м	9.4	9.56903	1.80%	9.14153	2.75%	9.14209	2.74%	10.2	8.5%	

• На картинке ниже представлена деформированная модель с полем распределения перемещений по оси Y:

Тест 1.2.9: Арка с шарнирным опиранием

P.Delius, Resistance dex meteriaux, Paris, Technique et Vulgarisation, 1958

Решается задача о статическом нагружении арки сосредоточенной силой.

Геометрическая модель:

- Радиус арки R=1 м
- Сечение балки труба (d_H=0.02 м d_B=0.016 м I_x =4.637 \cdot 10⁻⁹ м⁴)

Граничные условия:

- Нулевые перемещения вдоль всех осей в точке А
- Нулевые перемещения вдоль осей Y и Z в точке C
- Сосредоточенная сила в точке В вдоль оси Z F=-0.1 кН

Параметры материала:

- Изотропный
- Модуль упругости Е = 2 ГПа
- Коэффициент Пуассона v = 0.3

Сетка:

• Линейные балочные элементы Beam2 (50 элементов)

Критерий прохождения теста:

- Перемещение u_z в точке С (0,0,1) равно -1.9206·10⁻² м с точностью 1.5%
- Угол поворота сечения θ_ν в точке А (-1,0,0) равен -3. 0774·10⁻² рад с точностью 1.5%
- Перемещение u_x в точке В (1,0,0) равно 5.3912·10⁻² м с точностью 1.5%
- Угол поворота сечения θ_v в точке В (1,0,0) равен -3. 0774·10⁻² ·10⁻² рад с точностью 1.5%

Результаты:

• В таблице приведены результаты расчёта FIDESYS, SCAD [21]

	Критерий	Численный анализ						
Величина	прохождени	FIDESYS Значение Ошибка		SCAD	31			
	я теста			Значение	Ошибка			
<i>u_z</i> , м	-1.9206.10-2	-1.9210·10 ⁻²	0%	-1.7248·10 ²	10.19%			
$\left. \theta_{y} \right _{x=-1}$	-3. 0774·10 ⁻²	-3.0787·10 ⁻²	0.04%	-2.85513·10 ⁻²	7.2%			
<i>u_x</i> , м	5.3912·10 ⁻²	5.3903·10 ⁻²	0.2%	4.9581·10 ⁻²	8%			
$\left. \theta_{y} \right _{x=1}$	-3. 0774·10 ⁻²	3.0787·10 ⁻²	0.04%	2.85513·10 ⁻²	7.2%			

• На картинке ниже представлены недеформированная модель и деформированная модель с полем распределения перемещений по оси Х:

³¹ Анализ проводился для модели из 50 элементов типа 10

Тест 1.2.10: Арка с защемлением

S.Timoshenko, Strength of materials, Part: Elementary theory and problem, 3eed, 1955, RJ. Roark, Formulas of stress and strain, 4eed, New York, McGraw-Hill, 1965

Решается задача о статическом нагружении арки сосредоточенной силой.

Геометрическая модель:

- Радиус арки r=1 м
- Сечение балки труба (d_H=0.02 м d_B=0.016 м l_x=4.637·10⁻⁹ м⁴)

Граничные условия:

- Нулевые перемещения и углы поворота вдоль всех осей в точке А
- Сосредоточенная сила в точке В вдоль оси Х F=0.1 кН

Параметры материала:

- Изотропный
- Модуль упругости Е = 2 ГПа
- Коэффициент Пуассона v = 0.3

Сетка:

• Линейные балочные элементы Beam2 (15 элементов)

Критерий прохождения теста:

- Перемещение u_x в точке В (0,0,1) равно 0.13462 м с точностью 1.5%
- Момент *M_x* в точке В' (0,0.9659, 0.25882) равен -74.1180 Н с точностью 1.5%
- Момент *M_z* в точке В' (0,0.9659, 0.25882) равен 96.5925 Н с точностью 1.5%

Результаты:

• В таблице приведены результаты расчёта FIDESYS, SCAD [21]

	Критерий		Численн	ый анализ	
Величина	прохожден	FIDES	SYS	SCA	٨D
	ия теста	Значение	Ошибка	Значение	Ошибка
<i>u_x</i> , м	0.13462	0.135808	0.88%	0.133939	0.5%
M_{x}	74.1180	71.5642	3.45%	72.5754	2.08%
Mz	96.5925	98.499	1.97%	94.7573	1.9%

Тест 1.2.11: Консольная рама

Campa, R. Chappert et R. Picand, La mecanicue par les problemes, fasc. 4: Resistance des materiaux, Paris Foucher, 1987

Решается задача о статическом нагружении консольной рамы сосредоточенной силой.

Геометрическая модель:

- Длина рамы L=2 м
- Высота рамы l=0.2 м
- Сечение балки квадрат (сторона квадратного сечения $2{\cdot}10^{\text{-2}}$ м $I_z{=}1.333{\cdot}10^{\text{-8}}$ м⁴)

Граничные условия:

- Нулевые перемещения и углы поворота вдоль всех сей в точках А и С
- Сосредоточенная сила в точке D F=1 кН

Параметры материала:

- Изотропный
- Модуль упругости Е = 2 ГПа
- Коэффициент Пуассона v = 0.3

Сетка:

• Линейные балочные элементы Beam2 (3 элемента)

Критерий прохождения теста:

- Перемещение u_v в точке В (2,0.2,0) равно -0.125 м с точностью 1.5%
- Перемещение u_v в точке D (2,0,0) равно -0.125 м с точностью 1.5%
- Момент *M_z* в точке А (0,0.2,0) равен -500 Н с точностью 1.5%
- Момент *M_z* в точке С (0,0,0) равен -500 Н с точностью 1.5%

Результаты:

• В таблице приведены результаты расчёта FIDESYS, SCAD [21] и SolidWorks [22]:

	Критерий	Численный анализ						
Величина	прохождения	FIDESYS		SCAD ³²		SolidWorks ³³		
	теста	Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	
$u_{x} _{B}$, м	-0.125	-0.132325	5.6%	-0.1249	0.008%	-0.123	1.6%	
u_xert_D , м	-0.125	-0.132325	5.6%	-0.1249	0.008%	-0.123	1.6%	
$M_z _A$, H	-500	-509.8	1.96%	-500	0%	-497.5	0.5%	
$M_z _C$, H	-500	-509.8	1.96%	-500	0%	-500	0%	

³² Решение проводилось для трех линейных балочных элементов типа 10

³³ Решение проводилось для 357 линейных балочных элементов

Тест 1.2.12: Деформация балки под действием осевой силы

"Axial Distributed Load on a Linear Beam". Beer and Johnston Mechanics of Materials New York: McGraw-Hill, Inc., 1992.

Решается задача о статическом нагружении балки осевой силой.

Геометрическая модель:

- Длина балки L=300 in
- Сечение балки квадрат (сторона квадратного сечения 3 in I=6.75 in⁴)

Граничные условия:

- Нулевые перемещения и углы поворота вдоль всех осей в точке А
- Осевая распределенная сила в точке В F=1000 lb/in

Параметры материала:

- Изотропный
- Модуль упругости E = 30·10⁶ psi
- Коэффициент Пуассона v = 0.3

Сетка:

• Линейные балочные элементы Beam2 (30 элементов)

Критерий прохождения теста:

- Перемещение u_x в точке В (300,0,0) равно 0.01111 in с точностью 1.5%
- Сила реакции *F_x* в точке А (0,0,0) равна -10000 lb с точностью 1.5%
- Интенсивность напряжений по Мизесу³⁴ σ_i в точке А (0,0,0)

Результаты:

• В таблице приведены результаты расчёта FIDESYS и NASTRAN [6]:

	Критерий	Численный анализ					
Величина	прохождения	FIDE	SYS	NX Nastran			
	теста	Значение	Ошибка	Значение	Ошибка		
u_x , in	0.01111	0.01111	0%	0.01093	1.53%		
F_{x} , lb	-10000	-10000	0%	-10000	0%		
σ_i , psi	1111	1111	0%	1111	0%		

 $^{^{34}}$ Значение вычисляется для одноосного растяжения балки при помощи компоненты σ_{11} [20]

Тест 1.2.13: Консольная балка с распределенной нагрузкой

"Distributed Load on a Cantilever Beam" Beer and Johnston. Mechanics of Materials. New York: McGraw-Hill, Inc., 1992. p. 716.

Решается задача о статическом нагружении консольной балки распределенной по длине силой.

Геометрическая модель:

- Длина балки L=480 in
- Сечение балки квадрат (сторона квадратного сечения 30 in $I_y{=}\ I_z$ =67500 in $^4)$

Граничные условия:

- Нулевые перемещения и углы поворота вдоль всех осей в точке А
- Распределенная нагрузка по всей длине AB q=250 lb/in

Параметры материала:

- Изотропный
- Модуль упругости E = 30·10⁶ psi
- Коэффициент Пуассона v = 0.3

Сетка:

• Линейные балочные элементы Beam2 (100 элементов)

Критерий прохождения теста:

- Перемещение u_v в точке С (240,0,0) равно -0.819 in с точностью 1.5%
- Сила реакции *F*_v в точке А (0,0,0) равна 1.2·10⁵ lb с точностью 1.5%

Результаты:

• В таблице приведены результаты расчёта FIDESYS и NASTRAN [6]:

	Критерий	Численный анализ					
Величина	прохождения	FIDE	SYS	NX Nastran			
	теста		Ошибка	Значение	Ошибка		
u_y , in	-0.819	-0.83015	1.36%	-0.822	0.36		
F _y , lb	1.2·10 ⁵	1.2·10 ⁵	0%	1.2·10 ⁵	0%		

Тест 1.2.14: Изгиб тонкостенной трубы под собственным весом (балки)

RJ. Roark, Formulas for stress and Strain, 4th Edition, McGraw-Hill Book Co., Inc., New York, NY,1965, pg. 112, no. 33. [28]

Решается задача об изгибе жестко закрепленной на обоих концах трубы под собственным весом. Используются балочные элементы.

Геометрическая модель:

- В виду симметрии рассматривается 1/2 длины трубы
- Длина трубы L=200 in
- Сечение труба (d_H=2 in d_B=1 in)

Граничные условия:

- Нулевые перемещения и углы поворота вдоль всех осей правом конце
- На левом конце трубы нулевые перемещения U_{y} и $\mathsf{U}_{z},$ а также все углы поворота
- g=386 in/sec²

Параметры материала:

- Изотропный
- Модуль упругости E = 30·10⁶ psi
- Коэффициент Пуассона *v* = 0.0
- Плотность ρ=0.00073 lb-sec/in⁴

Сетка:

• Линейные балочные элементы Beam2 (12 элементов)

Критерий прохождения теста:

• Максимальное перемещение u_x равно -0.12524 in [28] с точностью 1.5%

Результаты:

• В таблице приведены результаты расчёта FIDESYS и ANSYS[28]:

	Критерий	Численный анализ					
Величина	прохождения	FIDE	SYS	ANSYS			
	теста	Значение	Ошибка	Значение	Ошибка		
u_x , in	-0.12524	-0.125235	<0.01%	-0.12529	<0.01%		

Тест 1.2.15: Изгиб тонкостенной трубы под собственным весом (оболочки)

RJ. Roark, Formulas for stress and Strain, 4th Edition, McGraw-Hill Book Co., Inc., New York, NY,1965, pg. 112, no. 33. [28]

Решается задача об изгибе жестко закрепленной на обоих концах трубы под собственным весом. Используются оболочечные элементы.

Геометрическая модель:

- В виду симметрии рассматривается 1/2 длины трубы
- Длина L=250 in
- Диаметр d=2 in
- Толщина оболочки t=0.1 in

Граничные условия:

- Нулевые перемещения и углы поворота вдоль всех осей правом конце
- На левом конце трубы нулевые перемещения $U_{y}\, и \,\, U_{z},\, a\,\, также$ все углы поворота
- q=386 in/sec²

Параметры материала:

- Изотропный
- Модуль упругости E = 30·10⁶ psi
- Коэффициент Пуассона v = 0.0
- Плотность ρ=0.00073 lb-sec/in⁴

Сетка:

• 4-узловые четырехугольные элементы Shell4 (50 000 элементов)

Критерий прохождения теста:

- Максимальное перемещение u_x равно -0.19062 in [28] с точностью 2%
- Максимальное напряжение *σ_z* равно 3 074.3 psi [28] с точностью 2%

Результаты:

• В таблице приведены результаты расчёта FIDESYS и ANSYS[28]:

Велич ина	Критерий прохожде	Численный анализ							
		FIDESYS						ANSYS	
	ния теста	Shell4		Shell8		Shell9			
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	Значение	Ошибка
u_x , in	-0.19062	-0.191602	0.52%	-0.191602	0.52%	-0.190906	0.15%	-0.19079	0.1%
σ_z , psi	3 074.3	3 115.97	1.4%	3 123.89	1.6%	3 126.26	1.69%	3 059.1	0.5%

Тест 1.2.16: Свод крыши под собственным весом

R.D. Cook, Concepts and Applications of Finite Element Analysis, 2nd Edition, John Wiley and Sons, Inc., New York, NY, 1981, pp. 284-287 [28]

Решается задача об изгибе цилиндрической оболочки крыши под собственным весом.

Геометрическая модель:

- В виду симметрии рассматривается ¼ часть крыши
- Длина L = 50 м
- Радиус r = 25 м
- θ=40°
- Толщина оболочки t = 0.25 м

Граничные условия:

- На стороне CD перемещения $u_x = u_y = 0$
- На стороне CB *u_x*=R_y=R_z=0
- На стороне AB *u_z*=R_x=R_y=0
- g=9.8 м/с²

Параметры материала:

- Изотропный
- Модуль упругости E = 4.32·10⁸ psi
- Коэффициент Пуассона v = 0.0
- Плотность р=36.7347 кг/м³

Сетка:

• 4-узловые четырехугольные элементы Shell4 (24 элемента)

Ζ

А

1/2
Критерий прохождения теста:

- Перемещение u_x в точке А равно -0.1593 м [28] с точностью 5%
- Перемещение и_у в точке А равно -0.3019 м [28] с точностью 5%
- Напряжение σ_z (верх оболочки) в точке А равно 215 570 Па с точностью 5%
- Напряжение σ_z (низ оболочки) в точке А равно 340 700 Па с точностью 5%

Результаты:

- В таблице приведены результаты расчёта FIDESYS и ANSYS[28]:
- ٠

	Критерий	Численный анализ						
Величина	прохождения	FIDESYS(Shell4)	ANSYS (Shell181)				
	теста	Значение	Значение Ошибка		Ошибка			
<i>u_x</i> , м	-0.1593	-0.15871	0.37%	-0.1661	4.27%			
и _у , м	-0.3019	-0.30161	0.1%	-0.316	4.67%			
$\sigma_z _{z=\frac{t}{2}}$, Па	215 570	210 262.15	2.46%	205 333.3	4.75%			
$\sigma_z _{z=-rac{t}{2}},$ Па	340 700	331 786.16	2.6%	336 983.7	1.05%			

• На картинке ниже представлен деформированный 3D-вид модели с полем перемещения u_y :

Тест 1.2.17: Пространственная пластинчатая система (3D)

NAFEMS Finite Element Methods & Standards, The Standard NAFEMS Benchmarks, Test No. LE5. Glasgow: NAFEMS, Rev. 3, 1990.

Рассматривается задача о пластинчатой системе с одной закрепленной стороной при действии давления на ее две противоположные грани.

Геометрическая модель (размеры указаны в метрах):

- Пластинчатая система представляет собой объединение трех двумерных пластин. Геометрические размеры модели, а так же ее расположение в пространстве приведены на рисунках ниже
- Толщина оболочки = 0.1м

Граничные условия:

- Закрепление по всем перемещениям и поворотам на грани ABCD
- Равномерно распределенные нагрузки по грани EF и GH вдоль оси Y, противоположные по направлению, q = 0.6 MH

Параметры материала:

- Изотропный
- Модуль упругости Е = 210 Гпа
- Коэффициент Пуассона v = 0.3

Сетка:

- Три типа элементов (три отдельных теста):
 - 4-узловые четырёхугольные оболочки Shell4 (24 элемента)
 - 8-узловые четырёхугольные оболочки Shell8 (24 элемента)
 - 9-узловые четырёхугольные оболочки Shell9 (24 элемента)

Критерий прохождения теста:

• Напряжение σ_x в точке М (-2.51;-1; 2) равно -108 МПа с точностью 1%

Результаты:

• В таблице приведены результаты расчёта FIDESYS:

	Критерий	Численный анализ FIDESYS						
Величина	прохождения	Shell	ll4 Shell8		Shell9			
	теста	Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	
$\sigma_{ m x}$, МПа	108	-107.892	0.10%	-109.311	1.21%	-109.285	1.19%	

• На картинке ниже представлен 3D-вид модели с полем напряжения σ_x для элементов shell8:

Напряжения 11

Тест 1.2.18: Равномерно нагруженная пластина, защемленная по контуру

NAFEMS Finite Element Methods & Standards, The Standard NAFEMS Benchmarks, (Glasgow: NAFEMS, Rev. 3, 1990.) Test No. LE6.

Рассматривается задача о нагружении пластинки в форме параллелограмма, свободно опертой по всему контуру, под действием равномерно распределенной по всей поверхности пластинки нагрузки.

Геометрическая модель (размеры указаны в метрах):

- Сторона а=1 м
- Угол α = 30°С
- Толщина h=0.01 м

Граничные условия:

- Нулевые перемещения вдоль оси Z по всему контуру
- Равномерно распределенная нагрузка по всей поверхности q = -700 Па

Параметры материала:

- Изотропный
- Модуль упругости Е = 210 Гпа
- Коэффициент Пуассона v = 0.3

Сетка:

- Два типа элементов (два отдельных теста):
 - о 4-узловые четырёхугольные оболочки Shell4 (16 элементов)
 - о 8-узловые четырёхугольные оболочки Shell8 (16 элементов)
 - о 9-узловые четырёхугольные оболочки Shell9 (16 элементов)

Критерий прохождения теста:

• Напряжение σ_v в точке М (0.933013, 0.25, 0) равно 0.802 МПа с точностью 5%

Результаты:

• Значение σ_{ν} в точке М для элементов Shell4 0.679028 МПа отличается от требуемого на 15.3%

- Значение σ_y в точке М для элементов Shell8 0.758300 МПа отличается от требуемого на 5.5%
- Значение σ_y в точке М для элементов Shell9 0. 747554 МПа отличается от требуемого на 6.79%

Тест 1.2.19: Трехступенчатая шарнирно опертая балка, нагруженная сосредоточенными силами

Писаренко Г.С., Яковлев А.П., Матвеев В.В. Справочник по сопротивлению материалов. Изд. 2-е, переработанное и дополненное. Киев Наукова Думка 1988.

Рассматривается задача об изгибе трехступенчатой шарнирно опертой балки нагруженной сосредоточенными силами.

Геометрическая модель:

- Длина l=1 м
- Площадь поперечного сечения F₁ = 0.01 м²
- Момент инерции поперечного сечения балки J₁ = 5·10⁻⁶ м⁴
- $F_1: F_2: F_3 = 1:2:3$
- $J_1: J_2: J_3 = 1:2:3$

Граничные условия:

- Нулевые перемещения вдоль оси Y и Z в точке А
- Нулевые перемещения вдоль всех осей в точке В
- P=1 МПа

Параметры материала:

- Изотропный
- Модуль упругости Е = 200 ГПа
- Коэффициент Пуассона v = 0.3

Сетка:

• Линейные балочные элементы Beam2 (12 элементов)

Критерии прохождения теста:

- Перемещение u_v в точке А (1, 0, 0) равно 3.02 м с точностью 1%
- Перемещение u_v в точке А (3, 0, 0) равно 4.4 м с точностью 1%
- Перемещение u_{ν} в точке A (5, 0, 0) равно 2.23 м с точностью 1%

а 7 — Х

Результаты:

• В таблице приведены результаты Fidesys и MicroFE [18]:

Teop		Численный анализ						
Величина	значение	FIDE	SYS	MicroFE				
		Значение	Ошибка	Значение	Ошибка			
$\left.u_{y}\right _{(1.0.0)}$, M	3.02	3.02	<0.01%	3.02	<0.01%			
$u_{y} _{(3.0.0)}$, M	4.4	4.94	12.3%	4.4	<0.01%			
$u_{y} _{(5.0.0)}$, M	2.23	2.23	<0.01%	2.23	<0.01%			

• На картинке ниже представлена исходная модель с полем распределения перемещений u_y для прямоугольного сечения:

Тест 1.2.20: Определение силы реакции балки

S.H. Crandall, N.C. Dahl, An Introduction to the Mechanics of Solids, McGraw-Hill Book Co., Inc., New York, NY, 1959, pg. 389, ex. 8.9 (case 1)

Решается задача о статическом нагружении балки квадратного сечения.

Геометрическая модель:

- Рассматривается балка состоящая из двух частей
- a = 50 in
- Сечение квадрат со стороной 1 in

Граничные условия:

- Правый конец жестко закреплен
- На левом конце трубы нулевые перемещения U_y и U_z
- F_v = -1000 lb

Параметры материала:

- Изотропный
- Модуль упругости E = 30·10⁶ psi
- Коэффициент Пуассона v = 0.3

Сетка:

• Линейные балочные элементы Beam2 (2 элемента)

Критерий прохождения теста:

- Сила реакции R_A в точке А равно 148.15 lb с точностью 1%
- Момент реакции в точке С равен 27 778 in-lb с точностью 1%

Результаты:

• В таблице приведены результаты расчёта FIDESYS и ANSYS[28]:

	Критерий	Численный анализ					
Величина	прохождения	FIDESYS		рохождения FIDESYS ANSYS		′S	
	теста	Значение	Ошибка	Значение	Ошибка		
R _A , lb	148.15	148.148	<0.01%	148.25	<0.01%		
Mc, in-lb	27 778	27 777.8	<0.01%	27 762.817	<0.1%		

Тест 1.2.21: Определение напряжений для балки

S. Timoshenko, Strength of Material, Part I, Elementary Theory and Problems, 3rd Edition, D. Van Nostrand Co., Inc., New York, NY, 1955, pg. 98, problem 4.

Решается задача об изгибе двутавровой балки под действием равномерно распределенной нагрузки, приложенной на вылетах. Балка расположена вдоль оси Ох. В результате решения сравниваются напряжения и перемещения.

Геометрическая модель:

- L = 240 in
- a = 120 in
- h = 30 in
- Сечение двутавр (I_z = 7892 in⁴, A = 50.65 in²)

Граничные условия:

- В точке А U_x = U_y = U_z =0
- В точке В U_y = U_z =0
- Распределенная нагрузка w = 10000/12 lb/in

Параметры материала:

- Изотропный
- Модуль упругости E = 30·10⁶ psi
- Коэффициент Пуассона v = 0.3

Х

Сетка:

• Линейные балочные элементы Beam2 (4 элемента)

Критерий прохождения теста:

- Максимальное перемещение U_v в центре балки равно 0.182 in с точностью 1%
- Максимальное напряжение Stressbeam для балки равно -11 400 psi с точностью 1%

Результаты:

• В таблице приведены результаты расчёта FIDESYS и ANSYS[28]:

	Критерий	Численный анализ					
Величина	прохождения	FIDE:	SYS	ANSYS			
	теста	Значение	Ошибка	Значение	Ошибка		
U _y , in	0.182	0.182	<0.01%	0.182	<0.01%		
Stress _{beam} , psi	-11 400	-11 404	0.04%	-11 440.746	0.36%		

Тест 1.2.22: Изгиб конической пластины

Решается задача об изгибе конической пластины под действием точечной силы. Сравниваются напряжения и перемещения.

Геометрическая модель:

- L = 20 in
- d = 3 in
- t = 0.5 in

Граничные условия:

- Жестко закреплено основание
- На вершину действует сила F = 10 lbs

Параметры материала:

- Изотропный
- Модуль упругости E = 30·10⁶ psi
- Коэффициент Пуассона *v* = 0.0

Сетка:

- 5 типов элементов (пять отдельных тестов):
 - 3-узловые четырёхугольные оболочки TriShell3 (13 элемента)
 - 6-узловые четырёхугольные оболочки TriShell6 (13 элементов)
 - 4-узловые четырёхугольные оболочки Shell4 (215 элементов)
 - 8-узловые четырёхугольные оболочки Shell8 (215 элементов)
 - 9-узловые четырёхугольные оболочки Shell9 (215 элементов)

Критерий прохождения теста:

- Перемещение u_z для вершины конуса равно -0.042667 in с точностью 1%
- Напряжение σ_x равно 1600 psi с точностью 1%

Результаты:

• В таблицах приведены результаты расчёта FIDESYS и ANSYS[28]:

	Теоретическое	Численный анализ						
			FIDE	ANSYS				
Величина	Величина значение		TriShell3		TriShell6		SHELL63	
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	
u_z , in	-0.042667	-0.043	0.8%	-0.043	0.8%	-0.042	1.6%	
σ_{χ} , psi	1 600.00	1 602.29	0.1%	1 619.97	1.2%	1 600.450	<0.01%	

		Численный анализ					
Величина	Теоретическое	FIDESYS	(SHELL4)	ANSYS (SHELL181)			
	зпачение	Значение	Ошибка	Значение	Ошибка		
u_z , in	-0.042667	-0.043	0.8%	-0.043	0.8%		
σ_x , psi	1 600.00	1 611.09	0.7%	1 600.00	<0.01%		

	Теоретическое	Численный анализ							
			FID	ANSYS					
Величина значение		SHELL8		SHELL9		SHELL281			
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка		
u_z , in	-0.042667	-0.043	0.8%	-0.043	0.8%	-0.043	0.8%		
σ_x , psi	1 600.00	1 616.13	1%	1 591.020	0.6%	1 604.376	0.3%		

• На картинке ниже представлен деформированный вид модели с полем перемещения u_z для элементов TriShell3

Динамическое нагружение

Тесты с точным аналитическим решением

Тест 2.1.1: Задача Стокса

В этой задаче рассматривается распространение волн в бесконечной упругой среде, вызываемых действием сосредоточенной силы. Задача будет ограничена объемом куба с длиной ребра равной 4 м.

Геометрическая модель:

- Ввиду симметрии задачи рассматривается четверть куба – параллелепипед ABCDA'B'C'D'
- Высота параллелепипеда Н = 4 м
- Длина и ширина L = 2 м

Граничные условия:

- Нулевое перемещение плоскости АА'D'D вдоль оси Y
- Нулевое перемещение плоскости АА'В'В вдоль оси Z
- Нулевое перемещенио ребра СС' вдоль оси Х
- В точке М (середина ребра АА') приложена сила величиной 100 кН, направленная по оси Х
- Зависимость силы от времени гармоническая, циклическая частота 20 000 Гц

Параметры материала:

- Изотропный
- Модуль упругости Е = 200 ГПа
- Коэффициент Пуассона v = 0.3
- Плотность *р* = 7900 кг/м³

Сетка:

- Измельчённая вдоль ребра АА'
- Элементы следующих типов (отдельные тесты):
 - 4-узловые тетраэдры Tetra4 (1 121 480 элементов)
 - 8-узловые гексаэдры Hex8 (1 024 000 элементов)
 - Спектральные элементы гексаэдры Hex8s 1-го, 3-го и 5-го порядков (везде 53 944 элемента)

Критерии прохождения теста:

• Перемещение u_x в точке (1, 0, 0) в момент времени t = 0.0003 с равно $2.318 \cdot 10^{-7}$ м с точностью 1%

- Перемещение u_x в точке (0, 0.6, 0) в момент времени t = 0.0003 с равно 5.353 · 10⁻⁷м с точностью 1%
- Перемещение u_z в точке (0.231, 0, 0.283) в некоторый момент времени t = 0.0003 с равно $-3.609 \cdot 10^{-7}$ м с точностью 1%

Значения перемещений вычислены по следующей формуле [4]:

$$u_{i}(\mathbf{r},t) = \frac{(3\gamma_{i}\gamma_{j} - \delta_{ij})}{4\pi\rho r^{3}} \int_{r/\alpha}^{r/\beta} \tau f(t-\tau)d\tau + \frac{\gamma_{i}\gamma_{j}}{4\pi\rho r\alpha^{2}} f(t-\frac{r}{\alpha}) - \frac{(\gamma_{i}\gamma_{j} - \delta_{ij})}{4\pi\rho r\beta^{2}} f(t-\frac{r}{\beta})$$

Результаты:

• Для тестов с линейными элементами Tet4 и Hex8 результаты расчетов приведены в таблице:

	Теоретическое значение, · 10 ⁻⁷ м	Численный анализ							
Величина			Fide	Ansys ³⁵					
		Гексаэдральная сетка		Тетраэдрал	ьная сетка	Тетраэдральная сетка			
		Значение, · 10 ⁻⁷ м	Ошибка	Значение, · 10 ⁻⁷ м	Ошибка	Значение, · 10 ⁻⁷ м	Ошибка		
U _x	2.318	2.328	0.41 %	2.321	0.13 %	2.322	0.17 %		
Ux	5.353	5.333	-0.39 %	5.342	-0.33 %	5.395	0.78 %		
Uz	-3.609	-3.625	0.45 %	-3.641	0.89 %	-3.683	2.05 %		

• Результаты тестов со спектральными элементами сведены в отдельную таблицу:

	Теоретическое	Численный анализ Fidesys							
Величина	значение,	Элементы 1-го порядка		Элементы 2-	го порядка	Элементы 3-го порядка			
	· 10 ⁻⁷ м	Значение, · 10 ⁻⁷ м	Ошибка	Значение, · 10 ⁻⁷ м	Ошибка	Значение, $\cdot10^{-7}$ м	Ошибка		
Ux	2.318	2.114	-8.80 %	2.314	-0.17 %	2.307	-0.47 %		
Ux	5.353	4.936	-7.79 %	5.292	-1.14 %	5.312	-0.77 %		
Uz	-3.609	-3.637	0.78 %	-3.567	1.16 %	-3.647	1.06 %		

³⁵ Анализ проводился на тетраэдральной сетке (тип элемента SOLID168, количество элементов 864 796, количество узлов 1 197 306).

Тест 2.1.2: Взрывное давление в сферической полости

Задача рассматривает поведение упругой бесконечной среды со сферической полостью после приложения давления к поверхности полости. Решение проводилось для явной схемы.

Геометрическая модель:

- Рассматриваемая область среды ограничена объемом сферы радиусом 1.5 м
- Полость расположена в центре сферы и имеет радиус 0.5 м
- Ввиду симметрии задачи рассматривается 1/8 исходного объема

Граничные условия:

- Нулевое перемещение плоскости ABFE вдоль оси X
- Нулевое перемещение плоскости BCGF вдоль оси Y
- Нулевое перемещение плоскости ACGE вдоль оси Z
- На поверхность сферической полости ABC приложено давление, изменяющееся от времени по закону

$$p(t) = 10^8 \sin(40000t)$$

• Время расчета t = 1.35 · 10⁻⁴ с

Параметры материала:

- Изотропный
- Модуль упругости Е = 200 ГПа
- Коэффициент Пуассона v = 0.3
- Плотность р = 7900 кг/м³

Сетка:

 Два типа конечных элементов (два отдельных теста):

– 10-узловые тетраэдры Tetra10 (элемента)

- 27-узловые гексаэдры Hex27 (9 620 элементов)
- Два типа спектральных элементов порядков (два отдельных теста):
 - 27-узловые гексаэдры Hex27s 2го порядка (элементов)
 - 27-узловые гексаэдры Hex27s 4го порядка (элементов)

Критерии прохождения теста:

- Перемещение u_R в точке R=0.75 м в последний момент времени равно 4.08106· 10⁻⁵ м с точностью 1%
- Напряжение σ_R в точке R=0.75 м в последний момент времени равно 48.75 МПа с точностью 1%

САЕ Fidesys — отчёт по тестированию (версия 1.6)

 Напряжение σ_θ в точке R=0.75 м в последний момент времени равно 36.44 МПа с точностью 1%

Значения перемещений и напряжений вычислены по следующим формулам [3]:

$$\begin{aligned} \tau &= t - \frac{r-a}{c}, \\ f(\tau) &= \frac{a}{(\beta - \alpha)\rho} \int_0^{\tau} p(\xi) \left[e^{\alpha(\tau - \xi)} - e^{\beta(\tau - \xi)} \right] d\xi, \\ u_R &= -\frac{-f'(\tau)}{c \cdot r} - \frac{f(\tau)}{r^2}, \\ \sigma_R &= \frac{\rho}{r} f''(\tau) + 2 \frac{\rho c}{r^2} \frac{1 - 2\nu}{1 - \nu} \left[f'(\tau) + \frac{c}{r} f(\tau) \right], \\ \sigma_\Theta &= \frac{\rho}{r} \frac{\nu}{1 - \nu} f''(\tau) - \frac{\rho c}{r^2} \frac{1 - 2\nu}{1 - \nu} \left[f'(\tau) + \frac{c}{r} f(\tau) \right] \end{aligned}$$

Результаты:

• Полученные значения перемещения и напряжений для конечных элементов представлены в таблице:

		Численный анализ FIDESYS							
Величина, ед. измерения	Теоретическое	HEX27		НЕХ27s (2-го	порядка)	HEX27s (4-го порядка)			
	значение	Значение	Ошибка	Значение	Ошибка	Значение	Ошибка		
u _R , · 10 ⁻⁵ м	4.08106	4.14403	1.54%	4.13617	1.35%	4.1059	0.6%		
σ _{<i>R</i>} , МПа	48.75	49.37	1.27%	44.016	9.7%	47.773	2%		
$\sigma_{ heta},$ МПа	36.44	35.57	2.39%	34.054	6.55%	36.16	0.77%		

• На рисунке ниже представлена исходная модель с полем распределения радиальных напряжений σ_R в момент времени t = $1.35 \cdot 10^{-4}$ с и с отмеченной точкой, в которой сравнивались значения напряжений и перемещения

Анализ собственных частот

Тесты с известным аналитическим или экспериментальным решением

Тест 3.1.1: Собственные частоты квадратной пластинки с защемлённой стороной

Решается задача о нахождении собственных частот квадратной пластинки, одна сторона которой защемлена.

Геометрическая модель:

- Размеры пластинки: L = 1 м
- Толщина: t = 0.01 м

Граничные условия:

- Ux = Uy = Rz = 0 во всех узлах сетки
- Ux = Uy = Uz = Rx = Ry = Rz = 0 на прямой X = 0 м

Параметры материала:

- Изотропный
- Модуль упругости Е = 210 ГПа
- Коэффициент Пуассона ν = 0.3
- Плотность р = 7800 кг/м³

Сетка:

- Пять типов сетки (пять отдельных тестов):
 - Линейные треугольные оболочки Trishell3 (64*64)
 - Линейные треугольные оболочки Trishell6 (64*64)
 - 4-узловые четырёхугольные оболочки Shell4(64*64)
 - 8-узловые четырёхугольные оболочки Shell8(64*64)
 - 9-узловые четырёхугольные оболочки Shell9(64*64)

Критерий прохождения теста:

• Сравнение собственных частот (с 1 по 6)

Анализ результатов

• В таблице приведены результаты расчёта FIDESYS на треугольных и четырёхугольных оболочечных элементах (Shell4 и Trishell3) в сравнении с аналитическим решением [9]:

No	Аналитическое решение	FIDESYS, T	rishell3	FIDESYS, Trishell6		
IN2	Значение, Гц	Значение, Гц	Ошибка	Значение, Гц	Ошибка	
1	8.73	8.67	0.69%	8.67	0.67%	
2	21.30	21.22	0.38%	21.19	0.51%	
3	53.56	53.17	0.73%	53.13	0.81%	
4	68.30	67.91	0.57%	67.83	0.69%	
5	77.74	77.23	0.66%	77.08	0.85%	
6	136.05	135.13	0.68%	134.74	0.96%	

	Аналитическое решение	FIDESYS, Shell4		FIDESYS,	Shell8	FIDESYS, Shell9	
Nº	Значение, Гц	Значение, Гц	Ошибка	Значение, Гц	Ошибка	Значение, Гц	Ошибка
1	8.73	8.67	0.69%	8.67	0.67%	8.67	0.67%
2	21.30	21.22	0.38%	21.21	0.40%	21.20	0.48%
3	53.56	53.17	0.73%	53.13	0.80%	53.14	0.79%
4	68.30	67.9	0.59%	67.86	0.64%	67.84	0.67%
5	77.74	77.22	0.68%	77.16	0.75%	77.11	0.81%
6	136.05	135.06	0.74%	134.91	0.83%	134.81	0.91%

• В таблице приведены результаты расчёта FIDESYS, ANSYS³⁶, CODE_ASTER [10] и ЛИРА [8]:

No	Аналитическое решение	FIDESYS, Shell4		ANSYS		CODE_A	STER	ЛИРА	
N≌	Значение, Гц	Значение, Гц	Ошибка	Значение, Гц	Ошибка	Значение, Гц	Ошибка	Значение, Гц	Ошибка
1	8.73	8.67	0.69%	8.67	0.6%	8.67	0.6%	8.66	0.7%
2	21.30	21.22	0.38%	21.22	0.4%	21.29	0.1%	21.20	0.5%
3	53.56	53.17	0.73%	53.17	0.7%	53.10	0.9%	52.94	1.1%
4	68.30	67.9	0.59%	67.90	0.6%	67.93	0.5%	67.46	1.2%
5	77.74	77.22	0.68%	77.21	0.7%	77.43	0.4%	76.92	1.1%
6	136.05	135.06	0.74%	135.04	0.7%	135.76	0.2%	134.05	1.5%

³⁶ Анализ проводился на четырехугольной сетке (тип элемента Shell181, количество элементов 4096).

Тест 3.1.2: Собственные частоты свободной квадратной пластинки

Решается задача о нахождении собственных частот свободной квадратной пластинки.

Геометрическая модель:

- Размеры пластинки: L = 1 м
- Толщина: t = 0.01 м

Граничные условия:

• Ux = Uy = Rz = 0 во всех узлах сетки

Параметры материала:

- Изотропный
- Модуль упругости Е = 210 ГПа
- Коэффициент Пуассона $\nu = 0.3$
- Плотность р = 7800 кг/м³

Сетка:

- Пять типов сетки (пять отдельных тестов):
 - Линейные треугольные оболочки Trishell3 (64*64)
 - Линейные треугольные оболочки Trishell6 (64*64)
 - 4-узловые четырёхугольные оболочки Shell4(64*64)
 - 8-узловые четырёхугольные оболочки Shell8(64*64)
 - 9-узловые четырёхугольные оболочки Shell9(64*64)

Критерий прохождения теста:

• Сравнение собственных частот (с 4 по 8)

Анализ результатов

• В таблице приведены результаты расчёта FIDESYS на треугольных и четырёхугольных оболочечных элементах (Shell4 и Trishell3) в сравнении с аналитическим решением [9]:

Nº	Аналитическое решение	FIDESYS, T	rishell3	FIDESYS, Trishell6		
	Значение, Гц	Значение, Гц	Ошибка	Значение, Гц	Ошибка	
4	33.71	33.59	0.36%	33.52	0.56%	
5	49.46	48.96	1.01%	48.95	1.03%	
6	61.05	60.64	0.67%	60.61	0.71%	
7	87.52	86.79	0.83%	86.60	1.05%	
8	87.52	86.79	0.83%	86.60	1.05%	

	Аналитическое решение	FIDESYS,	Shell4	FIDESYS,	Shell8	FIDESYS, Shell9	
Nº	Значение, Гц	Значение, Гц	Ошибка	Значение, Гц	Ошибка	Значение, Гц	Ошибка
4	33.71	33.58	0.39%	33.58	0.40%	33.53	0.53%
5	49.46	48.97	0.99%	48.95	1.03%	48.95	1.03%
6	61.05	60.65	0.66%	60.61	0.71%	60.62	0.71%
7	87.52	86.77	0.86%	86.73	0.90%	86.63	1.01%
8	87.52	86.77	0.86%	86.73	0.90%	86.63	1.01%

6 собственное значение

8 собственное значение

5 собственное значение

7 собственное значение

• В таблице приведены результаты расчёта FIDESYS, ANSYS³⁷, CODE_ASTER [10] и ЛИРА [8]:

N⁰	Аналитическое решение	FIDESYS, Shell4		ANSYS		CODE_ASTER		ЛИРА	
	Значение, Гц	Значение, Гц	Ошибка	Значение, Гц	Ошибка	Значение, Гц	Ошибка	Значение, Гц	Ошибка
4	33.71	33.58	0.39%	33.58	0.4%	33.68	0.1%	33.55	0.5%
5	49.46	48.97	0.99%	48.97	1.0%	48.94	1.1%	48.56	1.8%
6	61.05	60.65	0.66%	60.65	0.7%	60.58	0.8%	60.25	1.3%
7	87.52	86.77	0.86%	86.77	0.9%	87.10	0.5%	86.21	1.5%
8	87.52	86.77	0.86%	86.77	0.9%	87.10	0.5%	86.21	1.5%

³⁷ Анализ проводился на четырехугольной сетке (тип элемента Shell181, количество элементов 4096).

Тест 3.1.3: Собственные частоты квадратной пластинки с защемлённием по периметру

Решается задача о нахождении собственных частот квадратной пластинки с защемлением по периметру.

Геометрическая модель:

- Размеры пластинки: L = 1 м
- Толщина: t = 0.002 м

Граничные условия:

• Ux = Uy = Uz = Rx = Ry = Rz = 0 по периметру

Параметры материала:

- Изотропный
- Модуль упругости Е = 207 ГПа
- Коэффициент Пуассона ν = 0.3
- Плотность р = 7850 кг/м³

Сетка:

- Пять типов сетки (пять отдельных тестов):
 - Линейные треугольные оболочки Trishell3 (64*64)
 - Линейные треугольные оболочки Trishell6 (64*64)
 - 4-узловые четырёхугольные оболочки Shell4(64*64)
 - 8-узловые четырёхугольные оболочки Shell8(64*64)
 - 9-узловые четырёхугольные оболочки Shell9(64*64)

Критерий прохождения теста:

• Сравнение собственных частот (с 1 по 6)

Анализ результатов

• В таблице приведены результаты расчёта FIDESYS на треугольных и четырёхугольных оболочечных элементах (Shell4 и Trishell3) в сравнении с аналитическим решением [15]:

No	Аналитическое решение	FIDESYS, T	rishell3	FIDESYS, Trishell6		
N≌	Значение, Гц	Значение, Гц	Ошибка	Значение, Гц	Ошибка	
1	17.80	17.83	0.17%	17.7937	0.04%	
2	36.30	36.4	0.28%	36.2825	0.05%	
3	36.30	36.4	0.28%	36.2825	0.05%	
4	53.53	53.76	0.43%	53.4846	0.08%	
5	65.09	65.34	0.38%	65.0252	0.10%	
6	65.39	65.66	0.41%	65.3349	0.08%	

	Аналитическое решение	FIDESYS,	Shell4	FIDESYS,	Shell8	FIDESYS, Shell9	
Nº	Значение, Гц	Значение, Гц	Ошибка	Значение, Гц	Ошибка	Значение, Гц	Ошибка
1	17.80	17.81	0.06%	17.80	0.01%	17.80	0.01%
2	36.30	36.36	0.17%	36.30	0.01%	36.30	0.00%
3	36.30	36.36	0.17%	36.30	0.01%	36.30	0.00%
4	53.53	53.61	0.15%	53.52	0.03%	53.52	0.02%
5	65.09	65.3	0.32%	65.07	0.03%	65.08	0.02%
6	65.39	65.61	0.34%	65.38	0.02%	65.39	0.01%

1 собственное значение

2 собственное значение

3 собственное значение

4 собственное значение

5 собственное значение

6 собственное значение

Тест 3.1.4: Собственные частоты тонкой пластики в плоскости

Решается задача о нахождении собственных частот тонкой стенки, закреплённой в основании.

Геометрическая модель:

- Размеры пластинки: H = 60.96 м, L = 15.24 м
- Толщина: t = 0.2286 м

Граничные условия:

- Ux = Uy = Uz = Rx = Ry = Rz = 0 на прямой AD
- Uz = 0 во всех узлах сетки

Параметры материала:

- Изотропный
- Модуль упругости Е = 34.474 ГПа
- Коэффициент Пуассона *v* = 0.11
- Плотность р = 568.7 кг/м³

Сетка:

- Два типа сетки (два отдельных теста):
 - 4-узловые четырёхугольные оболочки Shell4(64*256)
 - 3-узловые треугольные оболочки Trishell3 (64*256)

Критерий прохождения теста:

• Сравнение собственных частот (с 1 по 5)

Анализ результатов

• В таблице приведены результаты расчёта FIDESYS на треугольных и четырёхугольных оболочечных элементах (Shell4 и Trishell3) в сравнении с аналитическим решением [15]:

No	Аналитическое решение	FIDESYS, S	Shell4	FIDESYS, Trishell3		
IN≌	Значение, Гц	FIDESYS, Shell4FIDESYS, Trishell3Значение, ГцОшибкаЗначение, ГцОши4.950.40%4.950.425.573.11%25.573.131.940.00%31.940.059.334.41%59.344.4	Ошибка			
1	4.97	4.95	0.40%	4.95	0.40%	
2	26.39	25.57	3.11%	25.57	3.11%	
3	31.94	31.94	0.00%	31.94	0.00%	
4	62.07	59.33	4.41%	59.34	4.40%	
5	95.83	95.76	0.07%	95.76	0.07%	

^(Y)

3 собственное значение

5 собственное значение

2 собственное значение

4 собственное значение

Тест 3.1.5: Собственные частоты консольной пластики с разными толщинами

Решается задача о нахождении собственных частот пластины с разными толщинами, закреплённой в основании.

Геометрическая модель:

- Размеры пластинки: L = 0.4572 м
- Толщины: t₁ = 6.185 мм, t₂ = 3.028 мм

Граничные условия:

• Ux = Uy = Uz = Rx = Ry = Rz = 0 в основании

Параметры материала:

- Изотропный
- Модуль упругости Е = 206.84 ГПа
- Коэффициент Пуассона v = 0.3
- Плотность р = 7853 кг/м³

Сетка:

- Два типа сетки (два отдельных теста):
 - 4-узловые четырёхугольные оболочки Shell4(64*256)
 - 3-узловые треугольные оболочки Trishell3 (64*256)

Критерий прохождения теста:

• Сравнение собственных частот (с 1 по 9)

Анализ результатов

• В таблице приведены результаты расчёта FIDESYS на треугольных и четырёхугольных оболочечных элементах (Shell4 и Trishell3) в сравнении с аналитическим решением [15]:

No	Экспериментальное значение	FIDESYS, S	hell4	FIDESYS, Trishell3		
N≌	Значение, Гц	Значение, Гц	Ошибка	Значение, Гц	Ошибка	
1	29.50	30.16	2.24%	30.16	2.24%	
2	56.60	55.48	1.98%	55.49	1.96%	
3	102.70	105.87	3.09%	105.86	3.08%	
4	129.80	127.96	1.42%	128	1.39%	
5	149.80	150.6	0.53%	150.63	0.55%	
6	264.40	262.98	0.54%	262.98	0.54%	
7	269.90	270.51	0.23%	270.64	0.27%	
8	308.50	315.73	2.34%	315.56	2.29%	
9	344.50	351.3	1.97%	351.24	1.96%	

Тест 3.1.6: Собственные частоты сферической оболочки

Решается задача о нахождении собственных частот сферической оболочки, защемлённой с одной стороны.

Геометрическая модель:

- Размеры сферы: радиус R = 0.3 м, толщина t = 0.003 м
- В силу симметрии задачи рассматривается половина полусферы

Граничные условия:

- Ux = Uy = Uz = Rx = Ry = Rz = 0 на поверхности Y = 0
- Ux = 0 на поверхности X = 0

Параметры материала:

- Изотропный
- Модуль упругости Е = 210 ГПа
- Коэффициент Пуассона v = 0.28
- Плотность р = 7800 кг/м³

Сетка:

- Два типа сетки (два отдельных теста):
 - 4-узловые четырёхугольные оболочки Shell4(64*256)
 - 3-узловые треугольные оболочки Trishell3 (64*256)

Критерий прохождения теста:

• Сравнение собственных частот (с 1 по 5)

Анализ результатов

• В таблице приведены результаты расчёта FIDESYS на различных элементах в сравнении с аналитическим решением [16]:

Nº	Аналитическое решение	FIDESYS, Shell4		FIDESYS, Trishell3		
	Значение, Гц	Значение, Гц	Ошибка	Значение, Гц	Ошибка	
1	1564.70	1573.65	0.57%	1573.65	0.57%	
2	2115.30	2105.15	0.48%	2105.56	0.46%	
3	2455.40	2466.23	0.44%	2466.57	0.45%	
4	2465.40	2487.69	0.90%	2487.75	0.91%	
5	2590.40	2586.98	0.13%	2587.45	0.11%	

Тест 3.1.7: Собственные частоты колена полой трубы

Решается задача о нахождении собственных частот колена полой трубы.

Геометрическая модель:

- Размеры пластинки: L = 2 м, R = 1 м, θ = 90°
- Сечение: круг с отверстием, внешний радиус R_e = 0.01 м, внтуренний радиус R_i = 0.008 м

Граничные условия:

- Ux = Uy = Uz = Rx = Ry = Rz = 0 в точках А и D
- Uy = Uz = 0 в точке В
- Ux = Uz = 0 в точке С

Параметры материала:

- Изотропный
 - Модуль упругости Е = 210 ГПа
 - Коэффициент Пуассона *v* = 0.3
 - Плотность р = 7800 кг/м³

Сетка:

- Линейные балки Beam2 (теория Эйлера-Бернулли)
- 150 элементов (по 50 элементов на каждом звене балки: АВ, ВС и СD)

Критерий прохождения теста:

• Сравнение собственных частот (с 1 по 4)

Анализ результатов

• В таблице приведены результаты расчёта FIDESYS на балочных элементах (Beam2) в сравнении с аналитическим решением [14]:

Na	Аналитическое решение	FIDESYS		
Nº	Значение, Гц	Значение, Гц	Ошибка	
1	17.90	17.65	1.4%	
2	24.80	24.43	1.5%	
3	25.30	24.95	1.4%	
4	27.00	26.73	1.0%	

2 собственное значение

3 собственное значение

Тест 3.1.8: Собственные частоты изогнутого пространственного стержня (задача Ховгаарда)

Решается задача о нахождении собственных частот изогнутой трубы, заполненной водой, с защемлёнными концами.

Геометрическая модель:

- Геометрические размеры модели, а так же её расположение пространстве приведены на рисунках выше
- Сечение: круг с отверстием, внешний радиус R_e = 0.0925 м, внтуренний радиус R_i = 0.08638 м; моменты инерции:
 - $I_Y = I_Z = 0.1377 \times 10^{-4} M^4$ (прямые элементы)
 - $I_Y = I_Z = 0.5887 \times 10^{-5} \text{ м}^4$ (изогнутые элементы)

Граничные условия:

• Ux = Uy = Uz = Rx = Ry = Rz = 0 в точках А и В

Параметры материала:

- Изотропный
- Модуль упругости Е = 165.8 ГПа
- Коэффициент Пуассона *ν* = 0.3
- Плотность ρ = 13404.106 кг/м³ (труба заполнена водой)

Сетка:

- Линейные балки Beam2 (теория Эйлера-Бернулли)
- 250 элементов (по 50 элементов на каждом звене модели)

Критерий прохождения теста:

• Сравнение собственных частот (с 1 по 9)

Анализ результатов

• В таблице приведены результаты расчёта FIDESYS на балочных элементах (Beam2) в сравнении с аналитическим решением [17], а так же численным решением MicroFe [18] и ЛИРА [8]:

Nº	Аналитическое решение	FIDESYS		MicroF	9	ЛИРА		
	Значение, Гц	Значение, Гц	Ошибка	Значение, Гц	Ошибка	Значение, Гц	Ошибка	
1	10.18	10.39	2.1%	10.16	0.2%	10.25	0.7%	
2	19.54	20.01	2.4%	19.37	0.9%	20.02	2.5%	
3	25.47	25.51	0.1%	25.47	0.0%	25.17	1.2%	
4	48.09	48.54	0.9%	46.93	2.4%	48.07	0.0%	
5	52.86	52.65	0.4%	53.15	0.5%	52.68	0.3%	
6	75.94	84.51	11.3%	82.47	8.6%	85.00	11.9%	
7	80.11	87.25	8.9%	88.38	10.3%	87.19	8.8%	
8	122.34	129.64	6.0%	122.80	0.4%	129.29	5.7%	
9	123.15	132.29	7.4%	133.70	8.6%	132.55	7.6%	

1 собственное значение

2 собственное значение

3 собственное значение

4 собственное значение

5 собственное значение

6 собственное значение

7 собственное значение

8 собственное значение

9 собственное значение

Тест 3.1.9: Собственные частоты трёхмерной рамы

Решается задача о нахождении собственных частот трёхмерной рамы, закреплённой в основании.

Геометрическая модель:

- Размер звена балки: L = 1 м
- В силу симметрии задачи рассматривается четверть первоначальной модели
- Сечение:
 - ВС, DC: прямоугольник, а = 0.05 м, b = 0.15 м (ребро *а* параллельно оси Y, ребро *b* лежит в плоскости XZ)
 - BC, DC: квадрат, а = 0.15 м

Граничные условия:

- Ux = Uy = Uz = Rx = Ry = Rz = 0 в точке А
- Uz = Rx = Ry = 0 в точках В и Е
- Uy = Uz = Rx = 0 в точках D и G

Параметры материала:

- Изотропный
- Модуль упругости Е = 219.9 ГПа
- Коэффициент Пуассона v = 0.3
- Плотность р = 7900 кг/м³

Сетка:

- Линейные балки Beam2 (теория Эйлера-Бернулли)
- 120 элементов (по 20 элементов на каждом звене конструкции)

Критерий прохождения теста:

• Сравнение собственных частот (с 1 по 2)

Анализ результатов

• В таблице приведены результаты расчёта FIDESYS на балочных элементах (Beam2) в сравнении с экспериментальным решением [15] и численным решением ANSYS³⁸:

N⁰	Экспериментальное значение	FIDESY	S	ANSYS		
	Значение, Гц	Значение, Гц	Ошибка	Значение, Гц	Ошибка	
1	11.80	15.11	28.0%	15.06	27.6%	
2	34.10	38.09	11.7%	37.98	11.4%	

• На картинках ниже представлена деформированная модель в зависимости от собственного значения:

1 собственное значение

2 собственное значение

³⁸ Анализ проводился на линейной двухузловой сетке (тип элемента Beam188, количество элементов 120).

Тест 3.1.10: Собственные частоты треугольной пластики (2D)

Решается задача о нахождении собственных частот сечения дамбы, закреплённой в основании.

Геометрическая модель:

• Размеры пластинки: H = 91.44 м, L = 137.2 м

Граничные условия:

• Ux = Uy = Uz = Rx = Ry = Rz = 0 на прямой AC

Параметры материала:

- Изотропный
- Модуль упругости Е = 560.5 МПа
- Коэффициент Пуассона v = 0.45
- Плотность р = 2082 кг/м³

- Тест 1:
 - 3-узловые треугольники Tri3 (по 65 узлов на ребре)
 - 4-узловые четырёхугольники Quad4 (по 65 узлов на ребре)
 - 8-узловые четырёхугольники Quad8 (по 65 узлов на ребре)
 - 9-узловые четырёхугольники Quad9 (по 65 узлов на ребре)
- Тест 2:
 - 4-узловые четырёхугольники Quad4 (по 9 узлов на ребре) МКЭ
 - 4-узловые четырёхугольники Quad4s (по 9 узлов на ребре) МСЭ, 2ой порядок элементов

Критерий прохождения теста:

• Сравнение собственных частот (с 1 по 3)

Анализ результатов

• В таблице приведены результаты расчёта FIDESYS на различных элементах в сравнении с аналитическим решением [15]:

Nº	Аналитическое решение	FIDESYS, Tri3		FIDESYS,	FIDESYS, Quad4		FIDESYS, Quad8		FIDESYS, Quad9	
	Значение, Гц	Значение, Гц	Ошибка	Значение, Гц	Ошибка	Значение, Гц	Ошибка	Значение, Гц	Ошибка	
1	1.23	1.24	0.8%	1.24	0.7%	1.24	0.7%	1.24	0.7%	
2	1.99	1.99	0.0%	1.99	0.1%	1.99	0.3%	1.99	0.3%	
3	2.32	2.31	0.7%	2.31	0.8%	2.30	1.2%	2.30	1.2%	

 В таблице приведены результаты расчёта FIDESYS на элементах типа Quad4 методом конечных элементов и методом спектральных элементов 2ого порядка в сравнении с аналитическим решением [15]:

Nº	Аналитическое решение	MKЭ, Qua	ad4	МСЭ, Quad4, порядок 2		
	Значение, Гц	Значение, Гц Ошибка		Значение, Гц	Ошибка	
1	1.23	1.24	1.0%	1.24	0.7%	
2	1.99	2.14	7.2%	1.99	0.1%	
3	2.32	2.60	12.1%	2.32	0.1%	

• На картинках ниже представлена деформированная модель в зависимости от собственного значения:

1 собственное значение

Тест 3.1.11: Собственные частоты круглой пластинки (3D)

Решается задача о нахождении собственных частот круглой пластинки, защемлённой по периметру.

Геометрическая модель:

- Размеры пластинки: радиус R = 0.2 м, толщина H = 0.01 м
- В силу симметрии задачи рассматривается четверть первоначальной модели

Граничные условия:

- Ux = Uy = Uz = Rx = Ry = Rz = 0 на внешней поверхности $B_1B_2C_2C_1$
- Uy = 0 на поверхности B₁B₂A₂A₁
- Ux = 0 на поверхности C₁C₂A₂A₁

Параметры материала:

- Изотропный
- Модуль упругости Е = 210 ГПа
- Коэффициент Пуассона ν = 0.28
- Плотность р = 7800 кг/м³

Сетка:

- Тест 1:
 - Линейные гексаэдры Hex8 (1728 элементов)
 - Параболические гексаэдры Hex20 (300 элементов)
 - Параболические гексаэдры Hex27 (300 элементов)
- Тест 2:
 - 8-узловые гексаэдры Hex8 (108 элементов) МКЭ
 - 8-узловые гексаэдры Hex8s (108 элементов) МКЭ МСЭ, 2ой порядок элементов
 - 8-узловые гексаэдры Hex8s (108 элементов) МКЭ МСЭ, Зий порядок элементов

Критерий прохождения теста:

• Сравнение 1ой собственной частоты

Анализ результатов

• В таблице приведены результаты расчёта FIDESYS на различных элементах в сравнении с аналитическим решением [16]:

Nº	Аналитическое решение	FIDESYS, I	Hex8	FIDESYS, H	lex20	FIDESYS, Hex27		
	Значение, Гц	Значение, Гц	Ошибка	Значение, Гц	Ошибка	Значение, Гц	Ошибка	
1	633.90	702.03	10.7%	635.94	0.3%	633.08	0.1%	

• В таблице приведены результаты расчёта FIDESYS на грубой сетке на элементах типа Hex8 методом конечных элементов и методом спектральных элементов 2ого и 3его порядков в сравнении с аналитическим решением [16]:

	Аналитическое	MKЭ, Hex8		MCЭ, Hex8			
N⁰	решение	FIDESYS, Hex8		Порядок 2		Порядок 3	
	Значение, Гц	Значение, Гц	Ошибка	Значение, Гц	Ошибка	Значение, Гц	Ошибка
1	633.90	942.62	48.7%	636.11	0.3%	633.51	0.1%

• На картинках ниже представлена деформированная модель в зависимости от собственного значения:

1 собственное значение

Тест 3.1.12: Собственные частоты консольной балки (3D)

Решается задача о нахождении собственных частот консольной балки, защемлённой с одной стороны.

Геометрическая модель:

• Размеры балки: 0.5 м х 0.05 м х 0.02 м

Граничные условия:

• Ux = Uy = Uz = Rx = Ry = Rz = 0 на поверхности $B_1B_2A_2A_1$

Параметры материала:

- Изотропный
- Модуль упругости Е = 210 ГПа
- Коэффициент Пуассона v = 0.28
- Плотность р = 7800 кг/м³

Сетка:

- Тест 1:
 - 4-узловые тетраэдры Tetra4 (9393 элемента)
 - 8-узловые гексаэдры Hex8 (512 элементов)
 - 20-узловые гексаэдры Hex20 (512 элементов)
 - 27-узловые гексаэдры Hex27 (512 элементов)
- Тест 2:
 - 27-узловые гексаэдры Нех27 (2 элемента) МКЭ
 - 27-узловые гексаэдры Hex27s (2 элемента) МКЭ МСЭ, Зий порядок элементов
 - 27-узловые гексаэдры Hex27s (2 элемента) МКЭ МСЭ, 4ый порядок элементов

Критерий прохождения теста:

• Сравнение собственных частот (на изгиб: 1, 3 и 6)

Анализ результатов

• В таблице приведены результаты расчёта FIDESYS на различных элементах в сравнении с аналитическим решением [16]:

N⁰	Аналитическое решение	FIDESYS, Tetra4		FIDESYS, Hex8		FIDESYS, Hex20		FIDESYS, Hex27	
	Значение, Гц	Значение, Гц	Ошибка	Значение, Гц	Ошибка	Значение, Гц	Ошибка	Значение, Гц	Ошибка
1	67.00	76.53	14.2%	70.47	5.2%	67.28	0.4%	67.26	0.4%
3	420.20	473.98	12.8%	438.80	4.4%	418.56	0.4%	418.44	0.4%
6	1176.70	1311.30	11.4%	1216.95	3.4%	1159.07	1.5%	1158.73	1.5%

• В таблице приведены результаты расчёта FIDESYS на грубой сетке из двух элементов типа Нех27 методом конечных элементов и методом спектральных элементов 2ого и Зего порядков в сравнении с аналитическим решением [16]:

	Аналитическое	MKЭ, Hex27		MCЭ, Hex27				
Nº	решение	FIDESYS, Hex27		Порядок 3		Порядок 4		
	Значение, Гц	Значение, Гц	Ошибка	Значение, Гц	Ошибка	Значение, Гц	Ошибка	
1	67.00	71.35	6.5%	68.49	2.2%	67.88	1.3%	
3	420.20	678.27	61.4%	426.85	1.6%	423.21	0.7%	
6	1176.70	2636.05	124.0%	1406.78	19.6%	1176.56	0.0%	

Тест 3.1.13: Собственные частоты тонкой полусферы (3D)

Решается задача о нахождении собственных частот тонкой полусферы, защемлённой с одной стороны.

Геометрическая модель:

- Размеры сферы: радиус R = 0.3 м, толщина h = 0.003 м
- В силу симметрии задачи рассматривается половина полусферы

Граничные условия:

- Ux = Uy = Uz = Rx = Ry = Rz = 0 на поверхности Y = 0
- Ux = 0 на поверхности X = 0

Параметры материала:

- Изотропный
- Модуль упругости Е = 210 ГПа
- Коэффициент Пуассона *v* = 0.28
- Плотность р = 7800 кг/м³

Сетка:

- Тест 1:
 - 4-узловые тетраэдры Tetra4 (9465 элемента)
 - 8-узловые гексаэдры Hex8 (1328 элементов)
 - 20-узловые гексаэдры Hex20 (1328 элементов)
 - 27-узловые гексаэдры Hex27 (1328 элементов)
- Тест 2:
 - 27-узловые гексаэдры Нех27 (90 элементов) МКЭ
 - 27-узловые гексаэдры Hex27s (90 элементов) МКЭ МСЭ, 2-4 порядки элементов

Критерий прохождения теста:

• Сравнение собственных частот (с 1 по 5)

Анализ результатов

• В таблице приведены результаты расчёта FIDESYS на различных элементах в сравнении с аналитическим решением [16]:

No	Аналитическое решение	FIDESYS, Tetra4		FIDESYS, Hex8		FIDESYS, Hex20		FIDESYS, Hex27	
IN2	Значение, Гц	Значение, Гц	Ошибка	Значение, Гц	Ошибка	Значение, Гц	Ошибка	Значение, Гц	Ошибка
1	1564.70	1643.37	5.0%	1619.09	3.5%	1583.19	1.2%	1582.63	1.1%
2	2115.30	2225.26	5.2%	2181.74	3.1%	2118.17	0.1%	2117.31	0.1%
3	2455.40	2559.62	4.2%	2522.67	2.7%	2479.02	1.0%	2478.55	0.9%
4	2465.40	2624.17	6.4%	2545.15	3.2%	2499.57	1.4%	2499.53	1.4%
5	2590.40	2784.32	7.5%	2686.78	3.7%	2599.66	0.4%	2599.33	0.3%

• В таблице приведены результаты расчёта FIDESYS на грубой сетке из элементов типа Hex27 методом конечных элементов и методом спектральных элементов 2ого, 3его и 4ого порядков в сравнении с аналитическим решением [16]:

	Аналитическое	МКЭ, Н	lex27		МСЭ, Hex27						
Nº	решение	FIDESYS	, Hex27	Поряд	ок 2	Поряд	цок З	Поряд	ок 4		
	Значение, Гц	Значение, Гц	Ошибка	Значение, Гц	Ошибка	Значение, Гц	Ошибка	Значение, Гц	Ошибка		
1	1564.70	1610.77	2.9%	1618.16	3.4%	1588.79	1.5%	1582.70	1.2%		
2	2115.30	2156.32	1.9%	2167.47	2.5%	2125.43	0.5%	2117.13	0.1%		
3	2455.40	2502.53	1.9%	2505.53	2.0%	2482.85	1.1%	2478.45	0.9%		
4	2465.40	2503.62	1.6%	2512.50	1.9%	2500.15	1.4%	2499.49	1.4%		
5	2590.40	2620.22	1.2%	2631.14	1.6%	2602.06	0.5%	2599.15	0.3%		

• На картинках ниже представлена деформированная модель в зависимости от собственного значения:

3 собственное значение

4 собственное значение

5 собственное значение

Тест 3.1.14: Собственные частоты армированной оболочки

Решается задача о нахождении собственных частот квадратной армированной двумя балками оболочки, защемлённой по периметру.

Геометрическая модель:

- Размеры пластинки: L = 20.32 см
- Толщина пластинки: t = 1.27 мм
- Сечение балок: прямоугольник, а = 11.43 мм, b = 1.854 мм

Граничные условия:

• Ux = Uy = Uz = Rx = Ry = Rz = 0 по периметру

Параметры материала:

- Изотропный
- Модуль упругости Е = 69 ГПа
- Коэффициент Пуассона v = 0.33
- Плотность р = 2600 кг/м³

Сетка:

- 4-узловые четырёхугольные оболочки Shell4
 - 4032 элемента (64*63)
- Линейные балки Beam2 (теория Эйлера-Бернулли)
 - 128 элементов (по 64 элемента на каждой балке)

Критерий прохождения теста:

• Сравнение собственных частот (с 1 по 3)

Анализ результатов

• В таблице приведены результаты расчёта FIDESYS на линейных оболочечных (Shell4) и балочных (Beam2) элементах в сравнении с экспериментальным решением [15]:

No	Экспериментальное значение	FIDESYS, Shell4		
INº	Значение, Гц	Значение, Гц	Ошибка	
1	859.00	859.20	0.0%	
2	1044.00	1052.58	0.8%	
3	1292.00	1272.67	1.5%	

1 собственное значение

2 собственное значение

3 собственное значение

Тест 3.1.15: Собственные частоты консольной балки, предварительно нагруженной силой (3D)

Решается задача о нахождении собственных частот консольной балки, защемленной с одной грани, при действии силы на вершины противоположной грани.

Геометрическая модель:

• Размеры балки: 0.5 м х 0.02 м х 0.05 м

Граничные условия:

- Перемещения $U_x = U_y = U_z = R_x = R_y = R_z = 0$ на поверхности $B_1B_2A_2A_1$
- Сосредоточенные силы в точках C₁, C₂, D₂, D₁ F=12500 Па

Параметры материала:

- Изотропный
- Модуль упругости Е = 210 ГПа
- Коэффициент Пуассона = 0.28
- Плотность р = 7800 кг/м3

Сетка:

- Два типа элементов (два отдельных теста):
 - 20-узловые гексаэдры Hex20 (1 386 элементов)
 - 10-узловые тетраэдры Tetra10 (9 312 элементов)

Критерий прохождения теста:

• Первая собственная частота 85.804 Гц

Значение вычислено по следующей формуле [16]:

$$f^* = f_1 \cdot \sqrt{1 + \frac{5Pl^2}{14EJ'}},$$
$$f_1 = \frac{1}{2\pi} \left(\frac{1.875}{l}\right)^2 \sqrt{\frac{EJ}{\rho F'}},$$

где J – момент инерции балки, F – площадь сечения.

Анализ результатов

• В таблице приведены результаты расчета FIDESYS и AUTOFEM [16] на различных элементах в сравнении с аналитическим решением:

N⁰	Аналитическое		FIDE	AUTOFEM			
	решение	FIDESYS, Hex20				FIDESYS, Tetra10	
	Значение, Гц	Значение, Гц	Значение, Гц Ошибка		Ошибка	Значение, Гц	Ошибка
1	85.804	86.1376	0.4%	86.1352	0.39%	86.156	0.41%

• На картинке ниже представлена деформированная модель в зависимости от собственного значения:

1 собственное значение

Тесты с известным численным решением

Тест 3.2.1: Собственные частоты свободно опёртой квадратной пластинки (3D)

NAFEMS Selected Benchmarks for Natural Frequency Analysis "Simply Supported "Solid" Square Plate", Test No FV52 [5].

Решается задача о нахождении собственных частот квадратной пластинки.

Геометрическая модель и сетка (размеры указаны в метрах):

• Размеры пластинки: 10 м х 10 м х 1 м

Граничные условия:

• Uz = 0 на всех рёбрах нижней грани (плоскости Z = -0.5 м)

Параметры материала:

- Изотропный
- Модуль упругости Е = 200 ГПа
- Коэффициент Пуассона *v* = 0.3
- Плотность р = 8000 кг/м³

Сетка:

- 8-узловые гексаэдры Нех8
- 192 элемента (8*8*3)

Критерий прохождения теста:

• Сравнение собственных частот (с 4 по 10)

Анализ результатов

В таблице приведены результаты расчёта FIDESYS, ANSYS³⁹ и NASTRAN [6]:

NIO	NAFEMS	FIDES	′S	ANSY	S	NASTRAN		
N≞	Значение, Гц	Значение, Гц	Ошибка	Значение, Гц	Ошибка	Значение, Гц	Ошибка	
4	51.65	55.68	7.8%	45.32	12.3%	45.24	12.4%	
5	132.73	141.52	6.62%	113.96	14.1%	113.70	14.3%	
6	132.73	141.52	6.62%	113.96	14.1%	113.70	14.3%	
7	194.37	196.87	1.29%	173.30	10.8%	172.30	11.4%	
8	197.18	208.79	5.89%	196.77	0.2%	196.80	0.2%	
9	210.55	210.62	0.03%	209.56	0.5%	209.60	0.5%	
10	210.55	210.62	0.03%	209.56	0.5%	209.60	0.5%	

³⁹ Анализ проводился на гексаэдральной сетке (тип элемента SOLID185, количество элементов 192).

Тест 3.2.2: Собственные частоты свободно опёртой прямоугольной балки (3D)

NAFEMS Selected Benchmarks for Natural Frequency Analysis "Deep Simply Supported "Solid" Beam", Test N5. Решается задача о нахождении собственных частот прямоугольной балки.

Геометрическая модель:

• Размеры балки: 10 м х 2 м х 2 м

Граничные условия:

- Ux = Uz = 0 на прямой АА'
- Uz = 0 на прямой BB'
- Uy = 0 на плоскости Y = -1 м

Параметры материала:

- Изотропный
- Модуль упругости Е = 200 ГПа
- Коэффициент Пуассона ν = 0.3
- Плотность р = 8000 кг/м³

Сетка:

- 8-узловые гексаэдры Нех8
- 30 элементов

Критерий прохождения теста:

• Сравнение собственных частот (с 1 по 5)

Анализ результатов

• В таблице приведены результаты расчёта FIDESYS, ANSYS⁴⁰ и NASTRAN [6]:

NIO	NAFEMS	FIDESY	S	ANSYS	5	NASTRAN		
IN-	Значение, Гц	Значение, Гц	Ошибка	Значение, Гц	Ошибка	Значение, Гц	Ошибка	
1	42.88	40.72	5.0%	28.25	26.0%	38.28	0.2%	
2	93.82	88.66	5.5%	75.50	11.4%	83.95	1.5%	
3	170.70	164.33	3.7%	138.06	9.3%	157.60	3.5%	
4	286.10	275.22	3.8%	243.53	0.8%	264.90	7.9%	
5	318.90	306.63	3.8%	296.33	0.3%	298.30	0.4%	

⁴⁰ Анализ проводился на гексаэдральной сетке (тип элемента SOLID185, количество элементов 30).

Тест 3.2.3: Собственные частоты свободной квадратной пластинки

NAFEMS Selected Benchmarks for Natural Frequency Analysis, "Free Thin Square Plate", Test No FV12, April 1989, p.17.

Решается задача о нахождении собственных частот квадратной пластинки.

Геометрическая модель:

- Размеры пластинки: L = 10 м
- Толщина: t = 0.05 м

Граничные условия:

• Ux = Uy = Rz = 0 во всех узлах сетки

Параметры материала:

- Изотропный
- Модуль упругости Е = 200 ГПа
- Коэффициент Пуассона $\nu = 0.3$
- Плотность р = 8000 кг/м³

Сетка:

- 4-узловые четырёхугольные оболочки Shell4
- 256 элементов (16*16)

Критерий прохождения теста:

• Сравнение собственных частот (с 4 по 9)

Анализ результатов

• В таблице приведены результаты расчёта FIDESYS, ANSYS⁴¹, NASTRAN [6] и CATIA [7]:

FIDESYS ANSYS NAFEMS NASTRAN CATIA N⁰ Значение, Значение, Значение, Значение, Значение, Ошибка Ошибка Ошибка Ошибка Γц Γц Γц Γц Γц 4 1.622 1.67 2.96% 1.62 0.1% 1.62 0.1% 1.62 0.1% 5 2.360 2.43 2.97% 2.37 0.4% 2.39 1.2% 2.39 1.2% 6 2.922 3.02 3.35% 2.94 0.7% 2.98 2.0% 2.98 2.0% 7 4.233 4.32 4.21 0.5% 4.24 0.4% 4.25 0.4% 2.06% 4.32 4.21 4.24 4.25 0.4% 8 4.233 2.06% 0.5% 0.4% 5.1% 9 7.416 7.71 7.52 1.4% 7.79 5.1% 7.79 3.96%

⁴¹ Анализ проводился на четырехугольной сетке (тип элемента Shell181, количество элементов 256).

• В таблице приведены результаты расчёта аналогичной задачи в FIDESYS и CATIA [7] для линейных треугольных элементов (Trishell3):

NIO	NAFEMS	FIDESY	S	CATIA		
N²	Значение, Гц	Значение, Гц Ошибка		Значение, Гц	Ошибка	
4	1.622	1.67	2.96%	1.61	0.5%	
5	2.36	2.43	2.97%	2.38	0.8%	
6	2.922	3.02	3.35%	2.96	1.3%	
7	4.233	4.32	2.06%	4.23	0.1%	
8	4.233	4.32	2.06%	4.23	0.0%	
9	7.416	7.71	3.96%	7.65	3.2%	

Тест 3.2.4: Собственные частоты свободно опёртой квадратной пластинки

NAFEMS-Glasgow, BENCHMARK newsletter, "Simply Supported Thin Square Plate", Report No. E1261/R002, February 1989, p.21.

Решается задача о нахождении собственных частот квадратной пластинки.

Геометрическая модель:

- Размеры пластинки: L = 10 м
- Толщина: t = 0.05 м

Граничные условия:

- Ux = Uy = Rz = 0 во всех узлах сетки
- Uz = Rx = 0 на прямой X = 0 м и X = 10 м
- Uz = Ry = 0 на прямой Y = 0 м и Y = 10 м

Параметры материала:

- Изотропный
 - Модуль упругости Е = 200 ГПа
 - Коэффициент Пуассона v = 0.3
 - Плотность р = 8000 кг/м³

Сетка:

- 4-узловые четырёхугольные оболочки Shell4
- 256 элементов (16*16)

Критерий прохождения теста:

• Сравнение собственных частот (с 1 по 8)

Анализ результатов

• В таблице приведены результаты расчёта FIDESYS, ANSYS⁴², NASTRAN [6] и CATIA [7]:

	NAFEMS	FIDES	SYS	ANS	YS	NASTI	RAN	CAT	IA
N⁰	Значение, Гц	Значение, Гц	Ошибка	Значение, Гц	Ошибка	Значение, Гц	Ошибка	Значение, Гц	Ошибка
1	2.377	2.45	3.07%	2.38	0.1%	2.39	0.6%	2.38	0.0%
2	5.942	6.18	4.01%	5.98	0.7%	6.18	4.0%	5.95	0.2%
3	5.942	6.18	4.01%	6.02	1.2%	6.18	4.0%	5.95	0.2%
4	9.507	9.91	4.24%	9.61	1.1%	9.93	4.5%	9.52	0.2%
5	11.88	12.66	6.57%	12.16	2.4%	13.27	11.7%	11.95	0.6%
6	11.88	12.66	6.57%	12.29	3.4%	13.27	11.7%	11.95	0.6%
7	15.45	16.36	5.89%	15.81	2.3%	17.07	10.5%	15.51	0.4%
8	15.45	16.36	5.89%	15.88	2.8%	17.07	10.5%	15.51	0.4%

⁴² Анализ проводился на четырехугольной сетке (тип элемента Shell181, количество элементов 256).

• В таблице приведены результаты расчёта FIDESYS и CATIA [7] для линейных треугольных элементов (Trishell3):

NIQ	NAFEMS	FIDESY	′S	CATIA		
N=	Значение, Гц	Значение, Гц	Ошибка	Значение, Гц	Ошибка	
1	2.377	2.45	3.07%	2.38	0.0%	
2	5.942	6.18	4.01%	5.95	0.1%	
3	5.942	6.18	4.01%	5.95	0.1%	
4	9.507	9.91	4.24%	9.52	0.1%	
5	11.88	12.66	6.57%	11.90	0.2%	
6	11.88	12.66	6.57%	11.90	0.2%	
7	15.45	16.36	5.89%	15.48	0.2%	
8	15.45	16.36	5.89%	15.48	0.2%	

Тест 3.2.5: Собственные частоты цилиндрической пластинки с защемлением

Решается задача о нахождении собственных частот цилиндрической пластинки (лопатки компрессора).

Геометрическая модель:

- Размеры пластинки: L = 304.8 мм, R = 609.6 мм, θ = 0.5 рад
- Толщина: t = 3.048 мм

Граничные условия:

• Ux = Uy = Uz = Rx = Ry = Rz = 0 на ребре AD

Параметры материала:

- Изотропный
- Модуль упругости Е = 206.85 ГПа
- Коэффициент Пуассона v = 0.3
- Плотность р = 7857.2 кг/м³

Сетка:

- Тест на сравнение с другими пакетами:
 - 4-узловые четырехугольные оболочки Shell4(10*10)
 - 8-узловые восьмиугольные оболочки Shell8(5*5)
 - 3-узловые треугольные оболочки Trishell3 (10*10)

Критерий прохождения теста:

• Сравнение собственных частот (с 1 по 6)

Анализ результатов

• В таблице приведены результаты расчёта FIDESYS, ANSYS⁴³ и CATIA [7] для линейных четырёхугольных элементов (Shell4) на сетке 10*10:

N⁰	Известное решение	FIDESYS, Shell4		ANSYS	6	CATIA		
	Значение, Гц	Значение, Гц	Ошибка	Значение, Гц	Ошибка	Значение, Гц	Ошибка	
1	85.60	86.9	1.52%	84.28	1.5%	84.1	1.75%	
2	134.50	139.85	3.98%	135.90	1.0%	136.3	1.34%	
3	259.00	252.04	2.69%	249.29	3.7%	252.4	2.55%	
4	351.00	353.33	0.66%	340.29	3.1%	338	3.70%	
5	395.00	395.51	0.13%	384.46	2.7%	382.5	3.16%	
6	531.00	557.83	5.05%	555.94	4.7%	547.3	3.07%	

• В таблицах приведены результаты расчёты FIDESYS и CATIA [7] для восьмиугольных элементов (Shell8) на сетке 5*5 и для линейных треугольных элементов Trishell3 на сетке 10*10:

	N⁰	Известное	FIDESYS, Shell8	CATIA
--	----	-----------	-----------------	-------

⁴³ Анализ проводился на четырехугольной сетке (тип элемента Shell181, количество элементов 100).

	решение				
	Значение, Гц	Значение, Гц	Ошибка	Значение, Гц	Ошибка
1	85.60	86.98	1.61%	85.9	0.35%
2	134.50	139.55	3.75%	138.6	3.05%
3	259.00	247.95	4.27%	246.1	4.98%
4	351.00	347.44	1.01%	341.3	2.76%
5	395.00	391.61	0.86%	384.1	2.76%
6	531.00	532.8	0.34%	528.8	0.41%

Nº	Известное решение	FIDESYS, Tr	ishell3	САТІА		
	Значение, Гц	Значение, Гц	Ошибка	Значение, Гц	Ошибка	
1	85.60	91.37	6.74%	87.68	2.43%	
2	134.50	147	9.29%	143.05	6.36%	
3	259.00	256.81	0.85%	251.3	2.97%	
4	351.00	380.16	8.31%	349.6	0.40%	
5	395.00	435.11	10.15%	394.4	0.15%	
6	531.00	579.1	9.06%	544	2.45%	

Тест 3.2.6: Собственные частоты консольной пластинки

NAFEMS, Selected Benchmarks for Natural Frequency Analysis, "Thin Square Cantilevered Plate – Symmetric Modes", Test 11a.

Решается задача о нахождении собственных частот консольной пластинки.

Геометрическая модель:

- Размеры пластинки: L = 10 м
- Толщина: t = 0.05 м

Граничные условия:

- Ux = Uy = Rz = 0 во всех узлах сетки
- Uz = Rx = Ry = 0 на прямой AB
- Rx = 0 на прямой BC

Параметры материала:

- Изотропный
- Модуль упругости Е = 200 ГПа
- Коэффициент Пуассона v = 0.3
- Плотность р = 8000 кг/м³

Сетка:

- 4-узловые четырёхугольные оболочки Shell4
- 32 элемента (4*8)

Критерий прохождения теста:

• Сравнение собственных частот (с 1 по 6)

Анализ результатов

• В таблице приведены результаты расчёта FIDESYS, ANSYS⁴⁴, NASTRAN [6] и ABAQUS⁴⁵:

	NAFEMS	FIDESYS,	Shell4	ANS	YS	NASTR	RAN	ABAQUS		
N⁰	Значение, Гц	Значение, Гц	Ошибка	Значение, Гц	Ошибка	Значение, Гц	Ошибка	Значение, Гц	Ошибка	
1	0.42	0.43	2.38%	0.42	1.4%	0.42	0.7%	0.42	1.4%	
2	2.58	2.72	5.43%	2.69	4.1%	2.60	0.9%	2.49	3.6%	
3	3.31	3.44	3.93%	3.80	15.0%	3.31	0.2%	3.12	5.8%	
4	6.56	6.94	5.79%	8.15	24.3%	6.54	0.3%	6.04	7.8%	
5	7.38	8.46	14.63%	9.28	25.7%	7.81	5.8%	7.09	3.9%	
6	11.40	13.06	14.56%	13.76	20.7%	12.34	8.2%	10.57	7.3%	

⁴⁴ Анализ проводился на четырехугольной сетке (тип элемента Shell181, количество элементов 32).

⁴⁵ Анализ проводился на четырехугольной сетке (тип элемента S4R, количество элементов 32).

2 собственное значение

3 собственное значение

4 собственное значение

5 собственное значение

6 собственное значение

Тест 3.2.7: Собственные частоты свободно опёртой прямоугольной балки

NAFEMS Selected Benchmarks for Natural Frequency Analysis, "Deep Simply-Supported Beam", Test No FV5.

Решается задача о нахождении собственных частот свободно опёртой балки.

а

Геометрическая модель:

- Длина балки: L = 10 м
- Сечение: квадрат, длина ребра а = 2 м

Граничные условия:

- Ux = Uy = Uz = Rx = 0 в точке А
- Uy = Uz = 0 в точке В

Параметры материала:

- Изотропный
- Модуль упругости Е = 200 ГПа
- Коэффициент Пуассона $\nu = 0.3$
- Плотность р = 8000 кг/м³

Сетка:

- Линейные балки Beam2 (теория Эйлера-Бернулли)
- 10 элементов

Критерий прохождения теста:

• Сравнение собственных частот (с 1 по 7) (теория Тимошенко)

Анализ результатов

• В таблице приведены результаты расчёта FIDESYS, ANSYS⁴⁶, ABAQUS⁴⁷, NASTRAN [6] и CATIA [7]:

	NAFEMS	FIDE	SYS	AN	SYS	NAS	TRAN	ABA	AQUS	CA	ATIA
N⁰	Знач.,	Знач.,		Знач.,		Знач.,	• •	Знач.,	• •	Знач.,	
	ГЦ	Гц	Ошибка								
1	42.57	45.35	6.5%	44.51	4.6%	43.26	1.6%	42.67	0.2%	42.53	0.1%
2	42.57	45.35	6.5%	44.51	4.6%	43.26	1.6%	42.67	0.2%	42.53	0.1%
3	77.84	71.33	8.4%	72.01	7.5%	77.84	0.0%	71.19	8.5%	71.55	8.1%
4	125.51	125.13	0.3%	125.51	0.0%	125.50	0.0%	124.87	0.5%	125.52	0.0%
5	145.71	181.40	24.5%	171.87	18.0%	154.90	6.3%	147.88	1.5%	145.06	0.4%
6	145.71	181.40	24.5%	171.87	18.0%	154.90	6.3%	147.88	1.5%	145.06	0.4%
7	241.24	215.77	10.6%	223.16	7.5%	241.20	0.0%	211.81	12.2%	221.76	8.1%

⁴⁶ Анализ проводился на линейной двухузловой сетке (тип элемента Beam188, количество элементов 10).

⁴⁷ Анализ проводился на линейной двухузловой сетке (тип элемента В31, количество элементов 10).

Тест 3.2.8: Собственные частоты креста в плоскости

NAFEMS Selected Benchmarks for Natural Frequency Analysis, "Pin-Ended Cross: In-Plane Vibration", Test No FV1. Решается задача о нахождении собственных частот креста в плоскости.

Геометрическая модель:

- Длина стержней: L = 10 м
- Сечение: квадрат, длина ребра а = 0.125 м

Граничные условия:

- Ux = Uy = 0 в точках A, B, C и D
- Uz = Rx = Ry = 0 во всех узлах сетки

Параметры материала:

- Изотропный
- Модуль упругости Е = 200 ГПа
- Коэффициент Пуассона ν = 0.29
- Плотность р = 8000 кг/м³

Сетка:

- Линейные балки Beam2 (теория Эйлера-Бернулли)
- 32 элемента (по 16 элементов на каждой балке)

Критерий прохождения теста:

• Сравнение собственных частот (с 1 по 8)

Анализ результатов

• В таблице приведены результаты расчёта FIDESYS и NASTRAN [6]:

No	NAFEMS	FIDESY	′S	NASTRAN		
IN≌	Значение, Гц	Значение, Гц Ошибка		Значение, Гц	Ошибка	
1	11.34	11.34	0.0%	11.34	0.0%	
2, 3	17.71	17.68	0.2%	17.69	0.1%	
4	17.71	17.71	0.0%	17.72	0.1%	
5	45.35	45.36	0.0%	45.52	0.4%	
6, 7	57.39	57.10	0.5%	57.43	0.1%	
8	57.39	57.41	0.0%	57.75	0.6%	

Тест 3.2.9: Собственные частоты двойного креста в плоскости

NAFEMS Selected Benchmarks for Natural Frequency Analysis, "Pin-Ended Double Cross: In-Plane Vibration", Test No FV2.

Решается задача о нахождении собственных частот двойного креста в плоскости, концы которого жёстко закреплены.

Геометрическая модель:

- Длина стержней: L = 10 м
- Сечение: квадрат, длина ребра а = 0.125 м

Граничные условия:

- Ux = Uy = 0 в точках A, B, C, D, E, F, G и H
- Uz = 0 во всех узлах сетки

Параметры материала:

- Изотропный
- Модуль упругости Е = 200 ГПа
- Коэффициент Пуассона v = 0.3
- Плотность р = 8000 кг/м³

Сетка:

- Линейные балки Beam2 (теория Эйлера-Бернулли)
- 64 элемента (по 16 элементов на каждой балке)

Критерий прохождения теста:

• Сравнение собственных частот (с 1 по 16)

Анализ результатов

 В таблице приведены результаты расчёта FIDESYS, ABAQUS⁴⁸, NASTRAN [6], CATIA [7] и AUTODESK SIMULATION [13]:

	NAFEMS	FIDESYS		ABAQUS		NASTRAN		CA	ATIA	AUTODESK	
Nº	Знач., Гц	Знач., Гц	Ошибка								
1	11.34	11.34	0.0%	11.34	0.0%	11.34	0.0%	11.34	0.0%	11.33	0.1%
2, 3	17.71	17.68	0.2%	17.68	0.2%	17.69	0.1%	17.69	0.1%	17.63	0.4%
4 - 8	17.71	17.71	0.0%	17.71	0.0%	17.72	0.1%	17.72	0.0%	17.66	0.3%
9	45.35	45.36	0.0%	45.36	0.0%	45.52	0.4%	45.48	0.3%	44.88	1.0%
10, 11	57.39	57.10	0.5%	57.10	0.5%	57.43	0.1%	57.36	0.0%	55.77	2.8%
12 - 16	57.39	57.41	0.0%	57.41	0.0%	57.75	0.6%	57.68	0.5%	56.05	2.3%

⁴⁸ Анализ проводился на линейной двухузловой сетке (тип элемента В31, количество элементов 64).

4-8 собственные значения

10, 11 собственные значения

9 собственное значение

12-16 собственные значения

Тест 3.2.10: Собственные частоты кругового кольца

Societe Francaise des Mecaniciens, Guide de validation des progiciels de calcul de structures, (Paris, Afnor Technique,1990.) Test No. SDLL11/89

Решается задача о нахождении собственных частот кругового кольца, закреплённого в трёх точках.

Геометрическая модель:

- Размеры кольца: R = 0.1 м
- Сечение: прямоугольник, а = 0.005 м, b = 0.010 м

Граничные условия:

• Ux = Uy = 0 в точках А, В и С

Параметры материала:

- Изотропный
- Модуль упругости Е = 72 ГПа
- Коэффициент Пуассона *v* = 0.3
- Плотность р = 2700 кг/м³

Сетка:

- Линейные балки Beam2 (теория Эйлера-Бернулли)
- 36 элементов

Критерий прохождения теста:

• Сравнение собственных частот (с 4 по 11)

Анализ результатов

• В таблице приведены результаты расчёта FIDESYS на балочных элементах (Beam2) в сравнении с известным численным решением:

Nº	Известное решение	FIDESYS	
	Значение, Гц	Значение, Гц	Ошибка
4, 5	318.36	320.84	0.8%
6, 7	900.46	904.77	0.5%
8, 9	1726.55	1732.78	0.4%
10, 11	2792.21	2801.07	0.3%

- На картинках ниже представлена деформированная модель в зависимости от собственного значения:
 - 4, 5 собственные значения

6, 7 собственные значения

8, 9 собственные значения

10, 11 собственные значения

Нелинейные задачи

Тесты с точным аналитическим решением

Тест 4.1.1. Большие перемещения квадратной мембраны

Квадратная мембрана, опертая шарнирно по контуру, нагружена по всей поверхности равномерно распеределенным давлением интенсивности q. Края мембраны неподвижны

Геометрическая модель:

- Размеры мембраны: 10x10 м²
- Толщина мембраны: 0.001 м

Граничные условия:

- По краям мембраны отсутствуют перемещения
- На верхней поверхности равномерно распределенная нагрузка q=-10 кН/м²

Параметры материала:

- Модуль упругости Е=2.1011 Па
- Коэффициент Пуассона *v*=0.25

Сетка:

• 8-узловые гексаэдры Нех8 (409 600 элементов).

Критерий прохождения теста:

- Перемещения u_z в точке (0,0,0) равно -0.2262 м с точностью 1.5%
- Напряжение σ_x в точке (0,0,0) равно 3.47932·10⁸ Н/м² с точностью 1.5%

Значения вычислены по формулам [27]:

$$u_z = 0.285h\sqrt[3]{(b/h)^4 q/E},$$

$$\sigma_x = \sigma_y = 3.4E(w/b)^2.$$

Результаты:

• В таблице приведены результаты расчёта FIDESYS:

	Теоретическое	FIDESYS (HEX8)	
Величина	значение	Значение	Погрешность
U _z , M	-0.2262	-0.229	1.23%
σ _× , Па	3.47932 [.] 10 ⁸	3.2825 [.] 10 ⁸	5.7%

Тест 4.1.2. Полый шар под действием давления

Рассматривается упруго-пластическое равновесие полого шара, испытывающего внутреннее давление. В силу симметрии выделяется сегмент шара, расположенный в первом октанте.

Геометрическая модель:

- Внутренний радиус шара: а = 2.5 м
- Внешний радиус шара: b = 5 м

Граничные условия:

- На координатных плоскостях перемещения по перпендикулярам равны нулю
- На внутренней поверхности приложено давление р = 30 Па.

Параметры материала:

- Изотропный
- Модуль упругости E = 21·10³ H/м²
- Коэффцициент Пуассона $\nu = 0.3$
- Предел текучести σ_y = 24 H/м²

Сетка:

- Три типа конечных элементов (три отдельных теста):
 - 8-узловые гексаэдры Hex8 (128 304 элемента)
 - 20-узловые гексаэдры Нех20 (7 280 элементов)
 - 10-узловые тетраэдры TETRA10 (68 547 элементов)
- Спектральные элементы (один тест):
 - 27-узловые гексаэдры Hex27 (7 280 элементов)

Критерий прохождения теста (в сферической системе координат) [29]:

- В точках пластической зоны с радиальной координатой r = 3:
 - напряжение σ_{rr} = -21.249 Па с точностью 1%,
 - напряжение $\sigma_{\phi\phi}$ = 2.751 Па с точностью 1%,
 - перемещения u_r = 4.219·10⁻³ с точностью 1%.
 - -В точках упругой зоны с радиальной координатой r = 4.5:
 - напряжение σ_{rr} = -2.908 Па с точностью 1%,
 - напряжение $\sigma_{\phi\phi}$ = 13.189 Па с точностью 1%,
 - перемещения u_r = 2.165·10⁻³ с точностью 1%.

Напряженно-деформированное состояние определено по формулам [29]:

В пластической зоне (а ≤ r ≤ c)

$$\sigma_{rr}(r) = 2\sigma_{y}\ln(r/a) - p, \qquad \sigma_{\phi\phi} = \sigma_{rr}(r) + \sigma_{y},$$

$$\varepsilon_{rr} = \psi(r) \cdot (\sigma_{rr}(r) - \sigma(r)) + k \cdot \sigma(r), \qquad \varepsilon_{\phi\phi} = \psi(r) \cdot (\sigma_{\phi\phi}(r) - \sigma(r)) + k \cdot \sigma(r),$$

$$u_{plast} = \varepsilon_{\phi\phi} \cdot r$$

где $\psi(r) = -2k + \left(\frac{1}{2G} + 2k\right) \cdot \left(\frac{c}{r}\right)^3$, $k = \frac{1-2\nu}{E}$, $\sigma(r) = \frac{1}{3}\left(\sigma_{rr}(r) + 2\sigma_{\phi\phi}(r)\right)$, с – граница пластической зоны, находящейся из уравнения

 $\ln\left(\frac{c}{a}\right) - \frac{1}{3}\left(\frac{c}{b}\right)^3 = \frac{p}{2\sigma_v} - \frac{1}{3}$

В упругой зоне (c ≤ r ≤ b) $\sigma_{rr}(r) = p^* \cdot (1 - (b/r)^3), \quad \sigma_{\phi\phi}(r) = p^* \cdot (1 + b^3/(2r^3))$ $\varepsilon_{rr} = du_{elastic}/dr, \qquad \varepsilon_{\phi\phi} = u_{elastic}/r,$ где $p^* = (p - 2\sigma_y \ln(c/a)) \cdot \left(\frac{c^3}{b^3 - c^3}\right), \quad u_{elastic} = p^* \cdot \left(k + \frac{b^3}{4Gr^3}\right)$

Результаты:

• В таблице приведены результаты расчёта FIDESYS.

			Pa	адиальная к	оордината,	м	
Тип эл	емента		3			4.5	
		Ur, M	σ _{rr} , Па	σ _{φφ} , Па	Ur, M	σ _{rr} , Па	σ _{фф} , Па
Hex8	Значение	4.2x10 ⁻³	-21.19	2.82	2.155x10 ⁻ ³	-2.8	13.17
	Погрешность	0.45%	0.28%	2.51%	0.46%	3.71%	0.14%
Hew20	Значение	4.13x10 ⁻³	-21.29	2.71	2.13x10 ⁻³	-2.85	12.97
nex20	Погрешность	2.11%	0.19%	1.49%	1.62%	1.99%	1.67%
Hew 27	Значение	4.14x10 ⁻³	-21.27	2.73	2.13x10 ⁻³	-2.851	13
nex27	Погрешность	1.87%	0.1%	0.76%	1.62%	1.96%	1.43%
Tetro 10	Значение	4.2x10 ⁻³	-21.21	2.78	2.16x10 ⁻³	-2.902	13.18
Tetra10	Погрешность	0.45%	0.18%	1.02%	0.23%	0.21%	0.07%

 На следующих рисунках приведены зависимости характеристик напряженно-деформированного состояния полого шара, нагруженного внутренним давлением, от радиуса (решение fidesys для сетки с элементом Hex27)

Тесты с известным численным решением

Тест 4.2.1. Изгиб консольной балки

NAFEMS Background to Finite Element Analisys of Geometryc Non-linearity Benchmarks, "Straight cantiveler benchmark"

Решается задача о статическом нагружении консольной балки, закрепленной на левом торце, сила прикладывается на правом торце.

Геометрическая модель:

- Длина балки L=3.2 m
- Сечение балки квадрат 0.1 x 0.1 m²

Граничные условия:

- Жесткая заделка (нулевые перемещения и углы поворота вдоль всех осей) в поперечном сечении, соответствующем точке А
- Силы, приложенные на правом торце, соответствующем точке В: Q=-3.844·10⁶ H, P=-3.844·10⁴ H

Параметры материала:

- Изотропный
- Модуль упругости Е = 210·10⁹ Н/м²
- Коэффцициент Пуассона *ν* = 0

Сетка:

- Четыре типа элементов (четыре различных теста):
 - 8-узловые гексаэдры Hex8 (33 100 элементов). МКЭ
 - 20-узловые гексаэдры гексаэдры Hex20 (33 100 элементов). МКЭ
 - 27-узловые гексаэдры Hex27s (4 000 элементов). МСЭ: 2-ой порядок.
 - 4-узловые тетраэдры Tetra4 (364 005 элементов). МКЭ

Критерий прохождения теста:

- Перемещение u_x в точке (3.2, 0, 0) равно -5.07 м с точностью 1.5%
- Перемещение u_у в точке (3.2, 0, 0) равно -1.34 м с точностью 1.5%

Результаты:

• В таблице приведены результаты расчёта FIDESYS:

Критерий		Численный анализ FIDESYS							
Величина	Величина прохождения		Hex8 Hex20		Hex27		Tetra4		
	теста	Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	Значение	Ошибка
U _x ,M	-5.07	-5.0786	0.17%	-5.082	0.24%	-5.0794	0.19%	-5.0706	0%
u _y , м	-1.34	-1.3517	0.87%	-1.348	0.6%	-1.349	0.67%	-1.359	1.42%

Тест 4.2.2. Цилиндр, нагруженный внутренним давлением (а)

«Pressurised cylinder plasticity benchmark » NAFEMS Understanding Non-linear Finite Element Analysis Through Illustrative Benchmarks

Рассматривается задача о нагружении полого цилиндра внутренним давлением. Верхний/нижний торцы цилиндра могут иметь только радиальные перемещения. Приводятся результаты в рамках модели идеальной пластичности.

Геометрическая модель:

- Внутренний радиус R₁ = 100 мм
- Внешний радиус R₂ = 200 мм
- Высота Н = 100 мм

Параметры материала:

- Изотропный
- Модуль упругости Е = 21х10³ Н/мм²
- Коэффцициент Пуассона ν = 0.3
- Предел текучести о_у = 24 Н/мм²

Граничные условия:

- Верхняя/нижняя поверхности цилиндра закреплены по нормали к ним
- Производится нагружение внутренней поверхности цилиндра давлением Р в соответствие с путем нагружения, характеризуемого следующими шагами

Номер шага	1	2	3
Р (Н/мм²)	10	14	16.6

Сетка:

- Два типа конечных элементов:
- 20-узловые гексаэдры Нех27 (1 100 элементов)
- 8-узловые четырехугольники Quad8 (5 400 элементов), плоско-деформированное состояние.

Критерий прохождения теста:

 На внутренней поверхности цилиндра наблюдается радиальное перемещение радиальное перемещение u_r, в точках с радиусом 109.09 характеристики напряженного состояния (s_{rr}, s_{φφ}, s_{zz} - компоненты тензора напряжений в цилиндрической системе координат):

№ шага	<i>u_r</i> (мм)	<i>s_{rr}</i> (Н/мм²)	<i>s_{φφ}</i> (Н/мм²)	<i>s_{zz}</i> (Н/мм²)
1	0.09	-8	14.5	2
2	0.135	-11.7	16	1.7
3	0.195	-14.5	13.4	0.05

Результаты:

 На следующих графиках приведены зависимости перемещений и напряжений в цилиндрической системе координат от шага нагружения для данных NAFEMS[30], FIDESYS, ANSYS⁴⁹

Перемещение *u*_r

⁴⁹ Проводилось сравнение с расчетом в пакете ANSYS (14 796 элементов solid186 и 5 400 элементов PLANE183)

Напряжение s_{rr}

Напряжение $s_{\varphi \varphi}$

Напряжение *s*_{zz}:

• На следующем графике приведены зависимости радиальных перемещений от радиальной координаты для шага 3, полученные в пакетах ANSYS и FIDESYS.

Перемещение $u_r(r)$

Тест 4.2.3. Цилиндр, нагруженный внутренним давлением (б)

«Pressurised cylinder plasticity benchmark» NAFEMS Understanding Non-linear Finite Element Analysis Through Illustrative Benchmarks

Рассматривается задача о нагружении полого цилиндра внутренним давлением. Верхний/нижний торцы цилиндра могут иметь только радиальные перемещения. Приводятся результаты в рамках модели упруго-пластического материала с упрочнением.

Геометрическая модель:

- Внутренний радиус R₁ = 100 мм
- Внешний радиус R₂ = 200 мм
- Высота Н = 100 мм

Параметры материала:

- Изотропный
- Модуль упругости E = 21x10³ H/мм²
- Коэффцициент Пуассона ν = 0.3
- Предел текучести σ_y = 24 H/мм²
- (б) Тангециальный модуль E_T = 4.2x10³ H/мм²

Граничные условия:

- Верхняя/нижняя поверхности цилиндра закреплены по нормали к ним
- Производится нагружение внутренней поверхности цилиндра давлением Р в соответствие с путем нагружения, характеризуемого следующими шагами

№ шага	1	2	3	4
Р (Н/мм²)	10	14	24	34

Сетка:

- Два типа конечных элементов (два отдельных теста):
 - 20-узловые гексаэдры Hex20 (4 300 элементов)
 - 8-узловые четырехугольники Quad8 (5 400 элементов), плоско-деформированное состояние.

Критерий прохождения теста:

 На внутренней поверхности цилиндра наблюдается радиальное перемещение u_r, в точках с радиусом 109.09 характеристики напряженного состояния (s_{rr}, s_{\varphi\varphi}, s_{zz} - компоненты тензора напряжений в цилиндрической системе координат):

№ шага	<i>u_r</i> (мм)	<i>s_{rr}</i> (Н/мм²)	<i>s_{φφ}</i> (Η/мм²)	<i>s_{zz}</i> (Н/мм²)
1	0.09	-8.1	14.5	2.05
2	0.135	-11.5	17.5	2.1
3	0.42	-19.5	22	1
4	0.88	-27.5	35.7	3.75

Результаты:

• На следующих графиках приведены зависимости перемещений и напряжений в цилиндрической системе координат от шага нагружения для данных NAFEMS[30], FIDESYS, ANSYS⁵⁰

Перемещение u_r

⁵⁰ Проводилось сравнение с расчетом в пакете ANSYS (14 796 элементов solid186 и 5 400 элементов PLANE183)

0 0 nafems nafems ansy s - ansy s fidesys_Hex20 • fidesys_Quad8 • -10 -10 -20 -20 -30 -30 2 3 3 1 2 1 4 4 Step Step

Напряжения *s*_{zz}:

• На следующем графике приведены зависимости радиальных перемещений от радиальной координаты для шага 4, полученные в пакетах ANSYS и FIDESYS.

Перемещение $u_r(r)$

Тест 4.2.4. Толстостенная труба под действием температурной нагрузки

«Термопрочность деталей машин». Под редакцией И.А. Биргера и Б.Ф. Шорра (далее benchmark)

Рассматривается задача о распределении температурных напряжений в полом цилиндре (трубе) с отношением внутреннего радиуса к внешнему, равным 0.5. Установившаяся разница температур между холодной внешней и горячей внутренней поверхностями равна 250 °C. Приводятся результаты в рамках модели идеальной пластичности.

Геометрическая модель:

- Внутренний радиус R₁ = 0.5 м
- Внешний радиус R₂=1 м
- Высота Н = 5 м

Параметры материала:

- Изотропный
- Модуль упругости E = 1.85x10⁴ H/м²
- Коэффцициент Пуассона v = 0.3
- Предел текучести σ_y = 22 H/м²
- Коэффициент температурного напряжения α = 1.72x10⁻⁵ 1/°C

Граничные условия:

- Температура на внутренней поверхности 250 °С
- Температура на внешней поверхности 0 °С
- На торцах отсутствуют перемещения вдоль оси симметрии

Сетка:

- 20-узловые гексаэдры Нех20 (13 500 элементов)
- 27-узловые гексаэдры Hex27s (6 750 элементов) Спектральные элементы второго порядка

Критерий прохождения теста:

• Малые отличия температурных напряжений, полученных в CAE Fidesys, от приведенных в benchmark

Результаты:

-10-15

-20

-25

• На следующих графиках показаны зависимости температурных напряжений в цилиндрической системе координат от радиальной координаты

Fidesys (Hex20)

Fidesys (Hex27s)

benchmark

Напряжения *s_{zz}*:

Тест 4.2.5. Растяжение ортотропного куба

S.H. Crandall, N.C. Dahl, An Introduction to the Mechanics of Solids, Mc-Graw-Hill Book Co., Inc., New York, NY, 1959, pg. 225

Решается задача о растяжении тела из ортотропного материала, закрепленного как показано на картинке ниже.

Геометрическая модель:

• Сторона балки L=1 in

Граничные условия:

- FX=100 lb
- FY=200 lb

Параметры материала:

- Ортотропный
- Модули упругости E_x = 10·10⁶ psi, E_y = 20·10⁶ psi, E_z = 40·10⁶ psi
- Главные коэффцициенты Пуассона $PR_{xy} = 0.05, PR_{xz} = 0.075, PR_{yz} = 0.1$
- Модули сдвига G_{xy} = G_{xz} = G_{yz} = 10·10⁶ psi

Сетка:

- Три типа конечных элемента (три различных теста):
 - 8-узловые гексаэдры Нех8 (1 элемент)
 - 20-узловые гексаэдры гексаэдры Hex20 (1 элемент)
 - 27-узловые гексаэдры Hex27s (1 элемент)

Критерий прохождения теста:

- Перемещение u_x в точке (1, 1, 1) равно 0.9·10⁻⁵ in с точностью 1%
- Перемещение u_y в точке (1, 1, 1) равно 0.95·10⁻⁵ in с точностью 1%
- Перемещение u_z в точке (1, 1, 1) равно 0.175·10⁻⁵ in с точностью 1%

Результаты:

• В таблице приведены результаты расчёта FIDESYS, ANSYS [28]:

					Числен	ный анализ					
Ponumua	Критерий			FIDI	ESYS			An	SVC		
Величина	ия теста	He	x8	Hex	20	He	¢27		5 y 5		
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	Значение	Ошибка		
u _x ∙10 ⁻⁵ , in	0.9	0.9	0%	0.9	0%	0.9	0%	0.9	0%		
$u_y \cdot 10^{-5}$, in	0.95	0.95	0%	0.95	0%	0.95	0%	0.95	0%		
$U_z \cdot 10^{-5}$,in	0.175	0.175	0%	0.175	0%	0.175	0%	0.175	0%		

Тест 4.2.6. Цилиндр под давлением. Материал Муни-Ривлина (2D)

J.T. Oden, Finite Elements of Nonlinear Continia, Mc-Graw-Hill Book Co., Inc., New York, NY, 1972, pg. 325-331

Решается задача о нагружении цилиндра из материала Муни-Ривлина, закрепленного из условия симметрии. Задача решается для плоско-деформированного состояния с учетом конечных деформаций.

Геометрическая модель:

- R_i=7 in
- R_o=18.625 in

Граничные условия:

• P=150 lb

Параметры материала:

- Материал Муни-Ривлина
- Коэффцициент Пуассона v = 0.49
- C₁ = 80 psi C₂ = 20 psi D= 5000 psi

Сетка:

- Два типа конечных элемента (два различных теста):
 - 8-узловые четырехугольники quad8 (220 элементов)
 - 9-узловые четырехугольники quad9 (220 элементов)

Критерий прохождения теста:

- Перемещение u_r в точке (7, 0, 0) равно 7.180 in с точностью 3%
- Напряжение *σ_r* в точке (8.16, 0, 0) равно -122 psi с точностью 3%

Результаты:

• В таблице приведены результаты расчёта FIDESYS, ANSYS [28]:

				Численны	ій анализ				
Величина	Критерий прохожлен	FIDESYS				Ansys			
	ия теста	QUAD	8 300	QUAD9 500					
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка		
u _r , in	7.180	7.413	3%	7.413	3%	7.491	4.3%		
σ_r , in	-122	-122.96	0.8%	-124.44	3%	-122.77	0.6%		

Тест 4.2.7. Разрушение куба под действием давления

Г.Г. Болдырев, А.Ю Муйземнек, И.М. Малышев. Моделирование деформационных процессов в грунтах с использованием программ Ansys и LS-DYNA.

Рассматривается куб с ребром 1 м, три грани которого, принадлежащие координатным плоскостям, закреплены по перпендикулярам к ним. На двух других гранях приложено давление 20 кПа. Определяется, при каком давлении на оставшуюся грань произойдёт разрушение куба. Принимается модель пластичности по Друкеру-Прагеру.

Геометрическая модель:

Параметры материала:

- Изотропный
- Модуль упругости E = 5.1x10⁸ Па
- Коэффициент Пуассона ν = 0.25
- Когезия с = 11300 Па
- Угол внутреннего трения $\varphi = 19.1^{\circ}$

Граничные условия:

- $u_x|_{ABCO} = 0, u_y|_{OCGD} = 0, u_z|_{AODE} = 0$
- $p_1 = p_2 = 20000$ Па

Сетка:

- Гексаэдры Hex8, Hex20 (1000 элементов) - МКЭ
- Гексаэдры Нех27 (64 элемента) - спектральные элементы второго порядка

Критерий прохождения теста:

• В соответствии с аналитическим решением, приведенным в статье, а также расчетом в CAE Ansys , искомое давление *p*₃, приложенное к грани *BCGF*, при котором происходит переход в пластическое состояние, составляет 70 кПа.

Результаты:

p ₃ - аналитическое решение	Fidesys - hex8, hex20, hex27				
70 кПа	p_3 , значение	p_3 , погрешность			
	71 кПа	1.43%			

Линейно-упругая устойчивость

Тесты с точным аналитическим решением

Тест 5.1.1: Устойчивость консольного тела

Рассматривается задача об устойчивости защемленного левым торцом консольного тела под действием осевой нагрузки Q_x.

Qx

В

Геометрическая модель (размеры указаны в метрах):

- АВ=10 м
- Сечение квадрат 1х1 м

Граничные условия:

- Нулевые перемещения и повороты в точке А
- Нагрузка в точке В в отрицательном направлении оси х Q_x

Параметры материала:

- Изотропный
- Модуль упругости Е = 30 Гпа
- Коэффициент Пуассона v = 0.3

Сетка:

Рассматривалось три варианта расчетной схемы:

- Балочная схема (один отдельный тест):
 - Линейные балочные элементы Beam2 (10 элементов)
- Оболочечная схема (два отдельных теста):
 - 3-узловые треугольные оболочки TriShell3 (326 элементов)
 - 6-узловые треугольные оболочки TriShell6 (326 элементов)
 - 4-узловые четырехугольные оболочки Shell4 (160 элементов)
 - 8-узловые четырехугольные оболочки Shell8 (160 элементов)
 - 9-узловые четырехугольные оболочки Shell9 (160 элементов)
- Объемная схема (восемь отдельных тестов):
 - 4-узловые тетраэдры Tetra4 (48 682 элемента)
 - 10-узловые тетраэдры Tetra10 (48 682 элемента)
 - 8-узловые гексаэдры Hex8 (2 125 элементов)
 - 20-узловые гексаэдры Hex20 (2 125 элементов)
 - 27-узловы гексаэдры Hex27 (2 125 элементов)
 - Спектральные элементы гексаэдры Hex8s (1 250 элементов)
 - Спектральные элементы гексаэдры Hex20s (640 элементов)
 - Спектральные элементы гексаэдры Hex27s (640 элементов)

Критерий прохождения теста:

- Две первые критические сжимающие нагрузки для стержневой схемы 61 685 кН с точностью 1%
- Две первые критические сжимающие нагрузки для оболочечной схемы 61 685 кН/м с точностью 1%
- Две первые критические сжимающие нагрузки для объемной схемы 61 685 кПа с точностью 1%

Значения вычислены по формуле [23]:

$$P_1 = P_2 = \frac{\pi^2 EI}{(2L)^2}$$

Результаты:

• В таблице приведены результаты расчёта FIDESYS, MICROFE [18]:

		Стержневая схема					
Величина	Теоретическое значение	FIDESYS (эл	MICROFE				
56440	Shalenne	Значение	Ошибка	Значение, Па	Ошибка		
<i>Q</i> ₁ , кН	61 685	61 685.1	<0.01%	61 336	0.83%		
<i>Q</i> ₂ , кН	61 685	61 685.1	<0.01%	61 336	0.83%		

				Оболочечная	схема		
Population	Теоретическое		FIDE	SYS		MICDO	
величина	значение	TriSł	nell3	TriShe	ell6	MICRU	/FC
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка
<i>Q</i> ₁ ,кН/м	61 685	61 433.8	0.41%	61 247.7	0.71%	61 428	0.68%
<i>Q</i> ₂ , кН/м	61 685	68 681.5	11%	61 404.4	0.45%	61 498	0.57%

		Оболочечная схема								
Величина	Теоретическое			FIDES	rs			MICDOFE		
	значение	Shell	.4	Shell8 Shell9		MICK	OFE			
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	
<i>Q</i> ₁ ,кН/м	61 685	61 446.6	0.39%	61 248.0	0.73%	61 226.2	0.74%	61 428	0.68%	
<i>Q</i> ₂ , кН/м	61 685	63 929.8	3.6%	61 383	0.49%	61 404.6	0.45%	61 498	0.57%	

		Объемная схема (тетраэдры)							
Ponumua	Теоретическое		FID	MICDOFF					
Беличина	значение, Па	Тетраэдры (1	Тетраэдры (TETRA4) Тетраэдры (TETRA10)				OFE		
		Значение	Значение Ошибка Значение Ошибка		Значение	Ошибка			
<i>Q</i> ₁ , кПа	61 685	62 988.79	1.84%	61 331.24	0.84%	61 659	0.31%		
<i>Q</i> ₂, кПа	61 685	63 012.03	1.88%	61 331.47	0.84%	61 659	0.31%		

			Объемная схема (гексаэдры)								
	Теоретическое значение	FIDESYS									
Величина		Гексаэдры (НЕХ8)		Гексаэдры (НЕХ20)		Гексаэдры (НЕХ27		MICROFE			
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	Значение	Ошибка		
<i>Q</i> ₁, кПа	61 685	61 862.73	0.02%	61 335.06	0.83%	61 331.07	0.84%	61 659	0.31%		
<i>Q</i> ₂, кПа	61 685	61 862.73	0.02%	61 335.06	0.83%	61 331.07	0.84%	61 659	0.31%		

- Спектральные элементы:

		Численный анализ FIDESYS (HEX8s)				Численный анализ FIDESYS (HEX20s)			
Величина	Теоретическое значение	Элементы 3-го порядка		Элементы 4-го порядка		Элементы 3-го порядка		Элементы 4-го порядка	
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	Значение	Ошибка
<i>Q</i> ₁ , кПа	61 685	61329.51	0.58%	61327.88	0.58%	61 331.15	0.57%	61 327.88	0.58%
<i>Q</i> ₂, кПа	61 685	61329.51	0.58%	61327.88	0.58%	61 331.15	0.57%	61 327.88	0.58%

	Теоретическое	Числе	Численный анализ FIDESYS (HEX27s)						
Величина	значение	Элементы 3-г	о порядка	Элементы 4	1-го порядка				
		Значение Ошибка		Значение	Ошибка				
<i>Q</i> ₁ , кПа	61 685	61 331.15	0.57%	61 327.88	0.58%				
<i>Q</i> ₂, кПа	61 685	61 331.15	0.57%	61 327.88	0.58%				

• На картинках ниже представлены деформированные модели для двух первых форм потери устойчивости.

Стержневая схема:

Тест 5.1.2: Устойчивость шарнирно опертой пластины

Рассматривается задача об устойчивости шарнирно опертой по кромкам под действием сжимающего напряжения по двум противоположным кромкам.

Геометрическая модель (размеры указаны в метрах):

- Ввиду симметрии задачи рассматривается четверть пластины
- Сторона а=8 м
- Толщина h=0.008 м

Граничные условия:

- Нулевые перемещения U_z на прямой BC
- Нулевые перемещения U_x, U_y и U_z на прямой AB
- Нулевые перемещения вдоль оси X на прямой OA (U_x=R_y=R_z=0)
- Нулевые перемещения вдоль оси Y на прямой OB (U_y=R_x=R_z=0)
- Равномерно распределенная нагрузка по прямой ВС вдоль оси Х q =-1 кН/м

Параметры материала:

- Изотропный
- Модуль упругости Е = 10 Гпа
- Коэффициент Пуассона ν = 0.3333

Сетка:

- Два типа элементов (два отдельных теста):
 - 3-узловые треугольные оболочки TriShell3 (2 364 элементов)
 - 6-узловые треугольные оболочки TriShell6 (2 364 элементов)
 - 4-узловые четырёхугольные оболочки Shell4 (114 элементов)
 - 8-узловые четырёхугольные оболочки Shell8 (114 элементов)
 - 9-узловые четырёхугольные оболочки Shell9 (114 элементов)

Критерий прохождения теста:

• Критическое значение напряжения σ_{crit} = 37 010.9 Па с точностью 1%

Значения вычислены по формуле [23]:

$$\sigma_{crit}=rac{E\pi^2D}{L^2h},$$
где $D=rac{Eh^3}{12(1-v)^2}.$

Результаты:

• В таблице приведены результаты расчёта FIDESYS, MICROFE [18], ANSYS⁵¹:

	Teen		Численное решение								
Population	теор.	FIDESYS				MICDOEE		ANCVC			
Беличина	зпачение	TriSh	ell3	TriShe	ell6	MICH	OFE	ANSTS			
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	Значение	Ошибка		
σ_{crit} , Па	37 010.9	37 063.7	<0.01%	37 005.3	0.02%	37 010	<0.01%	37 052	0.11%		

	Teen					Численное р	ешение				
Волицина	теор.		FIDESYS				MICDOFF		ANEVE		
Беличина	зпачение	Shell	.4	Shel	18	Shel	19	MICKOFE		ANSTS	
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	Значение	Ошибка
σ _{crit} , Πa	37 010.9	37 137.9	0.1%	37 001.1	0.34%	37 010.8	<0.01%	37 010	<0.01%	37 052	0.11%

• На картинках ниже представлены первые четыре формы потери устойчивости.

⁵¹ Анализ проводился на четырехугольной сетке (тип элемента SHELL181, 100 элементов).

Тест 5.1.3: Устойчивость квадратной пластины при двустороннем сжатии

Рассматривается задача об устойчивости квадратной пластины с несмещаемыми кромками при действии давления на две противоположные стороны.

Геометрическая модель (размеры указаны в метрах):

- Ввиду симметрии задачи рассматривается четверть пластины
- Сторона а=0.5 м
- Толщина h=0.005 м

Граничные условия:

- Нулевые перемещения U_z на прямой BC и AB
- Нулевые перемещения вдоль оси X на прямой OA (U_x=R_y=R_z=0)
- Нулевые перемещения вдоль оси Y на прямой OB (U_y=R_x=R_z=0)
- Равномерно распределенная нагрузка по прямой BC вдоль оси X q =-200 кН/м

Параметры материала:

- Изотропный
- Модуль упругости Е = 210 Гпа
- Коэффициент Пуассона v = 0.3

Сетка:

- Два типа элементов (два отдельных теста):
 - 3-узловые треугольные оболочки TriShell3 (1 442 элемента)
 - 4-узловые четырёхугольные оболочки Shell4 (400 элементов)
 - 8-узловые четырёхугольные оболочки Shell8 (400 элементов)

Критерий прохождения теста:

- Первый коэффициент критической нагрузки q_1^{crit} = 379.6 с точностью 3%
- Второй коэффициент критической нагрузки q_2^{crit} = 1 054.44 с точностью 3% [10]
- Третий коэффициент критической нагрузки q_3^{crit} = 2 566.1 с точностью 3% [10]

Первое значение вычислено по формуле [23]:

$$q_{crit} = 4 rac{\pi^2 D}{L^2},$$
где $D = rac{Eh^3}{12(1-
u^2)}.$

Результаты:

• В таблице приведены результаты расчёта FIDESYS, CODE_ASTOR[10]:

		Численное решение							
Ponumua	Теоретическое		FIDE						
Беличина	значение	TriShe	ell3 TriSh		ell6	CODE_ASTOR			
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка		
q_1^{crit}	379.6	378.26	0.35%	376.23	0.89%	378.52	0.98%		
q_2^{crit}	1 054.44	1 055.48	0.1%	1 046.44	0.76%	1 049	0.5%		
q_3^{crit}	2 566.1	2 580.83	0.57%	2 534.88	1.78%	2 574.7	0.33%		

				ı	Численно	е решение			
Population	Теоретическое								
Беличина	значение	Shell4		Shell8		Shell9		CODE_ASTOR	
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	Значение	Ошибка
q_1^{crit}	379.6	378.37	0.32%	377.86	0.46%	376.86	0.72%	378.52	0.98%
q_2^{crit}	1 054.44	1 058.29	0.37%	1 047.59	0.65%	1 048.96	0.52%	1 049	0.5%
q_3^{crit}	2 566.1	2 608	1.63%	2 530.14	1.4%	2 545.06	1.39%	2 574.7	0.33%

• На картинках ниже представлены первые три формы потери устойчивости.

Тест 5.1.4: Устойчивость балки, заделанной на одном конце и шарнирно опертой на другом

Рассматривается задача об устойчивости балки, заделанной на одном конце и шарнирно опертой на другом, при действии сжимающей силы.

Геометрическая модель:

Граничные условия:

- Нулевые перемещения вдоль всех осей в точке А
- Нулевые перемещения U_y и U_z в точке В
- Сосредоточенная сила в точке В P_x = 1 кН

Параметры материала:

- Изотропный
 - Модуль упругости Е = 200 ГПа
 - Коэффициент Пуассона v = 0.3

Сетка:

• Линейные балочные элементы Beam2 (10 элементов)

Критерии прохождения теста:

- Для прямоугольного сечения:
 - Первое значение сжимающей критической силы P_{crit} равно -336.67 кН с точностью 3%
- Для круглого сечения:
 - Первое значение сжимающей критической силы P_{crit} равно -792.84 кН с точностью 3%
- Для сечения труба:
 - Первое значение сжимающей критической силы *P_{crit}* равно -11 898.65 кН с точностью 3%
- Для сечения двутавр:
 - Первое значение сжимающей критической силы *P_{crit}* равно -20 199.72 кН с точностью 3%
- Для сечения швеллер:
 - Первое значение сжимающей критической силы P_{crit} равно 36 914.99 кН с точностью 3%
- Для сечения уголок:
 - Первое значение сжимающей критической силы *P_{crit}* равно -24 728.8 кН с точностью 3%
- Для сечения полый прямоугольник:
- Первое значение сжимающей критической силы *P*_{crit} равно -1 004 259 кН с точностью 3%
- Для сечения тавр:
 - Первое значение сжимающей критической силы *P_{crit}* равно -10 370.3 кН с точностью 3%
- Для сечения Z-сечение:
 - Первое значение сжимающей критической силы *P_{crit}* равно -71 205.9 кН с точностью 3%

Значения вычислены по следующим формулам [23]:

$$P_{crit} = -\frac{\pi^2 E I_z}{(0.699L)^2}.$$

Результаты:

• В таблице приведены результаты расчёта FIDESYS, ANSYS⁵²:

	Волицина	Teon		Численнь	ій анализ		
Сечение	кН	значение	FIDES	SYS	ANS	ANSYS	
			Значение	Ошибка	Значение	Ошибка	
Прямоугольник	P _{crit}	-336.67	-336.55	0.04%	-337.65	0.31%	
Круг	P _{crit}	-792.84	-792.981	-0.02%	-793.72	0.11%	
Труба	P _{crit}	-11 898.65	-11 894.7	0.03%	-11 872	0.05%	
Двутавр	P _{crit}	-20 199.72	-20 223.4	-0.12%	-20 206	2.9%	
Швеллер	P _{crit}	-36 914.99	-36 905.6	0.03%	-36 900.60	0.04%	
Уголок	P _{crit}	-24 714.36	-24 728.8	-0.06%	-24 704.70	0.04%	
Тавр	P _{crit}	-10 372.56	-10 370.3	0.02%	-10 368.50	0.04%	
Z-сечение	P _{crit}	-71 224.22	-71 205.9	0.03%	-71 196.50	0.04%	
Полый прямоугольник	P _{crit}	-1 004 259	-1 003 930	0.03%	-1 003 870	0.04%	

• На картинках ниже представлены первые четыре формы потери устойчивости для круглого сечения:

⁵² Анализ проводился для 30 балочных элементов beam188.

Тест 5.1.5: Консольное тело, нагруженное двумя сжимающими силами

Рассматривается задача об устойчивости консольного тела, нагруженного двумя сжимающими силами – на свободном конце и в середине.

Геометрическая модель :

- АВ=20 м
- Сечение квадрат 1х1 м

Граничные условия:

- Нулевые перемещения и повороты в точке А
- Нагрузка в точке В Р1 =1 кН
- Нагрузка в точке С Р₂ =1 кН

Параметры материала:

- Изотропный
- Модуль упругости Е = 30 Гпа
- Коэффициент Пуассона $\nu = 0.3$

Сетка:

- Стержневая схема (один отдельный тест):
 - Линейные балочные элементы Beam2 (10 элементов)

Критерий прохождения теста:

• Первое значение критической нагрузки для стержневой схемы P₁= 86 166.67 кН с точностью 1%

Значения вычислены по формуле [23]:

$$P_1 = 2.068 \frac{EI}{L^2}$$

Результаты:

• В таблице приведены результаты расчёта FIDESYS, ANSYS⁵³:

		Стержневая схема							
Величина	Величина Теоретическое значение	FIDESYS (эле	ANSYS						
	Sharenne	Значение	Ошибка	Значение, Па	Ошибка				
<i>Р</i> ₁ , кН	86 166.67	86 134.95	0.04%	85 982	0.21%				

⁵³ Анализ выполнялся для десяти элементов beam188.

Тест 5.1.6: Устойчивость шарнирно опертой балки

Рассматривается задача об устойчивости шарнирно опертой балки, нагруженной двумя сжимающими силами.

Геометрическая модель :

- Длина L=200 мм
- Сечение высота b=10 мм, толщина h=1 мм

Граничные условия:

- Нулевые перемещения в точке A (U_x= U_y= U_z=0)
- Нулевые перемещения вдоль оси У в точке В (U_v= U_z=0)

Параметры материала:

- Изотропный
- Модуль упругости Е = 2 000 000 Н/мм²
- Коэффициент Пуассона $\nu = 0.3$

Сетка:

Рассматривалось два варианта расчетной схемы:

- Стержневая схема (один отдельный тест):
 - Линейные балочные элементы Beam2 (10 элементов)
- Оболочечная схема (два отдельных теста):
 - 3-узловые треугольные оболочки TriShell3 (276 элементов)
 - 6-узловые треугольные оболочки TriShell6 (276 элементов)
 - 4-узловые четырёхугольные оболочки Shell4 (94 элемента)
 - 8-узловые четырёхугольные оболочки Shell8 (94 элемента)
 - 9-узловые четырёхугольные оболочки Shell9 (94 элемента)

Стержневая схема:

Оболочечная схема:

Критерий прохождения теста:

Критическая температура P_{crit} = 41.124 Н с точностью 1%

Значение вычислено по формуле [23]:

$$P_{crit} = \frac{\pi^2 EI}{L^2},$$

Где момент инерции балки $I = rac{bh^3}{12}$

Результаты:

• В таблице приведены результаты расчёта FIDESYS, ANSYS [25]:

		Стержневая схема							
Величина	Теоретическое значение	FIDESYS (эл	ементы Beam2)	ANSYS					
	Shalenne	Значение	Ошибка	Значение, Па	Ошибка				
P _{crit} , н	41.124	41.1244	<0.01%	41.172	0.12%				

	Оболочечная схема						
Ponumua	Теоретическое	FIDESYS				ANS	SYS
Беличина	значение	TriShel	TriShell3 TriShell6				
		Значение	Значение Ошибка Значение Ошибка				Ошибка
<i>P_{crit}</i> ,н	41.124	41.172	0.12%	41.129	0.01%	41.172	0.12%

Величина	Теоретическое значение	Оболочечная схема							
		FIDESYS							
		Shell4		Shell8		Shell9		ANSIS	
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	Значение	Ошибка
P _{crit} ,н	41.124	41.163	0.09%	41.132	0.02%	41.134	0.02%	41.172	0.12%

Тест 5.1.7: Устойчивость цилиндрической оболочки

Рассматривается задача об устойчивости прямоугольной пластины с жесткой заделкой на одном крае и подвижной заделкой на другом при действии продольной нагрузки.

Геометрическая модель (размеры указаны в метрах):

- Ввиду симметрии задачи рассматривается четверть оболочки
- Длина L=2 м
- Радиус R=2 м
- Толщина h=0.02 м

Граничные условия:

- Нулевые перемещения вдоль оси X на прямой AB (U_x=R_y=R_z=0)
- Нулевые перемещения вдоль оси Y на прямой DC (U_y=R_x=R_z=0)
- Равномерно распределенная нагрузка по поверхности ABCD q =1 кПа

Параметры материала:

- Изотропный
- Модуль упругости Е = 200 Гпа
- Коэффициент Пуассона $\nu = 0.3$

Сетка:

- Два типа элементов (два отдельных теста):
 - 3-узловые треугольные оболочки TriShell3 (1 394 элемента)
 - 6-узловые треугольные оболочки TriShell3 (1 394 элемента)
 - 4-узловые четырёхугольные оболочки Shell4 (888 элементов)
 - 8-узловые четырёхугольные оболочки Shell8 (45 элементов)
 - 9-узловые четырёхугольные оболочки Shell9 (45 элементов)

Критерий прохождения теста:

- Первое критическое значение нагрузки q_1^{crit} =73.260 кПа с точностью 3%
- Третье критическое значение нагрузки *q*₃^{crit}=293.040 кПа с точностью 3%
- Пятое критическое значение нагрузки *q*₅^{crit}=659.341 кПа с точностью 3%
- Седьмое критическое значение нагрузки *q*^{*crit*}=1 172.16 кПа с точностью 3%
- Девятое критическое значение нагрузки q_9^{crit} =1 831.5 кПа с точностью 3%
- Одиннадцатое критическое значение нагрузки q₁₁^{crit}=2 637.36 кПа с точностью 3%

Значения вычислены по формуле [24]:

$$q_{crit}=rac{n^2D}{L^3},$$
где $D=rac{Eh^3}{12(1-
u^2)},$ $n=2,4,6,8,10,12$

Результаты:

• В таблице приведены результаты расчёта FIDESYS, CODE_ASTOR[10]:

			Чи	сленный ан	ализ		
Волиции	Теоретическое		FIDESY	S			STOP
Беличина	значение	TriShell	3	TriShell6		CODE_ASTOR	
		Значение Ошибка Зн		Значение	Ошибка	Значение	Ошибка
q1 ^{crit} ,кПа	73.260	72.444	1.1%	72.199	1.4%	72.492	1%
<i>q</i> ₃ ^{crit} ,кПа	293.040	290.812	0.76%	288.4	1.6%	293.481	0.87%
<i>q₅^{crit},</i> кПа	659.341	658.03	0.2%	647.31	1.8%	673.600	2%
<i>q</i> ₇ ^{crit} ,кПа	1 172.16	1 179.21	0.6%	1 146.8	2.2%	-	-
<i>q₉^{crit},</i> кПа	1 831.5	1 863.04	1.7%	1 785.42	2.5%	-	_
<i>q</i> ^{crit} ,кПа	2 637.36	2 722.25	3.2%	2 561.78	2.9%	-	-

				Числ	ленный а	нализ			
Ponuuua	Теоретическое			FIDESYS					
Беличина	значение	Shell4		Shell8		Shel	ເ9	CODE_ASTOR	
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	Значение	Ошибка
q_1^{crit} ,кПа	73.260	72.3937	1.18%	72.3608	1.2%	72.3791	1.2%	72.492	1%
<i>q</i> ₃ ^{crit} ,кПа	293.040	290.533	0.86%	289.47	1.2%	289.622	1.2%	293.481	0.87%
<i>q</i> 5 ^{<i>crit</i>} ,кПа	659.341	657.111	0.34%	651.856	1.1%	652.765	1.0%	673.600	2%
<i>q</i> ^{crit} ,кПа	1 172.16	1 176.66	0.38%	1 161.81	0.9%	1 166.87	0.5%	-	-
<i>q</i> 9 ^{crit} ,кПа	1 831.5	1 857.03	1.39	1 824.54	0.4%	1 844.86	0.7%	-	-
<i>q</i> ₁₁ ^{crit} ,кПа	2 637.36	2 709.32	2.73%	2 638.3	0.0%	2 715.36	3.0%	-	-

Тест 5.1.8: Устойчивость балки, закрепленной на концах, от температурного воздействия

Рассматривается задача об устойчивости тела, защемленного на торцах и подверженного равномерному температурному нагреву.

Геометрическая модель (размеры указаны в метрах):

- Длина L=200 мм
- Сечение высота b=10 мм, толщина h=1 мм

Граничные условия:

• Оба конца балки жестко закреплены по всем перемещениям и поворотам

Параметры материала:

- Изотропный
- Модуль упругости Е = 2 000 000 Н/мм²
- Коэффициент Пуассона $\nu = 0.3$
- Коэффициент температурного расширения *α*=11.7·10⁻⁶ C⁻¹

Сетка:

Рассматривалось два варианта расчетной схемы:

- Стержневая схема (один отдельный тест):
 - Линейные балочные элементы Beam2 (20 элементов)
- Оболочечная схема (два отдельных теста):
 - 3-узловые треугольные оболочки TriShell3 (276 элементов)
 - 6-узловые треугольные оболочки TriShell6 (276 элементов)
 - 4-узловые четырехугольные оболочки Shell4 (94 элемента)
 - 8-узловые четырехугольные оболочки Shell8 (94 элемента)
 - 8-узловые четырехугольные оболочки Shell8 (94 элемента)

Стержневая схема:

Оболочечная схема:

Критерий прохождения теста:

Критическая температура *T_{crit}* = 7.028° С с точностью 1%

Значение вычислено по формуле [24]:

$$T_{crit} = \frac{\pi^2 h^2}{3\alpha L^2}.$$

Результаты:

• В таблице приведены результаты расчёта FIDESYS, ANSYS⁵⁴:

		Стержневая схема						
Величина Теоретическое значение	FIDESYS (эл	ANSYS						
	эпачение	Значение	Ошибка	Значение, Па	Ошибка			
T _{crit} , ° C	7.028	7.029	0.01%	7.052	0.34%			

			Оболочечная схема					
Ponumua	Теоретическое		FIDESYS				ANSYS	
Беличина	значение	TriShell3 TriShell6						
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	
<i>T_{crit}</i> ,° C	7.028	7.072	0.63%	7.037	0.13%	7.052	0.34%	

				Обо	лочечная	і схема			
Величина	Теоретическое значение	FIDESYS							
		Shell4		Shell8		Shell9		AINSYS	
		Значение	Значение	Значение	Ошибка	Значение	Ошибка	Значение	Ошибка
<i>T_{crit}</i> , ° C	7.028	7.055	7.055	7.045	0.28%	7.046	0.26%	7.052	0.34%

⁵⁴ Анализ проводился на десяти балочных элементах BEAM2

• На картинке ниже представлена первая форма потери устойчивости

Задачи теплопроводности и термоупругости

Тесты с известным аналитическим решением

Тест 6.1.1: Полая сфера при постоянном температурном нагружении (3D).

Решается задача о статическом температурном нагружении полой сферы.

Геометрическая модель(размеры указаны в метрах):

- Размеры сферы: радиус R₁ = 4 м, R₂ = 3 м ;
- В силу симметрии задачи рассматривается 1/8 сферы.

Граничные условия:

- Нулевые перемещения вдоль оси X на плоскости ABEF
- Нулевые перемещения вдоль оси Y на плоскости EFCD
- Нулевые перемещения вдоль оси Z на плоскости ABCD
- Сплошная температура на внутренней поверхности сферы АСЕ

Параметры материала:

- Изотропный
- Модуль упругости Е = 200 ГПа
- Коэффициент Пуассона v = 0.3
- Температурное расширение µ = 0.0001 1/°С
- Температура T = 30°С

- Пять типов конечных элементов (пять отдельных тестов):
 - 4-узловые тетраэдры Tetra4 (10 398 элемента)
 - 10-узловые тетраэдры Tetra10 (7 217 элемента)
 - 8-узловые гексаэдры Hex8 (4 608 элементов)
 - 20-узловые гексаэдры Нех20 (2 800 элементов)
 - 27-узловые гексаэдры Hex27 (729 элементов)

• Перемещение u_x в точке D (4,0,0) равно 0.012 с точностью 1%

Значения вычислены по формуле [26]:

$$u_R = \mu T R_1$$

Результаты:

Полученные значения перемещений в точке D представлены в таблицах:

	Teenerweevee	Численный анализ FIDESYS				
Величина	теоретическое	Тетраэдры (1	FETRA4)	Тетраэдры (TETRA10)		
	значение, па	Значение	Ошибка	Значение	Ошибка	
<i>u_R</i> ,м	0.012	0.012	0%	0.012	0 %	

Величина	T		Чи	сленный ана	ализ FIDES	YS	
	георетическое значение	Гексаэдры (НЕХ8)		Гексаэдры	(HEX20)	Гексаэдры (НЕХ27)	
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка
u_R ,м	0.012	0.012	0%	0.012	0 %	0.012	0%

 На картинке ниже представлена исходная модель с полем распределения перемещений u_R при разбиении на гексаэдральные элементы. Максимальные значения перемещений достигаются в точке D (4,0,0), в которой сравнивались аналитические и численные результаты:

Тест 6.1.2: Сплошная сфера при постоянном температурном нагружении (3D).

Решается задача о статическом температурном нагружении сплошной сферы.

Геометрическая модель (размеры указаны в метрах):

- Размеры сферы: радиус R = 4 м;
- В силу симметрии задачи рассматривается 1/8 сферы.

Граничные условия:

- Нулевые перемещения вдоль оси X на плоскости ABC
- Нулевые перемещения вдоль оси Y на плоскости DCB
- Нулевые перемещения вдоль оси Z на плоскости ADB
- Сплошная температура на внешней поверхности сферы ACD

Параметры материала:

- Изотропный
- Модуль упругости Е = 200 ГПа
- Коэффициент Пуассона v = 0.3
- Температурное расширение µ = 0.0001 1/°С
- Температура Т = 30°С

- Два типа конечных элементов (два отдельных теста):
 - 4-узловые тетраэдры TETRA4 (11 027 элементов)
 - 10-узловые тетраэдры TETRA10 (5 168 элементов)
- Три типа конечных элементов (один тест):
 - PYRAMID5+TETRA4 (5 168 элементов)
 - 8-узловые гексаэдры HEX8 (1 496 элементов)
- Три типа конечных элементов (один тест):
 - PYRAMID13 (187 элементов)
 - TETRA10 (5 444 элемента)
 - 20-узловые гексаэдры НЕХ20 (1 496 элементов)
- Три типа спектральных элементов 2го порядка (один тест):
 - PYRAMID5s+TETRA4s (5 168 элементов)
 - 8-узловые гексаэдры HEX8s (1 496 элементов)

• Перемещение u_{γ} в точке А (0;4;0) равно 0.012 с точностью 1%

Значения вычислены по формуле [26]:

$$u_R = \mu T R$$

Результаты:

- Полученные значения перемещений в точке А представлены в таблицах:
- Конечные элеметы

	Teenerweevee	Чис	ленный а	нализ FIDES\	′S	
Величина	Теоретическое	Тетраэдры (1	FETRA4)	Тетраэдры (TETRA10)		
	значение	Значение	Ошибка	Значение	Ошибка	
<i>u_R</i> ,м	0.012	0.012	0%	0.012	0 %	

	Teener	L	исленный а	анализ FIDESYS		
Величина	Георетическое	TETRA4+PYRAM	ID5+HEX8	TETRA10+PYRAMID13+HEX20		
	значение	Значение	Ошибка	Значение	Ошибка	
<i>u_R</i> ,м	0.012	0.012	0%	0.01199	<0.01 %	

- Спектральные элеметы 2го порядка

	Teenervee		Численный а	анализ FIDESYS		
Величина	теоретическое значение	TETRA4s+PYRAMI	D5s+HEX8s	TETRA10s+PYRAMID13s+HEX20s		
		Значение	Ошибка	Значение	Ошибка	
<i>u_R</i> ,м	0.012	0.012	0%	0.012	0 %	

• На картинке ниже представлена исходная модель с полем распределения перемещений u_R для сетки из смешанных типов элементов. Максимальные значения перемещений u_R достигаются в точке А (0;4;0), в которой сравнивались аналитические и численные результаты:

Тест 6.1.3: Полый цилиндр с постоянным температурным нагружением (2D).

Рассматривается задача определения напряжения в полом цилиндрическом теле в случае постоянного температурного нагружения. Иные нагрузки на цилиндрическую часть отсутствуют.

Геометрическая модель(размеры указаны в метрах):

- Размеры цилиндра: радиус R₁ = 4 м, R₂ = 3 м;
- В силу симметрии задачи рассматривается четверть полуцилиндра.

Граничные условия:

- Нулевые перемещения вдоль оси Х на линии АВ
- Нулевые перемещения вдоль оси Y на линии DC
- Сплошная температура на внутренней линии АС

Параметры материала:

- Изотропный
- Модуль упругости Е = 200 ГПа
- Коэффициент Пуассона v = 0.3
- Температурное расширение µ = 0.0001 1/°С
- Температура T = 30°С

- Пять типов конечных элементов (пять отдельных теста):
 - 4-узловые четырёхугольники Quad4 (540 элементов)
 - 8-узловые четырёхугольники Quad8 (259 элементов)
 - 9-узловые четырёхугольники Quad9 (96 элементов)
 - 3-узловые треугольники Tri3 (1 214 элементов)
 - 6-узловые треугольники Tri6 (594 элемента)
- Шесть типов спектральных элементов (шесть отдельных тестов):
 - Спектральные элементы гексаэдры Quad4s 3го порядка (259 элементов)
 - Спектральные элементы гексаэдры Quad4s 4го порядка (96 элементов)
 - Спектральные элементы гексаэдры Quad8s 3го порядка (259 элементов)
 - Спектральные элементы гексаэдры Quad8s 4го порядка (96 элементов)
 - Спектральные элементы гексаэдры Quad9s 3го порядка (259 элементов)
 - Спектральные элементы гексаэдры Quad9s 4го порядка (96 элементов)

• Перемещение u_x в точке D (4,0,0) равно 0.012 с точностью 1%

Значения вычислены по формуле [26]:

$$u_R = \mu T R_1$$

Результаты:

• Полученные значения перемещений в точке D представлены в таблицах:

Величина	Теоретическое	ι	исленный а	анализ Fides	sys (четырех	угольная сетка)	
	значение	Quad4		Quad8		Quad9	
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка
u_R M	0.012	0.012	0%	0.012	0%	0.012	0%

	Тооротицоское	Численный а	нализ FID	ESYS (треугол	іьная сетка)	
Величина	теоретическое	Tri3		Tri6		
	зпачение, па	Значение	Ошибка	Значение	Ошибка	
<i>и_R</i> ,м	0.012	0.012	0%	0.012	0 %	

- Спектральные элементы

Величина	Т	Численный анализ FIDESYS Quad4s				Численный анализ FIDESYS Quad8s			
	значение, Па	3-ого порядка		4-ого порядка		3-ого порядка		4-ого порядка	
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка	Значение	Ошибка
<i>u_R</i> ,м	0.012	0.012	0%	0.012	0 %	0.012	0%	0.012	0 %

	Teenerweevee	Числен	ный анал	из FIDESYS Qu	uad9s	
Величина	теоретическое	3-ого пор	ядка	4-ого порядка		
	зпачение, па	Значение	Ошибка	Значение	Ошибка	
<i>и_R</i> ,м	0.012	0.012	0%	0.012	0 %	

 На картинке ниже представлена исходная модель с полем распределения перемещений u_R при разбиении на треугольные элементы. Максимальные значения перемещений достигаются в точке D (4,0,0), в которой сравнивались аналитические и численные результаты:

Тест 6.1.4: Сплошной диск с постоянным температурным нагружением(2D).

Рассматривается задача определения напряжения в сплошном диске в случае постоянного температурного нагружения. Иные нагрузки на дисковую часть отсутствуют.

Геометрическая модель(размеры указаны в метрах):

- Размеры диска: радиус R = 3 м;
- В силу симметрии задачи рассматривается четверть полудиска

Граничные условия:

- Нулевые перемещения вдоль оси Х на линии АВ
- Нулевые перемещения вдоль оси Y на линии DC
- Сплошная температура на внешней линии АС

Параметры материала:

- Изотропный
- Модуль упругости Е = 200 ГПа
- Коэффициент Пуассона v = 0.3
- Температурное расширение µ = 0.0001 1/ °С
- Температура T = 10°С

- Пять типов конечных элементов (пять отдельных теста):
 - 4-узловые четырёхугольники Quad4 (651 элементов)
 - 8-узловые четырёхугольники Quad8 (308 элементов)
 - 9-узловые четырёхугольники Quad9 (135 элементов)
 - 3-узловые треугольники Tri3 (1 239 элементов)
 - 6-узловые треугольники Tri6 (256 элемента)

• Перемещение u_x в точке С (4,0,0) равно 0.003 с точностью 1%

Значения вычислены по формуле [26]:

$$u_R = \mu T R$$

Результаты:

• Полученные значения перемещений в точке С представлены в таблицах:

Величина	Теоретическое значение	L	Численный анализ Fidesys (четырехугольная сетка)							
		Quad4		Qua	ad8	Quad9				
		Значение	Ошибка	Значение	Ошибка	Значение	Ошибка			
<i>и</i> _{<i>R</i>} ,м	0.003	0.003	0%	0.003	0%	0.003	0%			

	Teener	Численный а	нализ FID	ESYS (треугол	іьная сетка)	
Величина		Tri3		Tri6		
	зпачение, па	Значение	Ошибка	Значение	Ошибка	
<i>и_R</i> м	0.003	0.003	0%	0.003	0 %	

 На картинке ниже представлена исходная модель с полем распределения перемещений u_R при разбиении на треугольные элементы. Максимальные значения перемещений достигаются в точке С (3,0,0), в которой сравнивались аналитические и численные результаты:

Тесты с известным численным решением

Тест 6.2.1: Полый цилиндр под воздействием постоянной температуры на внутреннюю и внешнюю поверхность (2D)

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. TPLA01/89.

Рассматривается двумерная задача о полом цилиндре, находящемся под воздействием постоянных температур.

Геометрическая модель (размеры указаны в метрах):

• R_i= 0.30 м, R_e = 0.35 м.

Граничные условия:

- Внутренняя температура T_i = 100 °C;
- Внешняя температура T_e = 20 °C.

Параметры материала:

- Изотропный;
- Коэффициент теплопроводности V = 1 Вт/(м ·°C).

- Пять типов элементов (пять отдельных тестов):
 - 3-узловые треугольники Tri3 (2 400 элементов);
 - 6-узловые треугольники Tri6 (2 400 элементов);
 - 4-узловые четырёхугольники Quad4 (922 элементов);
 - 8-узловые четырёхугольники Quad8 (922 элементов);
 - 9-узловые четырёхугольники Quad9 (922 элементов).

- Сравнение значений температуры T и теплового потока ϕ в точках на поверхности цилиндра и внутри него[6]:
- В точке (0.3;0;0) T = 100.0 °C, φ = 1 730 Вт/м² с точностью 2%;
- В точке (0.31;0;0) T = 82.98 °C, φ = 1 674 Вт/м² с точностью 2%;
- В точке (0.32;0;0) T = 66.51 °C, φ = 1 622 Вт/м² с точностью 2%;
- В точке (0.33;0;0) T = 50.54 °C, φ = 1 573 Вт/м² с точностью 2%;
- В точке (0.34;0;0) T = 35.04 °C, φ = 1 526 Вт/м² с точностью 2%;
- В точке (0.35;0;0) T = 20.00 °C, ϕ = 1 483 Вт/м² с точностью 2%.

Результаты:

• В таблицах приведены результаты расчёта FIDESYS и NASTRAN[6]:

	Ириторий				Численн	ный анализ				
Коорлинаты	критерии прохожде			NASTRAN						
точки	ния теста,	Quad4		Qua	Quad8		Quad9		NASIKAN	
	°C	Значение, °С	Ошибка	Значение, °С	Ошибка	Значение, °C	Ошибка	Значение, °C	Ошибка	
(0.3;0;0)	T = 100.0	100	0.00%	100	0.00%	100	0.00%	100.0	0%	
(0.31;0;0)	T = 82.98	83	0.02%	82.983	0.00%	82.983	0.00%	82.98	0%	
(0.32;0;0)	T = 66.51	66.532	0.03%	66.507	0.00%	66.506	0.01%	66.51	0%	
(0.33;0;0)	T = 50.54	50.562	0.04%	50.537	0.01%	50.537	0.01%	50.54	0%	
(0.34;0;0)	T = 35.04	35.061	0.06%	35.044	0.01%	35.044	0.01%	35.04	0%	
(0.35;0;0)	T = 20.00	20	0.00%	20	0.00%	20	0.00%	20.00	0%	

				Числен	ный анализ		
Координаты	Критерий прохождения теста °С		FID	NAST			
точки		Tri3		Tri6		NASIRAN	
		Значение, °C	Ошибка	Значение, °C	Ошибка	Значение, °C	Ошибка
(0.3;0;0)	T = 100.0	100	0.00%	100	0.00%	100.0	0 %
(0.31;0;0)	T = 82.98	82.965	0.02%	82.983	0.00%	82.98	0 %
(0.32;0;0)	T = 66.51	66.519	0.01%	66.506	0.01%	66.51	0 %
(0.33;0;0)	T = 50.54	50.553	0.03%	50.537	0.01%	50.54	0 %
(0.34;0;0)	T = 35.04	35.01	0.09%	35.043	0.01%	35.04	0 %
(0.35;0;0)	T = 20.00	20	0.00%	20	0.00%	20.00	0 %

	Vauraauŭ				Численн	ый анализ			
Координаты	критерии прохожде			ΝΔΩΤΡΔΝ					
точки	точки ния теста, Вт/м ²	Quad4		Qua	Quad8		d9	INASIKAN	
		Значение, Вт/м ²	Ошибка	Значение, Вт/м ²	Ошибка	Значение, Вт/м ²	Ошибка	Значение, Вт/м ²	Ошибка
(0.3;0;0)	φ = 1 730	1 704.01	1.50%	1 729.5	0.03%	1 729.6	0.02%	1 702	1.62%
(0.31;0;0)	φ = 1 674	1 652.9	1.26%	1 673.9	0.01%	1 674	0.00%	1 666	0.48%
(0.32;0;0)	φ = 1 622	1 602.9	1.18%	1 621.7	0.02%	1 621.7	0.02%	1 614	0.49%
(0.33;0;0)	φ = 1 573	1 553.89	1.21%	1 572.5	0.03%	1 572.5	0.03%	1 565	0.51%
(0.34;0;0)	φ = 1 526	1 506.28	1.29%	1 526.4	0.03%	1 526.2	0.01%	1 519	0.46%
(0.35;0;0)	φ = 1 483	1 506.285	1.57%	1 482.4	0.04%	1 482.5	0.03%	1 505	1.48%

				Числен	ный анализ		
Координаты	Критерий		FID	NASTRAN			
точки	прохождения	Tri3				Tri6	
	теста, Вт/м²	Значение, Вт/м ²	Ошибка	Значение, Вт/м ²	Ошибка	Значение, Вт/м²	Ошибка
(0.3;0;0)	φ = 1 730	1 699.11	1.79%	1 729.9	0.01%	1 702	1.62%
(0.31;0;0)	φ = 1 674	1 654.4	1.17%	1 674	0.00%	1 666	0.48%
(0.32;0;0)	φ = 1 622	1 627.6	0.35%	1 621.9	0.01%	1 614	0.49%
(0.33;0;0)	φ = 1 573	1 571.5	0.10%	1 572.8	0.01%	1 565	0.51%
(0.34;0;0)	φ = 1 526	1 547.4	1.40%	1 526.2	0.01%	1 519	0.46%
(0.35;0;0)	φ = 1 483	1 494.3	0.76%	1 482.8	0.01%	1 505	1.48%

• На картинке ниже представлена исходная модель с полем распределения температур (сверху) и теплового потока (снизу) при разбиении на треугольные элементы:

Тест 6.2.2: Полый цилиндр под воздействием постоянной температуры на внутреннюю и внешнюю поверхность (3D)

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. TPLA01/89.

Рассматривается трёхмерная задача о полом цилиндре, находящемся под воздействием постоянных температур.

Геометрическая модель (размеры указаны в метрах):

• R_i= 0.30 м, R_e = 0.35 м.

Граничные условия:

- Внутренняя температура T_i = 100 °C;
- Внешняя температура T_e = 20 °C;
- Торцы цилиндра закреплены по Z.

Параметры материала:

- Изотропный
- Коэффициент теплопроводности V = 1 Вт/(м ·°C).

- Пять типов элементов (пять отдельных тестов):
 - 4-узловые тетраэдры Tetra4 (8 344 элемента);
 - 10-узловые тетраэдры Tetra10 (8 344 элемента);
 - 8-узловые гексаэдры Hex8 (917 элементов);
 - 20-узловые гексаэдры Hex20 (917 элементов);
 - 27-узловые гексаэдры Hex27 (917 элементов).

- Сравнение значений температуры T и теплового потока φ в точках на поверхности цилиндра и внутри него[6]:
- В точке (0.3;0;0) T = 100.0 °C, φ = 1 730 Вт/м² с точностью 2%;
- В точке (0.31;0;0) T = 82.98 °C, φ = 1 674 Вт/м² с точностью 2%;
- В точке (0.32;0;0) T = 66.51 °C, φ = 1 622 Вт/м² с точностью 2%;
- В точке (0.33;0;0) T = 50.54 °C, φ = 1 573 Вт/м² с точностью 2%;
- В точке (0.34;0;0) T = 35.04 °C, φ = 1 526 Вт/м² с точностью 2%;
- В точке (0.35;0;0) T = 20.00 °C, ϕ = 1 483 Вт/м² с точностью 2%.

Результаты:

• В таблицах приведены результаты расчёта FIDESYS и NASTRAN[6]:

	Криторий				Численн	ный анализ			
Коорлинаты	критерии прохожде			NASTRAN					
точки	ния теста,	HEX8		HEX	20	HEX27		NASIKAN	
	°C	Значение, °С	Ошибка	Значение, °С	Ошибка	Значение, °С	Ошибка	Значение, °С	Ошибка
(0.3;0;0)	T = 100.0	100	0.00%	99.992	0.01%	100	0.00%	100.0	0 %
(0.31;0;0)	T = 82.98	83	0.02%	82.977	0.00%	82.983	0.00%	82.98	0 %
(0.32;0;0)	T = 66.51	66.532	0.03%	66.495	0.02%	66.506	0.01%	66.51	0 %
(0.33;0;0)	T = 50.54	50.562	0.04%	50.531	0.02%	50.537	0.01%	50.54	0 %
(0.34;0;0)	T = 35.04	35.06	0.06%	35.037	0.01%	35.044	0.01%	35.04	0 %
(0.35;0;0)	T = 20.00	20	0.00%	20.016	0.08%	20	0.00%	20.00	0 %

				Числен	ный анализ			
Координаты	Критерий		FID	ESYS		NAST		
точки	прохождения	TETRA4		TETRA10		NASIRAN		
		Значение, °С	Ошибка	Значение, °C	Ошибка	Значение, °C	Ошибка	
(0.3;0;0)	T = 100.0	100	0.00%	99.975	0.03%	100.0	0 %	
(0.31;0;0)	T = 82.98	83.006	0.03%	82.97	0.01%	82.98	0 %	
(0.32;0;0)	T = 66.51	66.507	0.00%	66.503	0.01%	66.51	0 %	
(0.33;0;0)	T = 50.54	50.578	0.08%	50.537	0.01%	50.54	0 %	
(0.34;0;0)	T = 35.04	35.004	0.10%	35.044	0.01%	35.04	0 %	
(0.35;0;0)	T = 20.00	20	0.00%	20.025	0.12%	20.00	0 %	

					Численн	ный анализ			
Координ	Критерий прохождения			NASTRAN					
аты		HEX8		HEX	HEX20		HEX27		INASIKAN
ТОЧКИ	теста, Вт/м²	Значение, Вт/м ²	Ошибка	Значение, Вт/м ²	Ошибка	Значение, Вт/м ²	Ошибка	Значение, Вт/м ²	Ошибка
(0.3;0;0)	φ = 1 730	1 704.01	1.50%	1 729.5	0.03%	1 729.64	0.02%	1 702	1.62%
(0.31;0;0)	φ = 1 674	1 652.9	1.26%	1 673.9	0.01%	1 674	0.00%	1 666	0.48%
(0.32;0;0)	φ = 1 622	1 602.9	1.18%	1 621.7	0.02%	1 621.7	0.02%	1 614	0.49%
(0.33;0;0)	φ = 1 573	1 553.89	1.21%	1 572.5	0.03%	1 572.5	0.03%	1 565	0.51%
(0.34;0;0)	φ = 1 526	1 506.18	1.30%	1 526.3	0.02%	1 526.2	0.01%	1 519	0.46%
(0.35;0;0)	φ = 1 483	1 506.28	1.57%	1 482.5	0.03%	1 482.5	0.03%	1 505	1.48%

	Критерий прохождения			Числен	ный анализ		
Коорлинаты			FID	NASTRAN			
точки		TETRA4				TETRA10	
	теста, Вт/м²	Значение, Вт/м ²	Ошибка	Значение, Вт/м ²	Ошибка	Значение, Вт/м²	Ошибка
(0.3;0;0)	φ = 1 730	1 717	0.75%	1 729.8	0.01%	1 702	1.62%
(0.31;0;0)	φ = 1 674	1 661.55	0.74%	1 674.1	0.01%	1 666	0.48%
(0.32;0;0)	φ = 1 622	1 612.65	0.58%	1 622.2	0.01%	1 614	0.49%
(0.33;0;0)	φ = 1 573	1 575.9	0.18%	1 572.8	0.01%	1 565	0.51%
(0.34;0;0)	φ = 1 526	1 530.7	0.31%	1 526.3	0.02%	1 519	0.46%
(0.35;0;0)	φ = 1 483	1 494.4	0.77%	1 482.8	0.01%	1 505	1.48%

• На картинке ниже представлена исходная модель с полем распределения температур (сверху) и теплового потока (снизу) при разбиении на тетраэдральные элементы:

Тест 6.2.3: Полый цилиндр под воздействием конвекции на внутреннюю и внешнюю поверхность (2D)

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. TPLA03/89.

Рассматривается двумерная задача о полом цилиндре, находящемся под воздействием конвекции.

Геометрическая модель (размеры указаны в метрах):

• Rj= 0.30 м, Re = 0.391 м.

Граничные условия:

• Конвекция на внутренней поверхности:

$$- T_i = 500 \,^{\circ}C;$$

• Конвекция на внешней поверхности:

– T_e = 20 °C.

Параметры материала:

- Изотропный;
- Коэффициент теплопроводности V = 40 Вт/(м ·°C).

- Пять типов элементов (пять отдельных тестов):
 - 3-узловые треугольники Tri3 (4 000 элементов);
 - 6-узловые треугольники Tri6 (4 000 элементов);
 - 4-узловые четырёхугольники Quad4 (1 588 элементов);
 - 8-узловые четырёхугольники Quad8 (1 588 элементов);
 - 9-узловые четырёхугольники Quad9 (1 588 элементов).

- Сравнение значений температуры T и теплового потока φ в точках на внешней и внутренней поверхности цилиндра[6]:
- В точке (0.3;0;0) T = 272.3 °C, φ = 3.416Е4 Вт/м² с точностью 2%;
- В точке (0.391;0;0) Т = 205.1 °С, φ = 2.628Е4 Вт/м² с точностью 2%.

Результаты:

• В таблицах приведены результаты расчёта FIDESYS и NASTRAN[6]:

		Численный анализ							
Координат ы точки	Критерий			FIDE	SYS				
	прохождения	Quad	:14	Qua	Quad9 Quad9		d9	NASI	
	теста, °С	Значение, °С	Ошибка	Значение, °С	Ошибка	Значение, °С	Ошибка	Значение, °С	Ошибка
(0.3;0;0)	T = 272.3	272.34	0.01%	272.35	0.02%	272.35	0.02%	272.5	0.07%
(0.391;0;0)	T = 205.1	204.58	0.25%	208.68	1.75%	208.68	1.75%	204.6	0.24%

		Численный анализ							
Координаты точки	Критерий		FID	ESYS		NAST			
	прохождения теста °С	Tri3		Tr	i6	NAST	NAN		
		Значение, °C	Ошибка	Значение, °C	Ошибка	Значение, °С	Ошибка		
(0.3;0;0)	T = 272.3	272.35	0.02%	272.35	0.02%	272.5	0.07%		
(0.391;0;0)	T = 205.1	204.58	0.25%	204.57	0.26%	204.6	0.24%		

	Криторий	Численный анализ								
Координа ты точки	прохожден			FIDE	SYS			ΝΛΟΤ	ΝΛΩΤΟΛΝ	
	ия теста, Вт/м²	Quad4		Quad8		Quad9		INAGIKAN		
		Значение, Вт/м ²	Ошибка							
(0.3;0;0)	φ = 3.416E4	33 693.05	1.37%	34 132	0.08%	34 141	0.06%	3.38E+04	1.11%	
(0.391;0;0)	φ = 2.628E4	26 666.72	1.47%	26 633.04	1.34%	26 633.04	1.34%	2.64E+04	0.53%	

				Числен	ный анализ			
Координаты точки	Критерий		FID	ESYS		NAST		
	прохождения	Tri3		Tr	i6	NAST	IKAN	
	теста, Вт/м²	Значение, Вт/м ²	Ошибка	Значение, Вт/м ²	Ошибка	Значение, Вт/м²	Ошибка	
(0.3;0;0)	φ = 3.416E4	33 517.13	1.88%	34 145	0.04%	3.38E+04	1.11%	
(0.391;0;0)	φ = 2.628E4	26 411	0.50%	26 206	0.28%	2.64E+04	0.53%	

• На картинке ниже представлена исходная модель с полем распределения температур (сверху) и теплового потока (снизу) при разбиении на треугольные элементы:

Тест 6.2.4: Полый цилиндр под воздействием конвекции на внутреннюю и внешнюю поверхность (3D)

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. TPLA03/89.

Рассматривается трёхмерная задача о полом цилиндре, находящемся под воздействием конвекции.

Геометрическая модель (размеуказаны в метрах):

• Ri= 0.30 м, Re = 0.391 м.

Граничные условия:

- Конвекция на внутренней поверхности:
 - hi = 150 Вт/м²/°С;
 - $T_i = 500$ °C;
- Конвекция на внешней поверхности:
 - h_e = 142 Вт/м²/°С;
 - T_e = 20 °C.

Параметры материала:

- Изотропный;
- Коэффициент теплопроводности V = 40 Вт/(м ·°C).

- Пять типов элементов (пять отдельных тестов):
 - 4-узловые тетраэдры Tetra4 (10 837 элементов);
 - 10-узловые тетраэдры Tetra10 (10 837 элементов);
 - 8-узловые гексаэдры Hex8 (1 588 элементов);
 - 20-узловые гексаэдры Hex20 (1 588 элементов);
 - 27-узловые гексаэдры Hex27 (1 588 элементов).

- Сравнение значений температуры T и теплового потока φ в точках на внешней и внутренней поверхности цилиндра[6]:
- В точке (0.3;0;0) T = 272.3 °C, φ = 3.416Е4 Вт/м² с точностью 2%;
- В точке (0.391;0;0) T = 205.1 °C, φ = 2.628Е4 Вт/м² с точностью 2%.

Результаты:

• В таблицах приведены результаты расчёта FIDESYS и NASTRAN[6]:

Координаты точки	12 2				Численн	ный анализ				
	Критерии			FIDE	SYS			ΝΛΩ	ΡΛΝ	
	прохожде ния теста, °C	HEX8		HEX	HEX20		HEX27		NASIKAN	
		Значение, °С	Ошибка	Значение, °С	Ошибка	Значение, °С	Ошибка	Значение, °С	Ошибка	
(0.3;0;0)	T = 272.3	272.34	0.01%	272.35	0.02%	272.353	0.02%	272.5	0.07%	
(0.391;0;0)	T = 205.1	204.58	0.25%	204.58	0.25%	204.57	0.26%	204.6	0.24%	

				Числен	ный анализ			
Координаты точки	Критерий		FID	ESYS		NASTRAN Значение, °С Ошибка 272.5 0.07%		
	прохождения теста °С	TETRA	4	TETRA10		NAST		
		Значение, °C	Ошибка	Значение, °C	Ошибка	Значение, °С	Ошибка	
(0.3;0;0)	T = 272.3	272.35	0.02%	272.34	0.01%	272.5	0.07%	
(0.391;0;0)	T = 205.1	204.58	0.25%	204.58	0.25%	204.6	0.24%	

Координа ты точки	Криторий				Численн	ый анализ			
	прохожден			FIDE	SYS			ΝΛΟΤ	Δ Λ Ν
	ия теста,	HEX	(8	HEX	20	HEX27		NA31	
	Вт/м²	Значение, Вт/м ²	Ошибка	Значение, Вт/м ²	Ошибка	Значение, Вт/м ²	Ошибка	Значение, Вт/м ²	Ошибка
(0.3;0;0)	φ = 3.416E4	33 693.05	1.37%	34 131.00	0.08%	34 140.7	0.06%	3.38E+04	1.11%
(0.391;0;0)	φ = 2.628E4	26 570.54	1.11%	26 201	0.30%	26 202	0.30%	2.64E+04	0.53%

				Числен	ный анализ			
Координаты точки	Критерий		FID	ESYS		NAST		
	прохождения	TETRA	4	TETR	RA10	NAST	KAN	
	теста, Вт/м²	Значение, Вт/м ²	Ошибка	Значение, Вт/м ²	Ошибка	Значение, Вт/м²	Ошибка	
(0.3;0;0)	φ = 3.416E4	33 813.18	1.02%	34 144	0.05%	3.38E+04	1.11%	
(0.391;0;0)	φ = 2.628E4	26 340.658	0.23%	26 209	0.27%	2.64E+04	0.53%	

• На картинке ниже представлена исходная модель с полем распределения температур (сверху) и теплового потока (снизу) при разбиении на тетраэдральные элементы:

Тест 6.2.5: Полый цилиндр из двух материалов под воздействием конвекции на внутреннюю и внешнюю поверхность (2D)

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. TPLA08/89.

Рассматривается двумерная задача о полом цилиндре, сделанном из двух материалов, на внутренную и внешнюю поверхности которого действует конвекция.

Геометрическая модель (размеры указаны в метрах):

• R_i= 0.30 м, R_m = 0.35 м, R_e = 0.37 м.

Граничные условия:

• Конвекция на внутренней поверхности:

• Конвекция на внешней поверхности:

– Te = -15 °C.

Параметры материалов:

- Изотропные;
- Коэффициент теплопроводности материала №1 V₁ = 40 Вт/(м .°С);
- Коэффициент теплопроводности материала №2 V₂ = 20 Вт/(м ·°C).

- Пять типов конечных элементов (пять отдельных тестов):
 - 3-узловые треугольники Tri3 (49 600 элементов);
 - 6-узловые треугольники Tri6 (49 600 элементов);
 - 4-узловые четырёхугольники Quad4 (21 083 элемента);
 - 8-узловые четырёхугольники Quad8 (21 083 элемента);
 - 9-узловые четырёхугольники Quad9 (21 083 элемента).

- Сравнение значений теплового потока φ в точках на внешней и внутренней поверхности цилиндра, а также в точке стыка материалов[6]:
- В точке (0.3;0;0) φ = 6 687 Вт/м² с точностью 4%;
- В точке (0.35;0;0) φ = 5 732 Вт/м² с точностью 4%.
- В точке (0.37;0;0) φ = 5 422 Вт/м² с точностью 4%.

Результаты:

• В таблицах приведены результаты расчёта FIDESYS и NASTRAN[6]:

Координа ты точки		Численный анализ							
	Критерии прохожлен			FIDE	SYS	-		NAST	RAN
	ия теста.	Quad	14	Qua	d8	Qua	d9		
	Вт/м ²	Значение, Вт/м ²	Ошибка						
(0.3;0;0)	φ = 6 687	6887.255	2.99%	6914	3.39%	6914.1	3.40%	6 609	1.17%
(0.35;0;0)	φ = 5 732	5949.946	3.80%	5926.3	3.39%	5926.4	3.39%	5 768	0.63%
(0.37;0;0)	φ = 5 422	5629.443	3.83%	5628.9	3.82%	5628.9	3.82%	5 497	1.38%

				Числен	ный анализ		
Координаты	Критерий		FID	ESYS		NAST	
точки	прохождения	Tri3		Tr	i6	NAST	
	теста, Вт/м²	Значение, Вт/м ²	Ошибка	Значение, Вт/м ²	Ошибка	Значение, Вт/м²	Ошибка
(0.3;0;0)	φ = 6 687	6882.453	2.92%	6914.1	3.40%	6 609	1.17%
(0.35;0;0)	φ = 5 732	5938.9	3.61%	5926.4	3.39%	5 768	0.63%
(0.37;0;0)	φ = 5 422	5618.4	3.62%	5607.6	3.42%	5 497	1.38%

• На картинке ниже представлена исходная модель с полем распределения теплового потока при разбиении на треугольные элементы:

Тест 6.2.6: Полый цилиндр из двух материалов под воздействием конвекции на внутреннюю и внешнюю поверхность (3D)

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. TPLA08/89.

Рассматривается трёхмерная задача о полом цилиндре, сделанном из двух материалов, на внутреннюю и внешнюю поверхность которого действует конвекция.

Геометрическая модель (размеры указаны в метрах):

• R_i= 0.30 м, R_m = 0.35 м, R_e = 0.37 м.

Граничные условия:

• Конвекция на внутренней поверхности:

• Конвекция на внешней поверхности:

– T_e = -15 °C.

Параметры материалов:

- Изотропные;
- Коэффициент теплопроводности материала №1 V₁ = 40 Вт/(м ·°C);
- Коэффициент теплопроводности материала №2 V₂ = 20 Вт/(м ·°С).

- Пять типов конечных элементов (пять отдельных тестов):
 - 4-узловые тетраэдры Tetra4 (742 829 элементов);
 - 10-узловые тетраэдры Tetra10 (742 829 элементов);
 - 8-узловые гексаэдры Hex8 (21 083 элементов);
 - 20-узловые гексаэдры Hex20 (21 083 элементов);
 - 27-узловые гексаэдры Нех27 (21 083 элементов).

- Сравнение значений теплового потока φ в точках на внешней и внутренней поверхности цилиндра, а также в точке стыка материалов[6]:
- В точке (0.3;0;0) φ = 6 687 Вт/м² с точностью 4%;
- В точке (0.35;0;0) φ = 5 732 Вт/м² с точностью 4%.
- В точке (0.37;0;0) φ = 5 422 Вт/м² с точностью 4%.

Результаты:

• В таблицах приведены результаты расчёта FIDESYS и NASTRAN[6]:

		Численный	ый анализ						
Координа	Критерии			FIDE	SYS		ΝΛΩΤΡΑΝ		
ты точки	ия теста.	HEX	8	HEX	20	HEX	27	INAST	
	Вт/м ²	Значение, Вт/м ²	Ошибка	Значение, Вт/м ²	Ошибка	Значение, Вт/м ²	Ошибка	Значение, Вт/м ²	Ошибка
(0.3;0;0)	$\varphi = 6.687$	6887.215	2.99%	6914	3.39%	6914.1	3.40%	6 609	1.17%
(0.35;0;0)	φ = 5 732	5949.966	3.80%	5926.4	3.39%	5926.36	3.39%	5 768	0.63%
(0.37;0;0)	φ = 5 422	5628.305	3.80%	5607.6	3.42%	5606.02	3.39%	5 497	1.38%

				Числен	ный анализ	NASTRAN Значение, Вт/м² Ошибка 6 609 1.17%		
Координаты	Критерий	FIDESYS				NAST		
точки	прохождения	TETRA	4	TETR	RA10	NAST	XAN	
	теста, Вт/м²	Значение, Вт/м ²	Ошибка	Значение, Вт/м ²	Ошибка	Значение, Вт/м²	Ошибка	
(0.3;0;0)	φ = 6687	6886.503	2.98%	6914.12	3.40%	6 609	1.17%	
(0.35;0;0)	φ = 5732	5951.204	3.82%	5926.48	3.39%	5 768	0.63%	
(0.37;0;0)	φ = 5422	5607.507	3.42%	5606.23	3.40%	5 497	1.38%	

• На картинке ниже представлена исходная модель с полем распределения теплового потока при разбиении на тетраэдральные элементы:

Тепловой поток 6895.405 6750.000 6500.000 6250.000 6000.000 5750.000 5631.286

247

Тест 6.2.7: Теплопроводность цилиндрической стены (2D)

Михеев М. А., Михеева И. М. Основы теплопередачи. Изд. 2-е, стереотип. М., «Энергия», 1977.

Рассматривается двумерная задача о цилиндрической стене, внутри которой равномерно распределены источники тепла; генерируемое ими тепло рассеивается в окружающую среду через внешнюю поверхность трубки.

Геометрическая модель (размеры указаны в метрах):

- Внутренний радиус r₁ = 0.1 м;
- Внешниий радиус r₂ = 0.25 м;
- Длина стены L = 1 м.

Граничные условия:

- Температура на внутренней поверхности T_i = 373.15 K;
- Тепловой поток на внешней поверхности: $\varphi = -15\ 000\ \text{Bt/m}^2$.

Параметры материалов:

- Изотропный;
- Коэффициент теплопроводности V = 43 Вт/(м ·K).

- Пять типов элементов (пять отдельных тестов):
 - 3-узловые треугольники Tri3 (6 372 элемента);
 - 6-узловые треугольники Tri6 (6 372 элемента);
 - 4-узловые четырёхугольники Quad4 (3 142 элемента);
 - 8-узловые четырёхугольники Quad8 (3 142 элемента);
 - 9-узловые четырёхугольники Quad9 (3 142 элемента).

- Сравнение значения температуры Т в точке на внешней поверхности стены[]:
- В точке (0.25;0;0) T = 21.71 К с точностью 4%.

Результаты:

• В таблицах приведены результаты расчёта FIDESYS и AutoFEM[16,25]:

	Критерий прохождения теста, К	Численный анализ								
Координа ты точки		FIDESYS								
		Quad4		Quad8		Quad9		AUTOFEM		
		Значение, К	Ошибка	Значение, К	Ошибка	Значение, К	Ошибка	Значение, К	Ошибка	
(0.25;0;0)	T = 303.081513	293.28	3.23%	293.24	3.25%	293.24	3.25%	303.7442	0.21%	

Координаты точки	Критерий прохождения теста, К	Численный анализ							
			FID	AutoFEM					
		Tri3				Tri6			
		Значение, К	Ошибка	Значение, К	Ошибка	Значение, К	Ошибка		
(0.25;0;0)	T = 303.081513	293.28	3.23%	293.24	3.25%	303.7442	0.21%		

• На картинке ниже представлена исходная модель с полем распределения температур при разбиении на треугольные элементы:

Тест 6.2.8: Теплопроводность цилиндрической стены (3D)

Михеев М. А., Михеева И. М. Основы теплопередачи. Изд. 2-е, стереотип. М., «Энергия», 1977.

Рассматривается трёхмерная задача о цилиндрической стене, внутри которой равномерно распределены источники тепла; генерируемое ими тепло рассеивается в окружающую среду через внешнюю поверхность трубки.

Геометрическая модель (размеры указаны в метрах):

- Внутренний радиус r₁ = 0.1 м;
- Внешниий радиус r₂ = 0.25 м;
- Длина стены L = 1 м.

Граничные условия:

- Температура на внутренней поверхности T_i = 373.15 K;
- Тепловой поток на внешней поверхности: $\varphi = -15\ 000\ \text{Bt/m}^2$.

Параметры материалов:

- Изотропный;
- Коэффициент теплопроводности V = 43 Вт/(м ·°C).

- Пять типов элементов (пять отдельных тестов):
 - 4-узловые тетраэдры Tetra4 (104 848 элементов);
 - 10-узловые тетраэдры Tetra10 (104 848 элементов);
 - 8-узловые гексаэдры Hex8 (6 327 элементов);
 - 20-узловые гексаэдры Hex20 (6 327 элементов);
 - 27-узловые гексаэдры Hex27 (6 327 элементов).

- Сравнение значения температуры Т в точке на внешней поверхности стены[16]:
- В точке (0.25;0;0) T = 21.71 К с точностью 4%.

Результаты:

• В таблицах приведены результаты расчёта FIDESYS и AutoFEM[16,25]:

Координа ты точки	Критерий прохождения теста, К	Численный анализ								
		FIDESYS								
		HEX8		HEX20		HEX27		AUTOFEIN		
		Значение, К	Ошибка	Значение, К	Ошибка	Значение, К	Ошибка	Значение, К	Ошибка	
(0.25;0;0)	T = 303.081513	293.9	3.03%	293.6	3.13%	293.241	3.25%	303.7442	0.21%	

Координаты точки	Критерий прохождения теста, К	Численный анализ							
			FI	AutoFEM					
		TETRA4				TETRA10			
		Значение, К	Ошибка	Значение, К	Ошибка	Значение, К	Ошибка		
(0.25;0;0)	T = 303.081513	293.63	3.12%	293.59	3.13%	303.7442	0.21%		

• На картинке ниже представлена исходная модель с полем распределения температур при разбиении на тетраэдральные элементы:

Тест 6.2.9: Одномерная стена под воздействием постоянной конвекции (2D)

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. TPLL03/89.

Рассматривается двумерная задача об одномерной стене, на обеих поверхностях которой происходит процесс конвективного теплообмена.

Геометрическая модель (размеры указаны в метрах):

• Ширина стены L = 0.4733 м.

Граничные условия:

- Конвекция на внутренней поверхности:
 - h_i = 20 Вт/м²/°С;
 - T_i = -20 °C;
- Конвекция на внешней поверхности:
 - h_e = 10 Вт/м²/°С;
 - T_e = 500 °C.

Параметры материалов:

- Изотропный;
- Коэффициент теплопроводности V = 1 Вт/(м ·°C).

Сетка:

- Пять типов элементов (пять отдельных тестов):
 - 3-узловые треугольники Tri3 (15 460 элементов);
 - 6-узловые треугольники Tri6 (15 460 элементов);
 - 4-узловые четырёхугольники Quad4 (10 000 элементов);
 - 8-узловые четырёхугольники Quad8 (10 000 элементов);
 - 9-узловые четырёхугольники Quad9 (10 000 элементов).

Критерий прохождения теста:

- Сравнение значений температуры Т в точках на внешней и внутренней поверхности стены, а также значения теплового потока φ в точке внутри стены[6]:
- В точке (-0.23655;0;0) Т = 21.71 °С с точностью 1%;
- В точке (0.23655;0;0) Т = 416.6 °С с точностью 1%.
- В точке (0;0;0) φ = 834.2 Вт/м² с точностью 1%.

Результаты:

• В таблицах приведены результаты расчёта FIDESYS и NASTRAN[6]:

	Критерий прохожден ия теста, °С	Численный анализ										
Координаты точки				NACTRAN								
		Quad4		Qua	Quad8		Quad9		NAJIKAN			
		Значени е, °С	Ошибка	Значение, °С	Ошибка	Значение, °С	Ошибка	Значение, °С	Ошибка			
(-0.23655;0;0)	T = 21.71	21.797	0.40%	21.7969	0.40%	21.7969	0.40%	21.71	0%			
(0.23655;0;0)	T = 416.6	416.49	0.03%	412.4	1.01%	412.4	1.01%	416.6	0%			

			Численный анализ							
Координаты	Критерий прохождения теста, °С		FID	NASTRAN						
точки		Tri3				Tri6				
		Значение, °C	Ошибка	Значение, °C	Ошибка	Значение, °C	Ошибка			
(-0.23655;0;0)	T = 21.71	21.797	0.40%	21.797	0.40%	21.71	0%			
(0.23655;0;0)	T = 416.6	416.49	0.03%	416.49	0.03%	416.6	0%			

	Критерий прохожден ия теста,	Численный анализ									
Координа											
ты		Quad4		Quad8		Quad9		NASIRAN			
точки	Вт/м²	Значение, Вт/м²	Ошибка	Значение, Вт/м²	Ошибка	Значение, Вт/м ²	Ошибка	Значение, Вт/м²	Ошибка		
(0;0;0)	φ = 834.2	834.27	0.01%	834.27	0.01%	834.27	0.01%	834.3	0.01%		

			Численный анализ							
Координаты точки	Критерий прохождения теста, Вт/м²		FID	NASTRAN						
		Tri3		Tr	i6	NASIRAN				
		Значение, Вт/м ²	Ошибка	Значение, Вт/м²	Ошибка	Значение, Вт/м²	Ошибка			
(0;0;0)	φ = 834.2	834.27	0.01%	834.27	0.01%	834.3	0.01%			

• На картинке ниже представлена исходная модель с полем распределения температур при разбиении на треугольные элементы:

Тест 6.2.10: Одномерная стена под воздействием постоянной конвекции (3D)

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. TPLL03/89.

Рассматривается трёхмерная задача об одномерной стене, на обеих поверхностях которой происходит процесс конвективного теплообмена.

Геометрическая модель (размеры указаны в метрах):

• Ширина стены L = 0.4733 м.

Граничные условия:

- Конвекция на внутренней поверхности:
 - h_i = 20 Bt/m²/°C;
 - T_i = -20 °C;
- Конвекция на внешней поверхности:
 - h_e = 10 Bt/m²/°C;
 - T_e = 500 °C.

Параметры материалов:

- Изотропный;
- Коэффициент теплопроводности V = 1 Вт/(м ·°C).

Сетка:

- Пять типов элементов (пять отдельных тестов):
 - 4-узловые тетраэдры Tetra4 (6 424 элемента);
 - 10-узловые тетраэдры Tetra10 (6 424 элемента);
 - 8-узловые гексаэдры Hex8 (15 625 элементов);
 - 20-узловые гексаэдры Hex20 (15 625 элементов);
 - 27-узловые гексаэдры Hex27 (15 625 элементов).
- Шесть типов спектральных элементов (шесть отдельных тестов):
 - Спектральные элементы гексаэдры Hex8s 3го порядка (512 элементов)
 - Спектральные элементы гексаэдры Hex8s 4го порядка (216 элементов)
 - Спектральные элементы гексаэдры Hex20s 3го порядка (512 элементов)
 - Спектральные элементы гексаэдры Hex20s 4го порядка (216 элементов)
 - Спектральные элементы гексаэдры Hex27s 3го порядка (512 элементов)
 - Спектральные элементы гексаэдры Hex27s 4го порядка (216 элементов)

Критерий прохождения теста:

- Сравнение значений температуры T в точках на внешней и внутренней поверхности стены, а также значения теплового потока φ в точке внутри стены[6]:
- В точке (-0.23655;0;0) Т = 21.71 °С с точностью 1%;
- В точке (0.23655;0;0) Т = 416.6 °С с точностью 1%.
- В точке (0;0;0) φ = 834.2 Вт/м² с точностью 1%.

Результаты:

• В таблицах приведены результаты расчёта FIDESYS и NASTRAN[6]:

	Критерий прохожд ения теста, °С		Численный анализ									
Координаты точки												
		HEX8		HEX	HEX20		HEX27		NASIRAN			
		Значение, °С	Ошибка	Значение, °С	Ошибка	Значение, °С	Ошибка	Значение, °С	Ошибка			
(-0.23655;0;0)	T = 21.71	21.797	0.40%	21.812	0.47%	21.797	0.40%	21.71	0%			
(0.23655;0;0)	T = 416.6	416.49	0.03%	416.47	0.03%	416.49	0.03%	416.6	0%			

			Численный анализ							
Координаты точки	Критерий прохождения теста, °С		FID	NASTRAN						
		TETRA4				TETRA10				
		Значение, °C	Ошибка	Значение, °C	Ошибка	Значение, °C	Ошибка			
(-0.23655;0;0)	T = 21.71	21.797	0.40%	21.825	0.53%	21.71	0%			
(0.23655;0;0)	T = 416.6	416.49	0.03%	416.46	0.03%	416.6	0%			

- Спектральные элементы:

Координаты точки	Критерий прохожден ия теста, °С	Численнь	FIDESYS (HE	X8s)	Численный анализ FIDESYS (HEX20s)				
		Элементы 3-го порядка		Элементы 4-го порядка		Элементы 3-го порядка		Элементы 4-го порядка	
		Значение, °C	Ошибка	Значение, °С	Ошибка	Значение, °С	Ошибка	Значение, °C	Ошибка
(-0.23655;0;0)	T = 21.71	21.7969	0.40%	21.7969	0.40%	21.7969	0.40%	21.7969	0.40%
(0.23655;0;0)	T = 416.6	416.49	0.03%	416.49	0.03%	416.49	0.03%	416.49	0.03%

	Критерий	Численный анализ FIDESYS (HEX27s)						
Координаты	прохождения	Элементы 3-г	о порядка	Элементы 4-го порядка				
ТОЧКИ	точки теста, °С		Ошибка	Значение, °С	Ошибка			
(-0.23655;0;0)	T = 21.71	21.7969	0.40%	21.7969	0.40%			
(0.23655;0;0)	T = 416.6	416.49	0.03%	416.49	0.03%			

	Критерий прохожден ия теста,	Численный анализ									
Координа											
ты		HEX8		HEX20		HEX27		NASIKAN			
точки	Вт/м ²	Значение, Вт/м ²	Ошибка	Значение, Вт/м²	Ошибка	Значение, Вт/м²	Ошибка	Значение, Вт/м²	Ошибка		
(0;0;0)	φ = 834.2	834.27	0.01%	834.27	0.01%	834.27	0.01%	834.3	0.01%		

			Численный анализ							
Координаты точки	Критерий прохождения теста, Вт/м²		FID							
		TETRA4		TETR	RA10	NASIKAN				
		Значение, Вт/м ²	Ошибка	Значение, Вт/м²	Ошибка	Значение, Вт/м²	Ошибка			
(0;0;0)	φ = 834.2	834.27	0.01%	834.27	0.01%	834.3	0.01%			

- Спектральные элементы:

Коорди		Численнь	FIDESYS (HE	X8s)	Численный анализ FIDESYS (HEX20s)				
КООРДИ Критерий Наты прохождения		Элементы 3-го порядка		Элементы 4-го порядка		Элементы 3-го порядка		Элементы 4-го порядка	
точки	точки теста, Вт/м²		Ошибка	Значение, Вт/м ²	Ошибка	Значение, Вт/м ²	Ошибка	Значение, °C	Ошибка
(0;0;0)	φ = 834.2	834.269	0.01%	834.269	0.01%	834.269	0.01%	834.269	0.01%

Координаты точки	Критерий	Численн	Численный анализ FIDESYS (HEX27s)						
	прохождения теста, Вт/м²	Элементы 3-г	о порядка	Элементы 4-го порядка					
		Значение, Вт/м²	Ошибка	Значение, Вт/м ²	Ошибка				
(0;0;0)	φ = 834.2	834.269	0.01%	834.269	0.01%				

• На картинке ниже представлена исходная модель с полем распределения температур при разбиении на тетраэдральные элементы:

Тест 6.2.11: Цилиндрический стержень под воздействием теплового потока (балочная модель)

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. TPLA05/89.

Рассматривается трёхмерная задача о цилиндрическом стержне, на оба торца которого воздействует температура, а на внешнюю поверхность воздействует тепловой поток.

Геометрическая модель (размеры указаны в метрах):

• L = 1 м, r = 0.01 м.

Граничные условия:

- Температура T₁ = 0 °C;
- Температура T₂ = 500 °C;
- Тепловой поток φ = -200 Вт/м².

Параметры материалов:

- Изотропный;
- Коэффициент теплопроводности материала V = 33.33 Вт/(м ·°C).

Сетка:

• Линейные балки Beam2 (50 элементов).

Критерий прохождения теста:

• Сравнение значений температуры Т в точках, находящихся на стержне, с точностью 1%. [22]

Результаты:

• В таблицах приведены результаты расчёта FIDESYS и SolidWorks[22]:

Координаты	Критерий	FIDESY	′S	SolidWorks		
точки	прохождения теста, °С	Значение, °С	Ошибка	Значение, °С	Ошибка	
(0;0;0)	T = 0.00	0.00	0.00%	0.00	0.00%	
(0.1;0;0)	T = -4.00	-4.00541	0.14%	-4	0.00%	
(0.2;0;0)	T = 4.00	3.99038	0.24%	4	0.00%	
(0.3;0;0)	T = 24.00	23.9874	0.05%	24	0.00%	
(0.4;0;0)	T = 56.00	55.9856	0.03%	56	0.00%	
(0.5;0;0)	T = 100.00	99.985	0.02%	100	0.00%	
(0.6;0;0)	T = 156.00	155.986	0.01%	156	0.00%	
(0.7;0;0)	T = 224.00	223.987	0.01%	224	0.00%	
(0.8;0;0)	T = 304.00	303.99	0.00%	304	0.00%	
(0.9;0;0)	T = 396.00	395.995	0.00%	396	0.00%	
(1.0;0;0)	T = 500.00	500	0.00%	500	0.00%	

• На картинке ниже представлена исходная модель с полем распределения температур:

Тест 6.2.12: Цилиндрический стержень под воздействием конвективного теплообмена (балочная модель)

Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. TPLA06/89.

Рассматривается трёхмерная задача о цилиндрическом стержне, на оба торца которого воздействует температура, на внешней поверхности которого происходит конвективный теплообмен.

Геометрическая модель (размеры указаны в метрах):

• L = 1 м, r = 0.01 м.

Граничные условия:

- Температура T₁ = 0 °C;
- Температура T₂ = 500 °C;
- Конвекция на внешней поверхности:
 - he = 10 Bt/m²/°C;
 - T_e = 0 °C.

Параметры материалов:

- Изотропный;
- Коэффициент теплопроводности материала V = 33.33 Вт/(м ·°C).

Сетка:

• Линейные балки Beam2 (50 элементов).

Критерий прохождения теста:

• Сравнение значений температуры Т в точках, находящихся на стержне, с точностью 1%. [22]

Результаты:

• В таблицах приведены результаты расчёта FIDESYS и SolidWorks[22]:

Координаты	Критерий	FIDESYS		SolidWorks		
точки	прохождения теста, °C	Значение, °С	Ошибка	Значение, °С	Ошибка	
(0;0;0)	T = 0.00	0.00	0.00%	0.00	0.00%	
(0.1;0;0)	T = 0.37	0.366978	0.82%	0.37	0.00%	
(0.2;0;0)	T = 0.97	0.965888	0.42%	0.97	0.00%	
(0.3;0;0)	T = 2.19	2.17524	0.67%	2.19	0.00%	
(0.4;0;0)	T = 4.78	4.75934	0.43%	4.78	0.00%	
(0.5;0;0)	T = 10.39	10.3514	0.37%	10.4	0.10%	
(0.6;0;0)	T = 22.56	22.4854	0.33%	22.56	0.00%	
(0.7;0;0)	T = 48.95	48.8303	0.24%	48.95	0.00%	
(0.8;0;0)	T = 106.21	106.036	0.16%	106.2	0.01%	
(0.9;0;0)	T = 230.44	230.257	0.08%	230.3	0.06%	
(1.0;0;0)	T = 500.00	500	0.00%	500	0.00%	

• На картинке ниже представлена исходная модель с полем распределения температур:

Тест 6.2.13: Одномерная нестационарная теплопередача

NAFEMS Selected Benchmarks for Natural Frequency Analysis "One-Dimensional Transient Heat Transfer", Test No T3 [5].

Temperature = 0

emperature = 100 sin <u>nt</u>

Рассматривается трёхмерная задача об одномерной нестационарная теплопередаче внутри балки.

Геометрическая модель:

- Длина балки L = 0.1 м;
- Сечение балки квадратное, 0.01х0.01м.

Граничные условия:

- Температура в точке A $T_A = 0 \circ C$;
- Температура в точке В изменяется по гармоническому закону: $T_B = 100 \sin \frac{nt}{40}$ °C;

Параметры материалов:

- Изотропный;
- Коэффициент теплопроводности V = 35 Вт/(м ·°C);
- Удельная теплоёмкость C= 440.5 Дж/(кг ·°C);
- Плотность ρ = 7 200 кг/м³.

Сетка:

Рассматривалось три варианта расчетной схемы:

- Балочная схема (один отдельный тест):
 - Линейные балочные элементы Beam2 (10 элементов)
- Оболочечная схема (два отдельных теста):
 - 3-узловые треугольные оболочки TriShell3 (258 элементов)
 - 6-узловые треугольные оболочки TriShell6 (258 элементов)
 - 4-узловые четырехугольные оболочки Shell4 (99 элементов)
 - 8-узловые четырехугольные оболочки Shell8 (99 элементов)
 - 9-узловые четырехугольные оболочки Shell9 (99 элементов)
- Объемная схема (одиннадцать отдельных тестов):
 - 4-узловые тетраэдры Tetra4 (1 352 элемента)
 - 10-узловые тетраэдры Tetra10 (1 352 элемента)
 - 8-узловые гексаэдры Hex8 (1 200 элементов)
 - 20-узловые гексаэдры Hex20 (1 200 элементов)
 - 27-узловые гексаэдры Hex27 (1 200 элементов)
 - Спектральные элементы гексаэдры Hex8s 3го порядка (288 элементов)
 - Спектральные элементы гексаэдры Hex8s 4го порядка (84 элемента)
 - Спектральные элементы гексаэдры Hex20s 3го порядка (288 элементов)

- Спектральные элементы гексаэдры Hex20s 4го порядка (84 элемента)
- Спектральные элементы гексаэдры Hex27s 3го порядка (288 элементов)
- Спектральные элементы гексаэдры Hex27s 4го порядка (84 элемента)

Балочная схема: Оболочечная схема:

Критерий прохождения теста:

• Температура Т в точке С (0.8;0;0) в некоторый момент времени t = 32c равна 36.60 °C с погрешностью 3% [5].

Результаты:

• В таблицах приведены результаты расчёта FIDESYS и ANSYS:

Koonguyagu	Критерий	Критерий Балочная			
точки прохождения		FIDESYS (элементы Beam2)			
	теста, °С	Значение, °С	Ошибка		
(0.8;0;0)	T = 36.60	36.8738	0.75%		

		Оболочечная схема				
Коордицати	Критерий	FIDESYS				
точки	прохождения	Треуголь	ные	Треугольные		
	теста, °С	(TriShell3)		(TriShell6)		
		Значение, °C	Ошибка	Значение, °C	Ошибка	
(0.8;0;0)	T = 36.60	36.2863	0.86%	36.3292	0.74%	

		Оболочечная схема							
Koonguuatu	Критерий	FIDESYS							
точки	прохождения теста, °C	Четырехугольные (Shell4)		Четырехугольные (Shell8)		Четырехугольные (Shell9)			
		Значение, °C	Ошибка	Значение, °C	Ошибка	Значение, °C	Ошибка		
(0.8;0;0)	T = 36.60	36.2241	1.03%	36.94	0.93%	36.94	0.93		

Координаты точки	Критерий	Объ	емная схе	ема (тетраэдр	ы)	
	прохождения теста, °С	FIDESYS				
		Тетраэдры (1	TETRA4)	Тетраэдры (ТЕТКА10)		
		Значение, °С	Ошибка	Значение, °C	Ошибка	
(0.8;0;0)	T = 36.60	36.2302	1.01%	36.1248	1.30%	

		Объемная схема (гексаэдры)							
Коорди	Критерий	FIDESYS							
Наты	прохождения	Гексаэдры	Гексаэдры (НЕХ8) (Н		Гексаэдры (НЕХ20)		Гексаэдры (НЕХ27)		
ТОЧКИ	iecia, C	Значение, °С	Ошибка	Значение, °С	Ошибка	Значение, °С	Ошибка		
(0.8;0;0)	T = 36.60	36.1676	1.18%	36.1202	1.31%	36.1169	1.32%		

- Спектральные элементы:

Коорди Кр наты про» точки те	Клитерий	Численнь	ій анализ	FIDESYS (HE	X8s)	Численні	ый анали	з FIDESYS (HE	X20s)
	прохождения	Элементы 3-го порядка		Элементы 4-го порядка		Элементы 3-го порядка		Элементы 4-го порядка	
	теста, °С	Значение, °C	Ошибка	Значение, °С	Ошибка	Значение, °С	Ошибка	Значение, °C	Ошибка
(0.8;0;0)	T = 36.60	36.1254	1.30%	36.1209	1.31%	36.1254	1.30%	36.1209	1.31%

	Критерий	Численный анализ FIDESYS (HEX27s)					
Координаты	прохождения теста, °С	Элементы 3-г	о порядка	Элементы 4-го порядка			
ТОЧКИ		Значение, °C	Ошибка	Значение, °С	Ошибка		
(0.8;0;0)	T = 36.60	36.1254	1.30%	36.1209	1.31%		

 На картинке ниже представлена исходная модель с полем распределения температур в момент времени t = 32c:

Контактные задачи

Тест 7.1. Контакт цилиндрического ролика (2D)

«Benchmark 1: 2D Cylinder Roller Contact» NAFEMS Advanced Finite Element Contact Benchmarks

Рассматривается задача о вдавливании цилиндра в алюминевый блок. Цилиндр нагружается силой 35 кН в вертикальном направлении. В данном тесте приведено решение для 2D случая для плоскодеформированного состояния с коэффициентом трения 0 и 0.1 (два отдельных теста).

Геометрическая модель:

- Высота блока Н = 200 мм
- Ширина блока t = 200 мм
- Диаметр цилиндра D = 100 мм
- В виду симметрии рассматривается ½ часть модели

Параметры материалов:

- Изотропный
- Модуль упругости цилиндра Е_{цил} = 210 кН/мм²
- Модуль упругости блока E_{блока} = 70 кH/мм²
- Коэффцициент Пуассона v_{цил} = v_{блока} = 0.3

Граничные условия:

- Левые боковые поверхности цилиндра и блока закреплены по нормали к ним (условие симметрии)
- Нижняя грань блока жестко закреплена u_x = u_y = 0
- К верхней точки цилиндра приложена сила F = 35 кН (для симметричного случая F = 17.5 кН)

Сетка:

- Пять типов конечных элементов (пять отдельных теста):
- 4-узловые четырехугольники Quad4
- 8-узловые четырехугольники Quad8
- 9-узловые четырехугольники Quad9
- 3-узловые треугольники Tri3
- 6-узловые треугольники Tri6

Фрагмент конечно-элементной сетки для элементов QUAD4

Критерий прохождения теста:

- Длина зоны контакта 6.21 мм
- Максимальное напряжение в контакте p_{max} = 3 585.37 Н/мм²

Результаты:

 На следующих графиках приведены зависимости напряжений в контакте для данных NAFEMS⁵⁵ [33], FIDESYS.

Распределение напряжений в контакте на поверхности цилиндра вблизи контакта (случай без трения)

⁵⁵ Численные решения в указанном источнике NAFEMS получены при помощи программ ABAQUS и MSC.MARC.

Распределение напряжений в контакте на поверхности цилиндра вблизи контакта (коэффициент трения 0.1)

 На картинках ниже представлены распределения напряжений в контакте, полученные для элементов quad9, на недеформированном и деформированном видах модели, соответственно.

Тест 7.2. 3Д-Штамп (цилиндр с закругленными гранями)

«Benchmark 2: 3D Punch (Rounded Edges)» NAFEMS Advanced Finite Element Contact Benchmarks

Рассматривается задача о вдавливании стального штампа с закругленными гранями в алюминивое основание. Штамп нагружается равномерным давлением в вертикальном направлении. В данном тесте приведено решение для 3D случая с учетом и без учета трения (коэффициент трения 0 и 0.1 - два отдельных теста).

Геометрическая модель:

- Диаметр штампа D_{штампа} = 100 мм
- Высота штампа Н_{штампа} = 100 мм
- Диаметр основания D_{осн} = 200 мм
- Высота основания Н_{осн} = 200 мм
- В виду симметрии рассматривается ¼ часть модели

Параметры материалов:

- Изотропный
- Модуль упругости штампа Е_{штампа} = 210 кН/мм²
- Модуль упругости основания E_{осн} = 70 кH/мм²
- Коэффцициент Пуассона v_{цил} = v_{блока} = 0.3

Граничные условия:

- Внутренние боковые поверхности штампа и основания закреплены по нормали к ним (условие симметрии)
- Нижняя грань основания жестко закреплена $u_x = u_y = u_z = 0$
- На верхнюю поверхность штампа приложено равнометрное давление Р = 100 Н/мм²

Сетка:

- Примерные размеры элементов:
 - Для штампа 4 мм
 - Для основания 3.5 мм
- Два типа конечных элементов (два отдельных теста):
 - 8-узловые гексаэдры Нех8 (штамп 4 656 элементов, основание 18 515 элементов)
 - 4-узловые тетраэдры Tetra4 (штамп 23 007 элементов, основание 57 828 элементов)

Фрагмент конечно-элементной сетки для элементов Hex8:

Фрагмент конечно-элементной сетки для элементов Tetra4:

Критерий прохождения теста:

• Малые отличия перемещений и напряжений в контакте, полученных в CAE Fidesys, от приведенных в NAFEMS⁵⁶

Результаты:

• На следующих графиках приведены зависимости напряжений в контакте для данных NAFEMS [33], FIDESYS.

Распределение перемещений U_z вдоль радиуса основания

⁵⁶ Численные решения в указанном источнике NAFEMS получены при помощи программ ABAQUS и MSC.MARC..

Радиус

Распределение напряжений в контакте вдоль радиуса штапма с учетом трения 0.1

Распределение напряжений в контакте вдоль радиуса штапма с учетом трения 0.1

• На картинках ниже представлено распределение напряжения в контакте, полученное для элементов HEX8, на недеформированном и деформированном видах для фрагмента модели.

• На картинке ниже представлено распределения осевых перемещений для основания и напряжения в контакте для штампа, полученные для элементов HEX8.

Тест 7.3. Нагружение штифта (ЗД)

«Benchmark 5: 3D Loaded Pin)» NAFEMS Advanced Finite Element Contact Benchmarks

Рассматривается задача о нагружении стального штифта силой 100 кН. В данном тесте приведено решение для 3D случая с учетом трения 0.1.

Геометрическая модель:

- L1 = 200 мм
- L2 = 20 MM
- Н = 100 мм
- t = 10 мм
- R1 = 50 мм
- R2 = 100 мм

Параметры материала:

- Изотропный
- Материал штифта:
 - Модуль упругости $E_{\text{штифта}} = 210 \times 10^3 \text{ H/мм}^2$
 - Коэффцициент Пуассона v_{штифта} = 0.3
- Материал полосы:
 - Модуль упругости $E_{\text{полосы}} = 1.85 \times 10^4 \text{ H/m}^2$
 - Коэффцициент Пуассона v_{полосы} = 0.3

Граничные условия:

- Рассматривается ¼ часть модели
- Внутренние боковые поверхности штампа и основания закреплены по нормали к ним (условие симметрии)
- Нижняя грань основания жестко закреплена u_x = u_y = u_z = 0
- На верхнюю поверхность штампа приложена сила P = 50 кН (с учетом симметрии прикладывается суммарная сила 25 кН)

Сетка:

• 27-узловые гексаэдры НЕХ27

Конечно-элементная сетка для элементов Hex27:

Настройки контактной пары:

- Ведущий регион: внутренняя вогнутая поверхность полосы
- Ведомый регион: внешняя выпуклая поверхность штифта
- Коэффициент трения 0.1
- Коэффициент жесткости по нормали 0.05
- Коэффициент жесткости по касательной 0.5
- Точность определения контакта 0.1

Критерий прохождения теста:

• Малые отличия перемещений и напряжений в контакте, полученных в CAE Fidesys, от приведенных в NAFEMS

Результаты:

• На следующих графиках приведены зависимости напряжений в контакте и перемещений (в элементах ведущего региона) для данных NAFEMS⁵⁷ [33], FIDESYS.

⁵⁷ Численные решения в указанном источнике NAFEMS получены при помощи программ ABAQUS и MSC.MARC.

• На картинках ниже представлено распределение напряжения в контакте, полученные для элементов HEX27, на недеформированном виде для фрагмента модели.

ContactStress	1
<mark>2</mark> 03.	
200.	
175.	
150.	
125.	
100.	
75.0	
50.0	
25.0	
E	
0.000	

Тест 7.4. Задача Герца для двух полусфер

G. DUMONT: "Method of the active stresses applied to the unilateral contact" Note HI-75/93/016

Решается задача Герца для двух полуфер. На верхнюю и нижнюю грани полусфер прикладывается перемещение Uy, равное 2 и -2, соответственно. В данном тесте приведено решение для 3D случая без учета трения.

Геометрическая модель:

- Радиус сфер R = 50 мм
- В виду симметрии рассматривается ¼ часть модели

Параметры материалов:

- Изотропный
- Модуль упругости Е = 20 000 МПа
- Коэффцициент Пуассона ν = 0.3

Граничные условия:

- Боковые поверхности закреплены по нормали к ним (условие симметрии)
- К верхней поверхности верхней полусферы приложено перемещение Uy = -2 мм
- К нижней поверхности нижней полусферы приложено перемещение Uy = 2 мм

Сетка:

• 8-узловые гексаэдры НЕХ8

Критерий прохождения теста:

 Напряжение σ₂₂ в точке G равно -2 798.3 МПа [10]

Результаты:

 Полученное в результате решения значение напряжения σ₂₂ в точке G равно -2 837.1 МПа и отличается от исходного на 1.4%.

• На картинке ниже представлено распределение напряжения σ₂₂ в контакте, полученные для элементов HEX8.

Расчет эффективных свойств композитов

Тест 8.1. Однослойный волокнистый композит (N_{нитией}=1)

Решается задача о нахождении эффективных свойств материала для однослойного волокнистого композита. Модель представляет собой прямоугольный параллелепипед со сторонами 25x16x16 мм. По центру вдоль оси X проходит нить длиной 25 мм и радиусом 2.85459861019 мм (подобрано так, чтобы объёмная концентрация нити в композите составляла 10%). Решение задачи взято из источника [36].

Геометрическая модель:

• Параллелепипед 25 мм х 16 мм х 16 мм

Материал:

- Свойства материала нити:
 - Модуль упругости Е=2 000 МПа
 - Коэффициент Пуассона *v*=0.2
- Свойства материала матрицы:
 - Модуль упругости Е=2 МПа
 - Коэффициент Пуассона v=0.3

Граничные условия:

• Периодические

Сетка:

• 8-узловые гексаэдры Нех8

Критерий прохождения теста (точность 3%):

- C_1111 = 202.48 МПа
- C_1122 = 1.22711 МПа
- C_1133 = 1.22711 МПа
- C_1212 = 0.938421 МПа
- C_1313 = 0.938421 МПа
- C_2222 = 3.11029 МПа
- C_2233 = 1.33286 МПа
- C_2323 = 0.888717 МПа
- C_3333 = 3.11029 МПа

Результаты:

Величина	Критерий прохождения теста	FIDESYS		
		Hex8		
		Значение	Ошибка	
C_1111	1.2	1.2	<0.01%	
C_1122	0.4	0.4	<0.01%	
C_1133	0.4	0.4	<0.01%	
C_1212	0.4	0.4	<0.01%	
C_1313	0.4	0.4	<0.01%	
C_2222	1.2	1.2	<0.01%	
C_2233	0.4	0.4	<0.01%	
C_2323	0.4	0.4	<0.01%	
C_3333	1.2	1.2	<0.01%	

Тест 8.2. Двуслойный слоисто-волокнистый композит.

Решается задача о нахождении эффективных свойств материала для двуслойного слоистоволокнистого композита. Модель имеет следующие параметры: диаметр нити 6.0 мм, угол наклона нитей 30°, шаг нитей 8.0 мм, толщина слоя 16.0 мм. Решение задачи взято из источника [36].

Геометрическая модель:

- Диаметр нити 6.0 мм
- Угол наклона нитей 30°
- Шаг нитей 8.0 мм
- Толщина слоя 16.0 мм

Параметры материала:

- Свойства материала нити:
 - Модуль упругости Е=200 000 МПа
 - Коэффициент Пуассона *v*=0.25
- Свойства материала матрицы:
 - Модуль упругости Е=2 МПа
 - Коэффициент Пуассона *v*=0.49

Граничные условия:

• Периодические

Сетка:

• 4-узловые тетраэдры Tetra4.

Критерий прохождения теста (точность 3%):

- C_1111 = 24 852.4 МПа
- C_1122 = 8 281.54 МПа
- C_2222 = 2 763.12 МПа
- C_1212 = 8 283.5

Результаты:

Величина	Критерий прохождения теста	FIDESYS		
		Tetra4		
		Значение	Ошибка	
C_1111	24 852.4	24 852.4	<0.01%	
C_1122	8 281.54	8 281.54	<0.01%	
C_2222	2 763.12	2 763.12	<0.01%	
C_1212	8 283.5	8 283.5	<0.01%	

Тест 8.3. Сплошной куб из однородного материала Гука (3D)

Решается задача о нахождении эффективных свойств материала для куба из однородного материала Гука. Решение задачи следуют напрямую из определения эффективных свойств: эффективными свойствами однородного материала являются свойства этого материала [34].

Геометрическая модель:

• Сторона куба L=1 мм

Параметры материала:

- Материал Гука
- Модуль упругости Е = 1 МПа
- Коэффициент Пуассона v = 0.25

Граничные условия:

• Непериодические

Сетка (два отдельных теста):

- 8-узловые гексаэдры Нех8
- 4-узловые тетраэдры Tetra4

Критерий прохождения теста (точность 1%):

- C_1111 = 1.2 МПа
- C_1122 = 0.4 МПа
- C_1133 = 0.4 МПа
- C_1212 = 0.4 МПа
- C_1313 = 0.4 МПа
- C_2222 = 1.2 МПа
- C_2233 = 0.4 МПа
- C_2323 = 0.4 МПа
- C_3333 = 1.2 МПа

Результаты:

Величина	Критерий прохождения теста	FIDESYS			
		Hex8		Tetra4	
		Значение	Ошибка	Значение	Ошибка
C_1111	1.2	1.2	<0.01%	1.2	<0.01%
C_1122	0.4	0.4	<0.01%	0.4	<0.01%
C_1133	0.4	0.4	<0.01%	0.4	<0.01%
C_1212	0.4	0.4	<0.01%	0.4	<0.01%
C_1313	0.4	0.4	<0.01%	0.4	<0.01%
C_2222	1.2	1.2	<0.01%	1.2	<0.01%
C_2233	0.4	0.4	<0.01%	0.4	<0.01%
C_2323	0.4	0.4	<0.01%	0.4	<0.01%
C_3333	1.2	1.2	<0.01%	1.2	<0.01%

Тест 8.4. Сплошной куб из ортотропного материала.

Решается задача о нахождении эффективных свойств материала для куба из ортотропного материала. Решение задачи следуют напрямую из определения эффективных свойств: эффективными свойствами однородного материала являются свойства этого материала [35]

Геометрическая модель:

• Сторона куба L=1 мм

Параметры материала:

- Ортотропный
- Модули упругости E_x = 12 МПа, E_y = 8 МПа, E_z = 4 МПа
- Главные коэффцициенты Пуассона PR_{xy} = 0.25, PR_{xz} = 0.25 PR_{yz} = 0.25
- Модули сдвига G_{xy} = 3 МПа, G_{xz} = 2 МПа, G_{yz} = 1 МПа

Граничные условия:

• Непериодические

Сетка (два отдельных теста):

- 8-узловые гексаэдры Нех8
- 4-узловые тетраэдры Tetra4

Критерий прохождения теста (точность 1%):

- C_1111 = 21 МПа
- C_1122 = 9 МПа
- C_1133 = 7.5 МПа
- C_1212 = 3 МПа
- C_1313 = 2 МПа
- C_2222 = 13 МПа
- C_2233 = 5.5 МПа
- C_2323 = 1 МПа
- C_3333 = 7.25 МПа

Результаты:

Величина	Критерий прохождения теста	FIDESYS			
		Hex8		Tetra4	
		Значение	Ошибка	Значение	Ошибка
C_1111	21	21	<0.01%	21	<0.01%
C_1122	9	9	<0.01%	9	<0.01%
C_1133	7.5	7.5	<0.01%	7.5	<0.01%
C_1212	3	3	<0.01%	3	<0.01%
C_1313	2	2	<0.01%	2	<0.01%
C_2222	13	13	<0.01%	13	<0.01%
C_2233	5.5	5.5	<0.01%	5.5	<0.01%
C_2323	1	1	<0.01%	1	<0.01%
C_3333	7.25	7.25	<0.01%	7.25	<0.01%

Литература

- [1] Седов Л.И. "Механика сплошной среды, том 2". М.: Наука, 1970г., 568 стр.
- [2] S. Timoshenko, S. Woinowsky-Krieger "Theory of Plates and Shells". McGraw–Hill New York, 1959, 580 pages.
- [3] Тимошенко С.П., Гудьер Дж. Теория упругости, перев. с англ. М.: Наука, 1975 г. 576 стр.

[4] Аки К., Ричардс П. Количественная сейсмология: Теория и методы. Т. 1. Пер. с англ. – М.: Мир, 1983. – 520 с.

- [5] The Standart NAFEMS Benchmarks, TNSB, Rev. 3, 05/10/1990
- [6] Nastran Verification Manual
- [7] http://ps-2.kev009.com/CATIA-B18/CATIAfr_C2/elfugCATIAfrs.htm

[8] А.С. Городецкий, И.Д. Евзеров Компьютерные модели конструкций - Киев: Факт, 2005 г. – 344 стр.

[9] M.V. Barton, "Vibration of Rectangular and Skew Cantilever Plates", Journal of Applied Mechanics, vol. 18, 1951, p. 129-134.

[10] http://www.code-aster.org/V2/doc/v10/en/

[11] OLSON,M.D., LINDBERG,G.M., "Vibration analysis of cantilevered curved plates using a new cylindrical shell finite element, 2nd Conf. Matrix Methods in Structural Mechanics", WPAFB, Ohio, 1968.

[12] OLSON,M.D., LINDBERG,G.M., "Dynamic analysis of shallow shells with a doubly curved triangular finite element", JSV, Vol. 19, No 3, pp 299-318, 1971

- [13] Comparison of Autodesk Simulation tools to NAFEMS Benchmarks. © 2011 Autodesk, Inc.
- [14] R.D. Blevins, formulated for natural frequency and shape mode, New York, Van Nostrand, 1979
- [15] M. Petyt, Introduction to Finite Element Vibrational Analysis, Cambridge University Press, 1990
- [16] http://www.autofemsoft.com/en/examples.html

[17] Аналитическое решение: W. Hovgaard, "Stress in three dimensional pipe-bends", Transactions of ASME, vol. 57, FSP 75 – 12, p. 401 – 416.

[18] Семёнов В.А. "Верификационный отчет по программному комплексу MicroFe". М.: 2009, 327 стр.

- [19] Тимошенко С.П. Войновский-Кригер С. Пластинки и оболочки М.: Наука, 1966 г. 636стр.
- [20] Тимошенко С.П. Сопротивление материалов т.1 М., 1965 г. 364 стр.
- [21] SCAD Structure Контрольные примеры, Киев ,2000
- [22] SolidWorks Simulation 2010 Validation

[23] Биргер И.А., Пановко Я.Г. Прочность, устойчивость, колебания. Справочник в трех томах. Том 3. . - М.: Машиностроение, 1968

- [24] S.P. Timoshenko, J.M Manages "Theory of elastic stability" second edition. Dunod, 1966, 500 pages
- [25] Михеев М. А., Михеева И. М. Основы теплопередачи. Изд. 2-е, стереотип. М., «Энергия», 1977.
- [26] Боли Б., Дж.Уэйнер. Теория температурных напряжений. М., Наука, 1974 г. 249 стр., 259 стр.

[27] Биргер И.А., Пановко Я.Г. Прочность, устойчивость, колебания. Справочник в трех томах. Том 1. . - М.: Машиностроение, 1968

- [28] Verification Manual for the Mechanical APDL Application, SAS IP, Inc 2009
- [29] Качанов Л.М. Основы теории пластичности М.: Наука, 1969 г. 420 стр.

[30] NAFEMS Understanding Non-linear Finite Element Analysis Through Illustrative Benchmarks

[31] Писаренко Г.С., Яковлев А.П., Матвеев В.В. Справочник по сопротивлению материалов. - Киев: Наук. думка, 1988.

[32] I-Deas Model Solution Verification Manual

[33] NAFEMS Advanced Finite Element Contact Benchmarks

[34] Лурье А. И. Нелинейная теория упругости. – М., Наука, 1980. – 512 с

[35] Победря Б.Е. Механика композиционных материалов. – М.: Издательство Московского университета, 1984. – 335 с.

[36] Кристенсен Р. Введение в механику композитов. – М., «Мир», 1982. – 334 с.