

Version 2.0

User Guide

Contents

Introduction	
At a glance	9
Getting Started	
System requirements	
Hardware requirements	
Operating system	
Installation	
Microsoft Windows	
Linux	13
Activation and trial period	14
Trial period	14
Activation	15
Information on the purchased license	15
Removing the software	15
Overview	
Package structure	
Running the software	
Main Window	
Software history	19
Version 2.0	19
Version 1.7.1	
Version 1.7.0	20
Version 1.6 R2	21
Version 1.6	21
Version 1.5 R2	22
Version 1.5	22
Version 1.4	23
Version 1.3	23
Version 1.2	23
Version 1.1	23
Using the Program	24
Geometry	24
Geometry import	24
Geometry creating	25

Meshing	25
Volume meshing	26
Surface mesh generation	26
Setting material and element type	27
Element types	27
Set the Material	27
Setting tabular dependencies for materials	29
Import/Export Material	
Setting the yielding model	
Von Mises yield criterion	
Drucker-Prager yield criterion	
Polylinear hardening	35
Element types	
Blocks operations	
Setting shell properties	
Setting beam properties	40
Specifying Sphere element properties	41
Set spring properties	41
Setting boundary conditions	42
Types of boundary conditions	42
Setting initial conditions	43
Types of initial conditions	43
Time/coordinate dependency	43
Setting contact interaction	46
Contact region	46
Autoselection of contact	48
Contact algorithm	50
Elements Type	51
Contact status	51
Starting calculation	52
Analysis types	52
Types of analysis	53
Multistep solution	
Setting steps for boundary conditions	54
Setting steps for blocks (volumes)	55

Spectral element method	57
SEM brief description and advantages	57
SEM Usage	59
Parallel calculations on several computers using MPI technology	60
MPI brief description and advantages	60
MPI implementation in Fidesys	60
MPI installation	60
MPI local usage	61
MPI usage on several nodes	61
Requirements for the correct operation	61
MPI setting on several nodes	62
Registration before the first usage	63
Overview of the calculation results	64
Calculation example using MPI	64
Heterogeneous materials effective property calculation	65
Geometry of the model for effective property calculation	65
Starting calculation	66
Element types	67
Effective property calculation and its results	67
SEG-Y format	69
Results Visualization and Postprocessing	72
Fidesys Viewer at a glance	72
Main Window	72
Basics of the program	73
Display on the data field and legend model	73
Selection	73
On-screen information display	73
Overview of the strained model	73
Spherical/cylindrical coordinate systems	73
Graphing along straight line	73
Graphing along curves	74
Graphing in time dependency	74
Estimation of the mesh quality	74
Slice	74
Cross section	74

Beam and shell 3D-display	74
Margin of Safety	74
Harmonic analysis	75
Data saving	75
Step-by-Step User Guide	76
Static analysis (3D)	
Geometry creation	
Meshing	
Setting boundary conditions	
Setting material and element type	
Starting calculation	
Results analysis	
Using Console Interface	
Static load (gravity force)	
Geometry creation	
Meshing	
Setting boundary conditions	
Setting material and element type	
Starting calculation	
Results analysis	
Using Console Interface	
Static load (beam model, reaction forces)	
Geometry creation	
Meshing	
Setting boundary conditions	
Setting material and element type	
Setting beam cross section profile	
Starting calculation	
Results analysis	
Using Console Interface	
Static load (shell)	
Geometry creation	
Meshing	
Setting boundary conditions	
Setting material and element type	

Starting calculation	117
Results analysis	118
Using Console Interface	121
Hydrostatic pressure on cylinder (setting boundary conditions according to coordinates)	122
Geometry creation	122
Meshing	127
Setting material and element type	128
Setting boundary conditions	131
Starting calculation	133
Results analysis	134
Using Console Interface	136
Buckling (shell model)	137
Geometry creation	137
Meshing	140
Setting boundary conditions	142
Setting material and element type	143
Setting shell thickness	145
Starting calculation	146
Results analysis	146
Using Console Interface	151
Modal analysis (3D)	152
Geometry creation	153
Meshing	153
Setting boundary conditions	154
Setting material and element type	155
Starting calculation	157
Results analysis	158
Using Console Interface	160
Modal analysis (shell model)	161
Geometry creation	161
Meshing	162
Setting boundary conditions	163
Setting material and element type	164
Setting shell thickness	166
Starting calculation	

Results analysis	
Using Console Interface	
Setting heat transfer (3D, working with two blocks)	
Geometry creation	
Meshing	
Setting material and element type	
Setting boundary conditions	
Starting calculation	
Results analysis	
Using Console Interface	
Dynamic load: nonsteady heat transfer (3D, implicit scheme)	
Geometry creation	
Meshing	
Setting material and element type	
Setting boundary conditions	
Setting time dependency of boundary conditions	
Starting calculation	
Results analysis	
Using Console Interface	
Harmonic analysis (beam model)	
Geometry creating	
Meshing	
Specifying the material and type of element	
Beam section setting	
Setting boundary conditions	
Run calculation	
Results analysis	
Using the console interface	
Bounded Contact Simulation	
Geometry creation	
Meshing	
Specifying the material and type of element	
Setting boundary conditions	
Run calculation	
Results analysis	

Using the console interface	
Change of pressure in well	
Geometry creating	
Meshing	
Specifying the material and type of element	
Setting boundary conditions	
Run the calculation	
Results analysis	
Estimate the safety margin	
Using the console interface	
The loading history of the elastic-plastic plate	
Geometry creating	
Meshing	
Specifying the material and element type	
Setting boundary conditions	
Set the dependence of the BC on the time and / or coordinates	
Run calculation	
Results analysis	
Using the console interface	
Sequential addition of volumes in the calculation process	
Geometry creating	
Meshing	
Specifying the material and type of element	
Setting boundary conditions	
Run calculation	
Result Analysis	
Using the console interface	
Sequential deletion of volumes in the calculation process	
Geometry creating	
Meshing	
Set the Material	
Setting boundary conditions	
Set the material and element type	
Run calculation	
Result Analysis	

Using the console interface	
Seismic wave propagation (SEG-Y results)	
Geometry creating	
Meshing	
Specifying the material and type of item	
Setting boundary conditions	
Set the BC dependency on time and / or coordinates	
Receivers	
Run calculation	
Results analysis	
Using the console interface	
Contacts	282

Introduction

At a glance

CAE Fidesys is a software package for strength analysis. The package comprises the following types of analysis:

- Static
- Dynamic (transient)
- Buckling
- Modal
- Harmonic;
- Effective properties.

The package also includes a program *Fidesys Viewer* for visualization and analysis of the obtained results:

- Visualization of scalar and vector fields
- SEG-Y files visualization
- Graph
- Plotting dependencies of functions on frequency;
- Time dependency analysis.

Getting Started

System requirements

CAE *Fidesys* from the beginning has been designed in such a way that the system requirements of the package are low: it can be run on an ordinary personal computer. If the computer has one or more multi-core processors calculations will be automatically parallelized on all cores. Starting version 1.5, calculation paralleization to several nodes connected to a local network or a cluster are available in the 64-bit version of the program package.

CAE Fidesys software package has the following minimal requirements for software and hardware.

Hardware requirements

- CPU: Dual-core 1,7 GHz minimum
- RAM: 4GB minimum
- Free hard drive space: 5 GB
- Video card NVIDIA GeForce GTX 460 or faster
- Screen resolution: 1024x768 or higher

Operating system

The following Windows versions 64-bit are supported:

- Windows 7 Service Pack 1;
- Windows 8;
- Windows 8.1;
- Windows Server 2008 R2 SP1;
- Windows Server 2008 Service Pack 2;
- Windows Server 2012;
- Windows Server 2012 R2;
- Windows 10;
- Ubuntu 18.04
- CentOS 6;
- CentOS 7;
- Debian 9;
- RedHat 6;
- RedHat 7;
- Open SUSE Leap 15
- Alt Linux 7
- Alt Linux 8

Installation

Microsoft Windows

The user installing the software on a computer must have administrator rights on that PC. Please, close all the *CAE Fidesys* windows before installation if there's another version of *CAE Fidesys* installed.

1. Download the *CAE Fidesys* installer from the site <u>http://www.cae-fidesys.com/ru/download/login</u> and run it for the architecture you are interested in (Windows x64 or Windows x32), or run the installation from the DVD-ROM.

If any other version of CAE Fidesys is already installed on a computer, it will be suggested to remove it or to cancel the installation while starting the installation program.

2. Click **Next** in a pop-up window.

💱 CAE Fidesys 2.0 Setup	- 🗆 X
	Welcome to the CAE Fidesys 2.0 Setup
	Setup will guide you through the installation of CAE Fidesys 2.0.
	It is recommended that you close all other applications before starting Setup. This will make it possible to update relevant system files without having to reboot your computer.
	Click Next to continue.

Next >	Cancel

3. Please, read the license agreement. If you do not agree with any of its paragraphs, interrupt the installer by clicking **Cancel**. If you totally agree with its terms, click **Agree** to proceed the installation.

CAE Fidesys 2.0 Setu	р		-	-		>
2	License Ag Please revie	reement ew the license terms	s before installir	ng CAE	Fidesys	s 2.0
Press Page Down to se	e the rest of the a	greement.				
END-USER LICENSE AC	GREEMENT (EULA)					^
IMPORTANT! Read be Fidesys", further defin Yours, including the ins present License agree The present License ag legal agreement betwe You, the licensee (phy	ned as "Software p stallation and copy ment. greement to the Ei een FIDESYS comp	roduct." Any use o ing it, means Your nd user (hereinafte bany (collectively th	f the Software p agree to the ter r - "License Agro ne "FIDESYS con	oroduc ms of eemen npany'	the t") is a ") and	~
If you accept the terms agreement to install CA	-	t, click I Agree to co	ontinue. You mu	ist acc	ept the	
	AE Fidesys 2.0.	t, dick I Agree to co	ontinue. You mu	ist acc	ept the	

4. Select a folder for installation and click **Next**.

2	Choose Install Location Choose the folder in which to install CAE Fide	esys 2.0).	
	AE Fidesys 2.0 in the following folder. To install in a diffe t another folder. Click Next to continue.	erent fol	der, dick	
browse and select				
Destination Fold	er iles\Fidesys\CAE-Fidesys-2.0	Brows	e	
	iles\Fidesys\CAE-Fidesys-2.0	Brows	e	

5. In the Start menu enter the name of the folder where a shortcut for running the program will be created. If you do not want to create a folder in the Start menu, choose **Do not create shortcuts**. Click **Install.**

🖓 CAE Fidesys 2.0 Se	tup		_		×
2	Choose Start Choose a Start	Menu Folder t Menu folder for the C	CAE Fidesys 2.	.0 shortcu	ts.
	u folder in which you wo ne to create a new folde		program's sho	rtcuts. Yo	u
CAE Fidesys 2.0					
@MAX SyncUp Accessibility Accessories Administrative Tools	3				^
ANSYS 18.2 ANSYS, Inc. License CAE Fidesys 1.7 Dolby	Manager				
Dr.Web GitHub, Inc Intel Parallel Studio	XE 2016				~
Do not create sh					
Jullsoft Install System v	2,70,3-UNICOUR	< Back	Install	Cano	el

6. The process of installation may take some time. Click **Ready** after installing.

Linux

Only 64-bit Linux distribution kits are currently supported.

- 1. Please, download the **CAE Fidesys** file for Linux x64 from <u>http://www.cae-fidesys.com/ru/download/login</u>.
- 2. Right-click on the downloaded file and select **Properties** item from the contextual menu.
- 3. In the opened window, go to the tab **Permissions** and tick **Allow executing file as program**. Click **Close**.

 FidesysBundle 	e-1.5.16.290-R2-lin64-ru-sfx.run 👘 🗙
Basic Emblems	Permissions Open With Notes
Owner:	nm - NM
Access:	Read and write
Group:	nm 🔻
Access:	None
Others	
Access:	None
Execute:	Allow executing file as program
SELinux context:	unknown
Last changed:	Fri. 28 Nov. 2014 13:46:12
Help	Close

4. Run the installer by double-clicking on the installer file. When the dialog box appears, click **Run in Terminal** button:

•	-		idesysBundle-1. isplay its conter	
_		dle-1.5.16.290-R s an executable t		
Run in	Terminal	Display	Cancel	Run

Activation and trial period

When you first run the preprocessor, the *Fidesys Licensing* window appears with a proposal to purchase a license or to activate a trial period.

Trial period

30-day trial period activates automatically on package installation. The trial period starts at the moment when application installation is completed. The trial period is intended for familiarization with the product and is not for any commercial calculations (related directly or indirectly to getting a profit out of them). The trial period can not be activated on a virtual machine, and a trial version is not dedicated to work with via remote desktop.

To activate a trial period, click the button **Trial period** in the start window.

As long as the program is running in trial mode, the *Fidesys Licensing* window will appear each time you launch it. Please, press the button **Try** to continue working in a trial mode.

Activation

To activate the product:

- 1. Press the button **Activate** in the *Fidesys Licensing* window.
- 2. Select **I do not have a V2C file** and click **Generate C2V.** Save File dialog window will be opened. Save the C2V file and send it to the organization where the product was purchased.
- 3. In response, you will get a file containing an activation key with V2C extension. Having received the V2C file, select **I have V2C file** and click **Apply V2C.** You will see an Open File dialog window. Specify a path to the received V2C file.

Fidesys Licensing	×
FIDESYS	
O I have not V2C File	
Generate C2V	
I have V2C File Apply V2C	
← Back	
Copyright 2014 Fidesys LLC. All rights reserved. www.cae-fidesys.com	

4. Your product is activated.

Activation will performed automaticaly while using dongle.

Information on the purchased license

On selecting **Help** \rightarrow **About** in the Main Menu, you will see a window with the following information:

- The full software version number;
- License type and its expiration date;
- The list of features available in the purchased license.

Removing the software

The user removing the software must have administrator rights.

Please, finish all the running copies of the application before removing the software: both preprocessor (*Fidesys*) and postprocessor (*Fidesys Viewer*).

To remove the software, open Windows Control Panel and select **Programs and Features (Add or Remove Programs** in the earlier versions of Windows). Select *CAE Fidesys #.#.# xNN* in the list of installed programs, where *#.#.#.#* are the four numbers standing for the number of the version and *xNN* is the architecture (x64). Right-click it and choose **Delete/Change**. Confirm your choice by clicking **Delete** in the opened window.

Removing the software does not involve removing its activation data.

Overview

Package structure

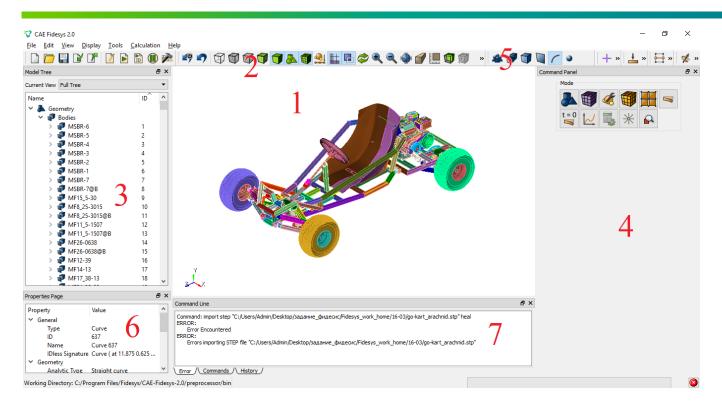
CAE Fidesys comprises two main components:

- Fidesys preprocessing and analysis (computational kernels).
- FidesysCalc calculations;
- Fidesys Viewer postprocessing and visualization of results.

Running the software

You can run the program in either of the following ways:

- Using the Start menu (if you chose creating shortcuts in it when installing): choose **Fidesys** in the folder where you installed the program.
- Using any file manager for Windows from the list where the program was installed (C:\Program Files\Fidesys\Fidesys 2.0 by default): run the file fidesys.exe (it is in the folder preprocessor\bin).


Several copies of the program can be run on the same PC at a time.

If the license fee for the program is activated, after running the program you see its Main window. If the trial period is activated, a *Fidesys Licensing* window appears in which you should either click the button **Activate** in order to purchase a license or click **Try** to continue working in trial mode and go to the Main window.

Main Window

CAE Fidesys has an intuitive graphic interface providing communication between the user and the software, and it allows the user to perform the full cycle of calculations step-by-step.

Workbench (1) displays the model and visual effects.

Main Menu (2) includes standard operations for working with files and projects, managing the visualization modes, panel display settings, help, and other functionality available in the drop-down lists of the menu.

Power Tools (3) comprise the Model Tree, as well as the tools for geometry and mesh analysis.

Command Panel (4) contains most of commands for working with the program. Panel display buttons are logically located, and it allows the user to perform the full cycle of calculations step-by-step.

Toolbar (5) comprises the buttons for calling the most frequently used commands while working with the program.

Properties Page (6) displays the properties of the selected object in the Workbench or in the Model Tree.

Console (7) is used for the input of commands of **CAE Fidesys** and for the output of the messages for the user.

Software history

Version 2.0

Released: February 2019

Added calculation of multi-step loading

- Available setting of active boundary conditions for each loading step (adding / removing BC in steps);
- Available setting of the boundary conditions for each loading step in the form of a table dependence (change of BC on the steps);
- Available setting of active blocks in the model for each loading step (adding / deleting blocks in steps).

Recording and reading a file in SEG-Y format

- Added automatic recording of the results of dynamic calculations (displacements, velocity, pressure, principal stresses) in SEG-Y files for required receiver lines;
- The ability to open and analyze SEG-Y files has been added to *FidesysViewer*.

Additions and improvements in the preprocessor

- Added support for formula and table dependencies for material constants in import and export of materials;
- Added drawing graphs for table dependencies;
- The ability to create models in the preprocessor is enabled regardless of the type of license key. For example, you can create a model for non-linear calculation, having only a key for the Standard version and then calculate on the workstation where the key for the Professional version is available.

Version 1.7.1

Released: September 2018

New types of boundary conditions

- bonded contact (the ability to solve large assemblies on nonconformal mesh of different order);
- radiation;
- heat source;
- volume heat source;
- pore pressure;
- fluid flow;
- source of fluid;
- volume source of fluid.

New types of analysis

- pore fluid transfer;
- calculation of effective coefficients of thermal expansion.

Added ability to set initial conditions

- initial displacement;
- initial speed;
- initial angular velocity;
- initial temperature;
- initial pore pressure.

New material properties

- multilinear hardening (Mises);
- prestress;
- piezoelasticity.

Additions and improvements in the preprocessor

• a new smart method for setting materials.

Additions and improvements in the postprocessor

• improved software interface.

Version 1.7.0

Released: August 2017

New element types

- springs;
- sphere element;
- beam elements of the second order (with intermediate nodes).

New types of boundary conditions

- distributed force;
- rigid coupling;
- gravity;
- angular velocity;
- non-reflective boundary conditions and initial conditions in dynamic analysis.

New types of analysis

- harmonic analysis;
- method of superposition of modal forms, including the setting of damping parameters, for solving dynamic problems.

Added the ability to set dependencies of material parameters on coordinates / temperature.

Added the ability to calculate the effective masses and coefficients of participation of own forms of the structure.

For beam elements added new section profiles.

Improved operation of the generator of unstructured settlement mesh, including the case of hybrid mesh.

Added support for CATIA v5, v6 formats.

Additions and improvements in the preprocessor

• Improved stability.

Additions and improvements in the processor (calculation module)

- Elastoplastic deformation according to the Drucker-Prager model;
- Harmonic analysis;
- Ability to simulate couplings.

Additions and improvements in the postprocessor (3D-visualization module)

• Improved operation of the software interface based on Python Shell.

Version 1.6 R2

Released: April, 2015

Updates and improvements in the preprocessor

- The possibility to automatically process the calculation results of composites effective properties;
- The stability of the operations is increased.

Updates and improvements in the processor

- Elastoplastic deformation by the Drucker-Prager model;
- Calculation of the effective properties of composite materials;
- HPC and Dynamics modules are available in Standard and Professional.

Updates and improvements in the postprocessor (3D-vizualization module)

• Programming interface operation based on Python Shell is improved.

Version 1.6

Released: February, 2015

- The support for importing geometry in the following CAD-formats is added:
 - SolidWorks;
 - Parasolid;
 - Pro/Engineer.
- The support of APREPRO (An Algebraic Preprocessor for Parameterizing Finite Element Analyses) is added
- New profiles of beam cross section are added:
 - Channel (C-shape);
 - Corner (L-shape);
 - Taurus (T-shape);
 - Z-shape;
 - Hollow rectangle.
- The possibility to set the boundary conditions using tabular and formular dependency on the coordinates and temperature for static analysis is added;
- The new generator of adaptive tetrahedral meshes is added;
- In accordance with the users wishes, the panel of nonlinear solver settings is changed;
- Contact problems in 3D and 2;
- Contact surface binding in 3D and the contact curves binding in 2D;
- Modal analysis for prestressed bodies;
- The automatic adaptive calculation of the loading steps size is added;
- The output of intermediate results and calculation log (textual information on the status of the calculation by stages) are added for nonlinear problems;
- Thermoelastic problems for 2nd order shell elements: TRISHELL6, SHELL8, SHELL9;

- The support for multiprocessor calculations based on MPI technology for the following calculations is added:
 - Spectral element method;
 - Plasticity for small and finite deformations;
 - Dynamic analysis for the explicit and implicit time schemes.
- The incorporation of plastic deformation using finite element method and spectral element method is modified taking into account:
 - Finite deformations;
 - Thermoelasticity.
- Dynamic analysis perfomance is improved;
- Performance of spectral element method on hybrid meshes in buckling problems is improved;
- The solution tolerance of static problem with shear loading using 4-node plane and 8-node volumetric elements is increased;
- Fidesys Viewer 1.6: focusing of model elements in the current position of the mouse pointer is added;
- Fidesys Viewer 1.6: strength analysis filter operation is improved;
- Fidesys Viewer 1.6: operation of the "Agreed resultants" filter for shell structures is improved;
- The compatibility with Windows 8 and Windows 8.1 is improved;
- The Progress Bar operation is improved;
- The CAE Fidesys licensing system is added.

Version 1.5 R2

Released: July, 2014

- The ability to set the analytic spatial coordinates dependence of the boundary conditions is added;
- The possibility of producing graphs of the spatial coordinates and time dependency of the boundary conditions is added;
- The generation of console commands for setting up and running the calculation of the graphical interface widgets is added. ;
- Import/export of materials from the graphical interface are added;
- The package includes a new version of Fidesys Viewer with a number of improvements.

Version 1.5

Released: June, 2014

- Static analysis for elastoplastic material models;
- Orthotropic materials;
- Physically nonlinear hyperelastic materials: Mooney-Rivlin and Murnaghan;
- Calculations by spectral element method for hybrid meshes;
- The possibility of parallel calculations on one or more computers using the MPI technology (linear statics, modal analysis, buckling) is added;
- The calculation of the margin of safety in accordance with various strength theories;
- 8-node shell elements SHELL8;
- Console commands to set analysis parameters and to run the calculation;
- The ability to set the time dependence individually for each boundary condition in dynamic problems;
- Windows XP compatibility issues are fixed.

Version 1.4

Released: December, 2013

- Buckling problems;
- Thermal conductivity and thermoelastic problems;
- Curvilinear finite elements;
- Geometrically nonlinear problems;
- The spectral element method for linear and nonlinear two-and three-dimensional static problems and modal analysis;
- Support for hybrid meshes;
- Bug fixing.

Version 1.3

Released: July, 2013

- Beam elements;
- Shell elements;
- Geometry creation of high-speed processes by the spectral element method is added;
- Static and dynamic nonlinear problems;
- High-order finite elements;
- Bug fixing.

Version 1.2

Released: February, 2013

- Computational performance is improved;
- Plane-stress and plane-strain problems;
- The translation into cylindrical and spherical systems is added in the postprocessor;
- The calculation of tensors invariants is added in the postprocessor;
- The visualization of the calculation results as contour lines is added in the postprocessor.

Version 1.1

Released: November, 2012

- Parameter setting and calculation launch from the Main Menu of the preprocessor are added;
- Dynamic transient problems;
- Modal analysis;
- Hexahedral meshes support;
- The operation with projects and the calculation control system are added;
- The postprocessor's localization support;
- The postprocessor performance is improved.

Using the Program

Performing calculations with the use of *CAE Fidesys* implies the following steps:

- Setting the geometry;
- Meshing;
- Setting boundary conditions;
- Setting the material;
- Starting calculation;
- Visualizing and analyzing results.

All of the steps except for the last one are made in preprocessor; the last step is made in postprocessor.

Geometry

CAE Fidesys allows one to generate volume geometry on your own due to the built-in functionality, as well as to import 3D models created in different CAD-systems.

Geometry import

For geometry import choose **File** \rightarrow **Import** in the Main menu. **CAE Fidesys** supports the import of the following formats:

- ACIS (*.sat, *.sab);
- IGES (*.igs, *.iges);
- STEP (*.stp, *.step);
- Warefront Object (*.obj);
- Stanford Polygon (*.ply);
- Assimp;
- GAMBIT Real Geometry (*.dbs);
- Catia (*.CATPart, *.CATProduct, *.ncgm);
- Parasolid (*.x_t, *x_b);
- SolidWorks (*.sldprt, *.sldasm);
- ProE (*.ptr, *.asm);
- Abaqus (*.inp);
- STL Files (*.stl);
- Fluent (*.msh);
- GAMBIT Neutral (*.neu);
- Ideas (*.unv);
- Nastran (*.bdf);
- Patran (*.pat, *.neu, *.out);
- Cubit files (*.cub);
- Trelis (*.trelis);
- CATIA v4 (*.model);
- Fidesys Case (*.fc).

Geometry creating

For geometry generation *CAE Fidesys* provides the user with large numbers of volume geometric primitives (parallelepiped, cylinder, prism, cone, pyramid, sphere, torus). It also allows uniting the surfaces in closed volume bodies. For complex geometry generation you can use Boolean operations (Intersect, Subtract, Unite volumes) and different transformations of the object (Rotate, Move, Scale, Reflect). All of the described functionality is available on Command Panel in **Geometry** section.

Meshing

CAE Fidesys supports the following types of the finite elements for meshes:

- volume: SOLID (tetrahedrons, hexahedra, pyramids, prisms);
- plane: PLANE (triangles, quadrangles);
- shell: SHELL (triangles, quadrangles);
- beam: BEAM;
- springs: SPRING;
- point masses: LUMPMASS.

The order of all elements, except for springs and point masses, can vary from 1st to 9th. The order of the element above the second means using the method of spectral elements

Volume meshing

Select volume mesh generation section on Command Panel (Mode – **Mesh**, Entity – **Volume**).

- 1. Specify the degree of mesh refinement (Action **Intervals**) for each volume:
 - Select the volumes (specify their ID). You can enumerate several volumes using space after each of them. All of the volumes can be set by the command **all**;
 - Select the way of mesh generation (Auto, Approximate size, Geometry-adaptive, Interval or Sizing function);
 - Click Apply Size.
 - •
- 2. Specify the type of the elements for each volume:
 - Select the entities for mesh generation (specify their ID). You can enumerate several volumes using space after each of them. All of the volumes can be set by the command **all**;

Comma						8)	×
Mo	de - I	Mesh —					
6	L		Ś				
t	= 0			棠	Q		
Ent	iity -	Volume -					
E			C	*	4	\$	
ď		Ħ	Δ	Ĵ	+	\Rightarrow	
Σ	\$						
Act	tion -	Interva	s				
l	Ī		8	9	P	×	
		1+ 100	•	Ø			

- Select meshing scheme (tetrahedral (Tetmesh) or hexahedral elements (Automatically calculate);
- For tetrahedral mesh generation select the level of optimization (Extreme, Strong, Heavy, Standard, Medium, Light, or None) and set the checkboxes in front of the corresponding points, if you need to minimize the over-constrained and/or sliver tets.
- Click **Apply Size;**
- Click Mesh.

For complex geometry it is recommended to set the scheme of surface mesh generation first (triangular or quadrangular elements).

Surface mesh generation

To generate a surface mesh, follow these steps.

- 1. Select surface mesh generation section on Command Panel (Mode **Mesh**, Entity **Surface**).
- 2. Specify the degree of reducing of mesh (Action IntervalsApproximate size) of each surface:

• select volumes (specify their ID). Multiple volumes can be listed through a space; all volumes can be specified using the command **all**;

- indicate the Approximate size;
- Click Apply Size.

Command P	anel				8 :
Mode - I	Mesh —				
		Ś			
t = 0			✻	Ω	
Entity -	Surface				
		r	*	4	\$
\mathbf{A}	Ħ	\triangle	Ĵ	+	\Rightarrow
3					
-Action -	Interval	s			
Ī		8	Ø	P	×
	1→ 100		∎⇒		

To generate an irregular mesh (e.g. make it finer in the vicinity of stress concentrators), you can add nodes on the boundaries near geometry features, as well as split curves, surfaces and volumes in the vicinity of the features.

Using the functionality available on Command Panel you can:

- Check the mesh quality (including checking the mesh quality of individual elements: volumes, surfaces, curves);
- Modify the generated mesh (Refine, Smooth, Delete);
- Renumber the elements and delete the generated mesh.

Setting material and element type

Element types

Set the Material

CAE Fidesys supports the following materials:

- Hooke material;
- Orthotropic material;
- Transversely isotropic material;
- Mooney Rivlin material;
- Material Blatza-Ko;
- Murnaghan material;
- Elastoplastic material (Mises criterion, Drucker-Prager);
- Thermoelastic material;
- Poroelastic material (Bio Model).

For Mooney-Rivlin and Murnaghan materials, the following defining relations are used.

Mooney-Rivlin potential:

$$W = C_1(\overline{I_1} - 3) + C_2(\overline{I_2} - 3) - D(J - 1)^2,$$

where D, C_1 , C_2 are Mooney-Rivlin material constants.

Relation of D, C_1 , C_2 and Poisson's ratio v:

$$D = \frac{C_1 + C_2}{1 - 2\nu}.$$

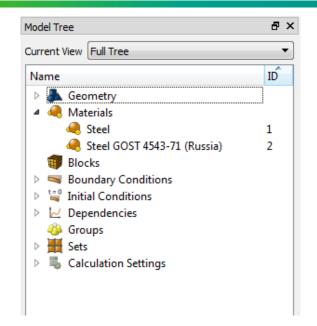
Murnaghan potential:

$$\sum_{0,n}^{0} = \lambda(\varepsilon \cdot I)I + 2G\varepsilon + 3C_{3}(\varepsilon \cdot I)^{2}I + C_{4}(\varepsilon \cdot I)I + 2C_{4}(\varepsilon \cdot I)\varepsilon + 3C_{5}\varepsilon^{2}$$

where λ , G, C3,, C4, C5 are Murnaghan material constants.

To set the new material, select the setting material properties section on Command Panel (Mode – Materials, Entity – Materials Management).

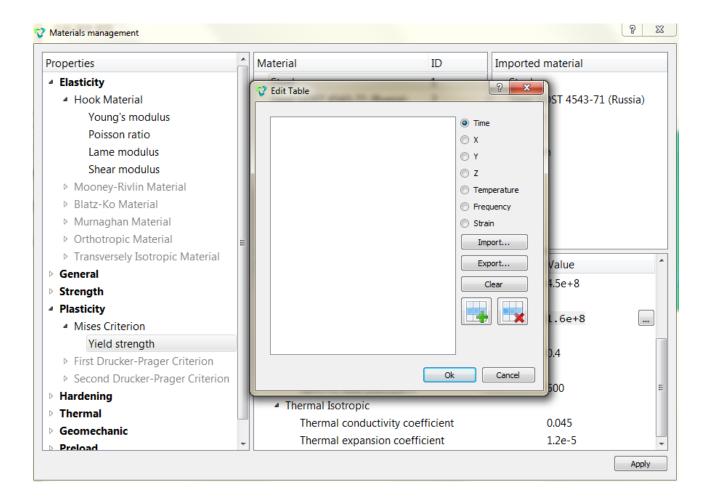
Material properties are set in the Materials Management widget.


Properties	Material	ID	Imported material
 Elasticity General Strength Plasticity Hardening Thermal Geomechanic Preload 	Enter the name of the r	material	Steel Steel GOST 4543-71 (Russia) Rubber Kevlar Titanium Soil
	Material properties		Value

Next, using the "drag & drop" method, add the necessary characteristics from the left column to the Material Properties column.

Select the desired characteristic with the mouse. Hold down the left mouse button and drag the label to Material Properties. Double-click in the Value field opposite the property that appears and specify the correct value.

The right column shows the preset materials. To use these materials in the calculation also drag the material of interest into the Materials column (where the active materials are located). Click the Apply button.


Upon successful addition, the created materials should appear in the Model Tree in the Materials section.

Note: In order to link the material and the model, Block is used.

Setting tabular dependencies for materials

To create tabular dependencies for material characteristics, double-click in the Value field opposite the desired property. A button with a triple point will appear. Click this button. The **Edit Table** widget opens, where you can set table dependencies.

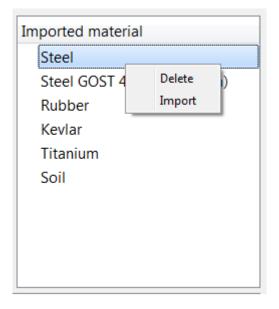
To specify a formula dependence, simply enter the appropriate formula in the Value field and then click **Apply**.

Material properties	Value
 Hook Material 	
Young's modulus	200*t
Poisson ratio	0.3521
 Second Drucker-Prager Criterion 	
Cohesion	1.505e+7
Internal friction angle	31.1066
Dilatancy angle	31.1066
 Thermal Isotropic 	
Thermal conductivity coefficient	8e-6

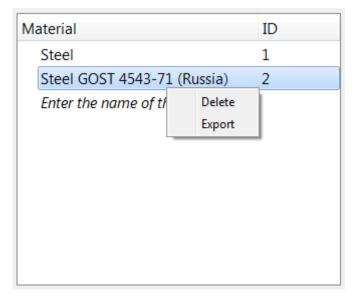
Import/Export Material

To import materials, right-click in the Imported Materia column. A context menu appears in which you must select Import. Specify the path to the imported material.

Panel settings for an existing material are changed, if an added material with the same name already exists in previously imported materials:


• If it is allowed to overwrite it, then put the Overwrite checkbox.

• If you need to add near an existing one, then put the Append checkbox, and the material will be added with renaming.


• By default, the check is set to Ignore - the material is not imported, the previous material remains.

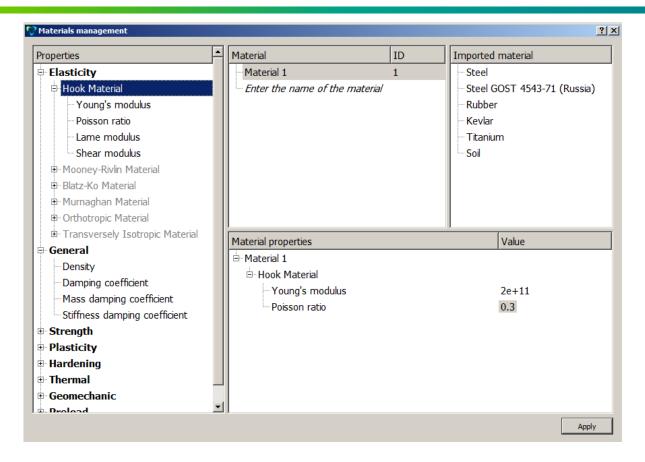
Click **Apply**. Next, drag the imported material into the active materials column (Material). Click **Apply**.

CAE Fidesys supports importing material in XML format.

To export the created material, right-click on the material name, select Export in the context menu. Specify the path to save to the file, click **Apply**.

If the value of a property is not entered, then by default it is assumed to be zero (except for the shear modulus, which is determined automatically based on the entered values of E and v).

Setting the yielding model


The choice of the correct model of the material plastic flux is very important to obtain a proper solution of the problem. Plasticity problems are nonlinear, therefore, they require substantial computer resources and solving problems with large plastic strains may take a long time. The Fidesys system of strength analysis for the Hook material realizes two criteria of transition into plasticity: the Mises criterion and the Drucker-Prager criterion. Problems are solved both for perfectly elastoplastic models and for models with linear hardening. It is currently implemented the approach taking into account finite strains in the elastic zone; the linear formulation of the problem is used in the zone of plastic flux.

Von Mises yield criterion

In order to add the Mises plasticity to the Hook material, please select the section for setting material properties on the Command Panel (Mode - **Blocks**, Entity - **Materials Management**).

Specify the name of the material. From the left column, drag the Hooke Material inscription into the Material Properties column. Fill in the Values fields accordingly:

To create the model with the von Mises plasticity without hardening, set elastic properties of the Hook material as well as the **yield strength**:

🖓 Materials management			<u>? ×</u>
Properties	Material	ID	Imported material
 Elasticity General Strength Plasticity Mises Criterion Yield strength First Drucker-Prager Criterion Second Drucker-Prager Criterion Hardening Thermal 	Material 1 Enter the name of the material	1	Steel Steel GOST 4543-71 (Russia) Rubber Kevlar Titanium Soil
⊕ Geomechanic ⊕ Preload	Material properties - Material 1 - Hook Material - Young's modulus - Poisson ratio - Mises Criterion - Yield strength		Value 2e+11 0.3 24
			Apply

To create the Mises plasticity model with linear hardening, it is also necessary to enter the yield strength in tension and the ultimate strain in tension.

Properties	Material	ID	Imported material
Elasticity	Material 1	1	Steel
General Strength Strength Ultimate strength Ultimate strength for compress Plasticity Hardening Second Linear Isotropic Ultimate strain	Enter the name of the material		Steel GOST 4543-71 (Russia) Rubber Kevlar Titanium Soil
Cultimate strain for compression Polylinear Isotropic Thermal Geomechanic Preload	Material properties Material 1 Hook Material Young's modulus Poisson ratio Strength Isotropic Ultimate strength Mises Criterion Yield strength Scond Linear Isotropic		Value 2e+11 0.3 4219.2 24

Drucker-Prager yield criterion

There are two ways to specify the Drucker-Prager plastic model without hardening in the *CAE Fidesys* software package - "First Drucker-Prager Criterion", "Second Drucker-Prager Criterion", which become available in the "Materials Management" widget after specifying elastic constants.

"First Drucker-Prager Strength Criterion" implies the setting of the material properties **"Yield strength**", **"Yield strength for compression**":

ľ

ial 1 <i>the name of the material</i> properties	Si Ri Ki		Russia)
	— Ri — Кi — Ti	ubber evlar itanium bil	Russia)
properties	-Ki	evlar itanium bil	
properties		itanium bil	
properties		bil	
properties	S.		
properties			
		Value	
ial 1			
ok Material			
Young's modulus		2.25	
Poisson ratio		0.125	
ength Isotropic			
Ultimate strength		0.3014	
Ultimate strength for comp	pression	0.3038	
¥			
Yield strength		0.001588	
Yield strength for compres	ssion	0.004436	
	st Drucker-Prager Criterion Yield strength	Young's modulus Poisson ratio ength Isotropic Ultimate strength Ultimate strength for compression st Drucker-Prager Criterion	Young's modulus2.25Poisson ratio0.125ength Isotropic0.3014Ultimate strength0.3038ultimate strength for compression0.3038st Drucker-Prager Criterion0.001588

To use the "**Drucker-Prager Second Criterion** " it is necessary to enter the properties of the material "Cohesion", "Internal friction angle", "Dilatancy angle ":

Material	ID	Imported material
Material 1	1	
		Kevlar Titanium Soil
Cohesion	Criterion	Value 2.25 0.215 0.0011574 35 35
	Material properties Material 1 Hook Material Young's modulus Poisson ratio Second Drucker-Prager (Cohesion Internal friction angle	Material 1 Hook Material Young's modulus Poisson ratio Second Drucker-Prager Criterion Cohesion Internal friction angle

To obtain a Drucker-Prager plasticity model with hardening, also specify the limits of strength and ultimate strain for tensile and compression (available for both the first and the second plasticity criterion according to Drucker-Prager):

Properties	Material	ID	Imported materi	al
Elasticity	-Material 1	1	Steel	
General	Enter the name of t	he material	Steel GOST 4	543-71 (Russia)
Strength			Rubber	
⊡-Strength Isotropic —Ultimate strength —Ultimate strength for compression			Kevlar Titanium Soil	
Plasticity				
Mises Criterion				
🖻 First Drucker-Prager Criterion				
Yield strength	Material properties		Value	
^L Yield strength for compression	-Material 1		1000	
⊡-Second Drucker-Prager Criterion	B-Hook Material			
Hardening	Youna's modu	ilus	2.25	
Second Linear Isotropic	Poisson ratio		0.125	
Ultimate strain	🖯 🕀 Strength Isotropic	2		
Ultimate strain for compression	Ultimate streng	gth	0.3014	
⊡-Polylinear Isotropic ∃- Thermal	Ultimate streng	gth for compression	0.3038	
Geomechanic	🕂 🕂 First Drucker-Prag	ger Criterion		_
= Geomechanic = Preload	Yield strength	0.001588	3	
Freidau	Yield strength	for compression	0.004436	<u>.</u>
	🖻 Second Linear Isc	otropic		
	Ultimate strain		1	
	Ultimate strain	for compression	1	

Polylinear hardening

Also, with the Mises plasticity in *CAE Fidesys*, a more general type of hardening is available - polylinear hardening, for which you need to fill in the table property of the material "**Sigma(epsilon) curve**" material (in the table pairs of values from the strain on plastic component "plastic component of deformations ε_{11} " - " true stress s_{11} "):

😧 Materials management				? ×
Properties	Material	😲 Edit Table	_	? ×
Elasticity	Material 1	Strain	Value	C Time
🗄 General	Enter the name of the mate	0	132	С×
⊕ Strength		0.00013	170	Сү
Plasticity		0.0012	203	C Z
Mises Criterion				C Temperature
🛱 First Drucker-Prager Criterion		0.0022	234	C Frequency
Yield strength		0.0045	270	Strain
Yield strength for compression		0.01	307	Import
Second Drucker-Prager Criterion		0.02	332	Export
⊖- Hardening ⊖-Second Linear Isotropic	Material properties	0.03	349	Clear
	⊟-Material 1	0.04	364	
Ultimate strain for compression	⊡-Hook Material			- 📑 式
🖻 Polylinear Isotropic	Young's modulus	0.05	376	_
	Poisson ratio	. I.		
Sigma(epsilon) curve for compres	Mises Criterion			Ok Cancel
🕀 Thermal	Yield strength			
🗄 Geomechanic	⊡-Polylinear Isotropic			
🗄 Preload	Sigma(epsilon) curve		table 1	
				Apply

Element types

CAE Fidesys supports the solution of elastoplastic problems for the following types of already existing finite elements:

- Solid elements (3D);
- Shell elements (2D).

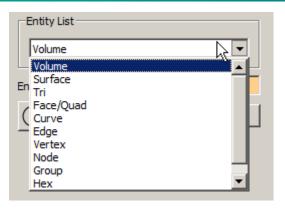
Blocks operations

A block must contain an element type, ID and the name of the geometric model of the material. It is recommended to create several blocks if several materials or several types of geometric entities are used in the calculation.

For example, if a structure contains solid and shell elements, it is necessary to create a block for each type of element. If the construction consists of beams with different types of sections, then for each type of section you need to create your own block.

The sequence of operations with blocks can be schematically represented as follows:

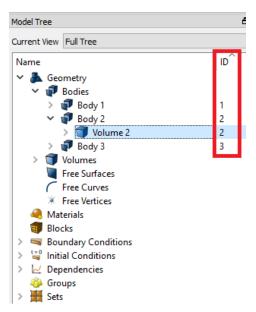
- To create block specifying geometric Entity ID;
- To assign the material to the block;
- To assign the element type to the block.



Let us consider these steps in detail.

 To create a new block, please, go to Mode – Blocks, Entity – Block, Action – Add.

In the Entity list drop-down menu, select the type of geometric objects that will be included in the block.


Click Apply.


You can find out the ID of the geometrical entities united into the block as follows:

- in the Model Tree on the left;
- by clicking on geometrical objects you are interested in their ID will automatically appear in the appropriate field.

The block ID field must specify a sequence number.

Note: Created block must be displayed in the Model Tree on the left in the section Blocks.

To look through the list of the geometric entities united into the block, enter in Command Line List block 1. In the Console, you will see the list of entities united into the block.

2. To assign the material to the block, select **Block – Set material** in the drop-down list.

To enter the block ID, you can do it manually or click on the corresponding geometric entity. Available material is selected from the drop-down list.

	Mode -	Blocks —					
			Ś			1	
	t = 0			*	Q		
	Entity -	Block					
		I	\diamondsuit	\star	ğ	5	
	Action ·	- Set mat	erial				
	*	<	T	Þ	8	1→ 100	
	7				枀		
lock ID(s	5) 1						
vailable	Materials						
Material	1						-
Material							
Material	2						PP"

Click Apply.

3. To set the element type, select **Element Types** in the drop-down list.

The block ID can be entered manually, or by clicking the mouse on the corresponding geometric object.

In the Category field, select the item that corresponds to the entity added to the block.

Specify the order of the element. The order can be selected from 1 to 9.

В

Click Apply.

Note: Order 2 corresponds to the choice of the element of the second order, where intermediate nodes are added on the edges. The order of the element 3 and further means that the calculation will be carried out by the method of spectral elements of the corresponding order.

The following categories are available for the according element types:

- Point mass: LUMPMASS.
- Spring: SPRING.

- Beam: BEAM.
- Shell: SHELL.
- Plane (2D): PLANE.
- Solid: SOLID.

If an element type is not assigned to a block, the program selects it by default based on the type of the geometric object contained in the block. The following rules are used:

- Volumes meshed by SOLID elements.
- Surfaces meshed by SHELL or PLANE elements. •
- Curves meshed by BEAM or SPRING elements. •
- Vertices correspond to single-node elements LUMPMASS. •

Nodes corresponding to the higher order of approximation are arranged in accordance with the default curved geometry. To change this rule, you can use the command:

set node constraint [ON | off | smart]

Setting **off** corresponds to the location of nodes of a higher order without taking into account the curved geometry; they occupy middle positions between the corner nodes of the elements: in the middle of straight edges, in the centers of flat surfaces, etc. The smart setting only takes the curvature into account when it does not degrade the quality of the elements.

Setting shell properties

CAE Fidesys supports shell elements SHELL.

To set the properties of the shells - thickness and eccentricity go to Mode - Blocks, Entity - Shells Properties. On the panel that appears, specify:

On the appeared panel, specify:

- Block ID;
- Thickness;
- Eccentricity.

Note: Eccentricity by default must be equal to 0.5.

The eccentricity for the shell element varies from 0 to 1 and determines the distance between the surface of the shell, considered in the geometric or finite-element model, and the middle surface of the shell (in fact, the thickness offset of the middle surface relative to the upper surface of the shell in proportion). By default, eccentricity is set to 0.5.

3D shell cross section view is possible in the *Fidesys Viewer* postprocessor by clicking 3D-view button in the default string.

Bloc

Thic

Eco

	Mode - E	Blocks						
	~		Ś			7		
	t = 0			*	•			
	Entity -	Shell Pro	perties					
		Ι	\diamondsuit	\star	ğ	I ,		
L								
Block ID								
Thickness	1.0]
Eccentricity	0.5]
i						-	Apply	

Setting beam properties

CAE Fidesys supports beam elements BEAM.

To specify beam cross section using geometric features and moments of inertia, go to Mode – **Blocks**, Entity – **Beam parameters.**

On the appeared Panel, specify:

- Block ID;
- CS Rotation Angle;
- cross section profile and the appropriate dimensions to it.

Click Apply.

CAE Fidesys supports beam cross section of the following types:

- Rectangle;
- Ellipse;
- I-Beam;
- Channel;
- Corner;
- T-Beam;
- Z-Beam;
- Hollow Rectangle;
- Trough profile;
- Circle With Offset Hole;
- definition of section by means of the moments of inertia.

3D beam cross section view is possible in the *Fidesys Viewer* postprocessor by clicking 3D-view button in the default string after the calculation is complete.

Command Panel				8>
Mode - Blocks				
L=0 + / == ·			7	
	*	<u>_</u>		
Entity - Beam Properties				
	*	ğ		
Block ID				
CS Rotation Angle		0.0		
Offset to		Cent	roid	-
Select profile				
I-Beam Bestande				-
Rectangle Ellipse				
I-Beam Chan-Beam				
L-Beam T-Beam				- 1
Z-Beam Hollow Rectangle				- 1
Hat-Beam Circle With Offset Hole				- 1
Custom Section				
	-			
$_{\rm Height}(H)$		0.1		
Bottom Width (B1)		0.05	5	
		0.05	5	
$_{\text{Top Width}}(B_2)$		0.05		
$_{\rm Bottom\ Thickness}(c_1)$		0.00	72	
$_{ m Bottom\ Thickness}(c_1)$		0.007	72	
$_{\rm Bottom\ Thickness}(c_1)$		0.00	72	
$_{ m Bottom\ Thickness}(c_1)$	0.0	0.007	72	
$_{ m Bottom\ Thickness}(c_1)$ $_{ m Top\ Thickness}(c_2)$ $_{ m Thickness}(d)$ Y Eccentricity Z Eccentricity	0.0	0.007	72	
Bottom Thickness (c_1) Top Thickness (c_2) Thickness (d) Y Eccentricity Z Eccentricity Calculated properties:	0.0	0.007	72	
$_{ m Bottom\ Thickness}(c_1)$ $_{ m Top\ Thickness}(c_2)$ $_{ m Thickness}(d)$ Y Eccentricity Z Eccentricity	0.0	0.007	72	
Bottom Thickness (c_1) Top Thickness (c_2) Thickness (d) Y Eccentricity Z Eccentricity Calculated properties:	0.0	0.007 0.007 0.004	72	
Bottom Thickness (c_1) Top Thickness (c_2) Thickness (d) Y Eccentricity Z Eccentricity Calculated properties: Inertia moment Iy	0.0 1.943 2.003	0.007 0.007 0.004	72	
Bottom Thickness (c_1) Top Thickness (c_2) Thickness (d) Y Eccentricity Z Eccentricity Calculated properties: Inertia moment Iy Inertia moment Iz	0.0 1.943 2.003 2.144	0.00 0.00 0.00 77e-6 e-7	72	
Bottom Thickness (c_1) Top Thickness (c_2) Thickness (d) Y Eccentricity Z Eccentricity Calculated properties: Inertia moment Iy Inertia moment Iz Inertia moment Ix	0.0 1.943 2.003 2.144	0.007 0.007 0.004 77e-6 e-7 07e-6 46e-8	72	

Specifying Sphere element properties

CAE Fidesys supports point masses LUMPMASS.

To set the properties of point mass, go to Mode - **Blocks**, Entity – **Sphere element Properties**.

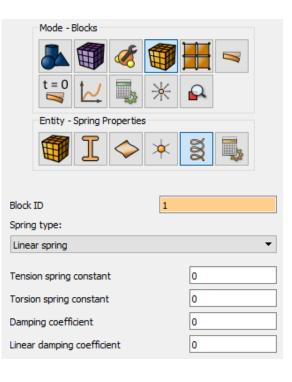
On the panel that appears, specify:

- block ID;
- mass;
- Inertia moment.

Click Apply.

	Mode - E	Blocks —					
			Ś				
	t = 0			棠	Q		
	Entity -	Sphere e	element I	Propertie	es		
		Ι	\diamondsuit	\star	ğ		
Block I	D						
Mass					0		
Inertia	moment	t			0		
(j)					[Apply	

Set spring properties


CAE Fidesys supports springs (spring elements).

To set the properties of the spring, go to Mode - **Blocks**, Entity - **Spring Properties**.

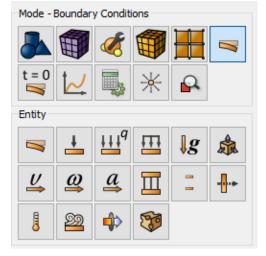
On the panel that appears, specify:

- Block ID;
- Spring type;
- Values corresponding to the type of spring.

Click Apply.

Setting boundary conditions

Types of boundary conditions


CAE Fidesys supports boundary conditions of the following types:

- Force;
- Pressure;
- Displacement;
- Distributed force;
- gravity;
- Stress;
- Acceleration;
- Speed;
- Angular velocity;
- Coupling constraint;
- Contact;
- Absorbing BC;
- Heatflux;
- Pore pressure.

To set boundary conditions, follow these steps:

- 1. Select Mode- Boundary conditions on Command Panel.
- 2. Select Boundary Condition Type in **Entity** block.
- 3. Select Action **Create**. Set the following parameters:
 - ID/Name (assign a new ID, enter a name using letters and/or numbers, or use the system assigned ID);
 - Entity where the boundary condition is applied (Volume, Surface, Curve, Edge, Vertex, Node, Nodeset, Element, Side, Sideset);
 - Entity ID(s) (point mouse cursor at the field Entity ID(s) and select the necessary entities with a mouse, their numbers will be entered into the field automatically. If you need to specify several entities, mark them holding down the Ctrl key);
 - Other parameters (Value, DOFs, etc.).
- 4. Click Apply.

Using the functionality available on Command Panel you can also see the list of Boundary Conditions, modify or delete the boundary condition you previously set.

Setting initial conditions

Types of initial conditions

CAE Fidesys supports the following initial conditions

- displacement
- speed
- angular velocity
- temperature
- pore pressure
- initial stress (set in Materials Management)

Time/coordinate dependency

The time/coordinate dependency can be specified separately for each type of boundary conditions using tabular and formulaic dependencies.

The boundary conditions must be set in advance (Mode - Boundary Conditions)..

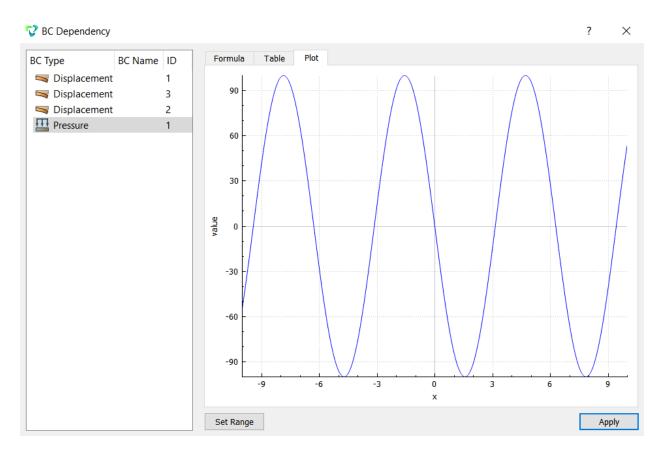
To set the formulaic dependency on Command Panel, select **Mode** – **BC Dependency**, and in the appeared form:

- Select BC Type;
- Select an individual component or an entire vector for time dependency application;
- Select Dependency Type (formula can be entered manually, you can use the standard formulae for the time dependency);
- Set Dependency Parameters.

Click Apply.

To view a tabular data or graphs plotted by a given formula, go to the corresponding tabs in the window BC Dependency. In addition, there is a possibility to export tabular data or to import new tables.

😯 BC Dependency									?	×
ВС Туре	BC Name	ID	Formula	Table	Plot					
🔫 Displacement		1	Custom	•						
🔜 Displacement		3	-100*s	in(x)						
🔜 Displacement		2						-		_
Pressure		1	Cle	ar	+	-	*	/	^	
			si	n	cos	tan	sqrt	if(A,B,C)	()	
			as	in	acos	atan	ехр	log	log10	
			sir	h	cosh	tanh	abs	ceil	floor	
									400	hr
									Арр	ly


Here are standard formulae for the time dependency:

😯 BC Dependency								?	\times
ВС Туре	BC Name	ID	Formula Table	Plot					
🔜 Displacement		1	Custom 🔻						
🔜 Displacement		3	Custom						
🔜 Displacement	1	2	Exponent) Ricker						
Pressure		1	Berlage	+	-	*	1	^	
			Harmonic Delta	COS	tan	sqrt	if(A,B,C)	()	
			asin	acos	atan	exp	log	log10	
			sinh	cosh	tanh	abs	ceil	floor	
								Арр	ly

Viewing of the tabular data corresponding to the formula -100*sin(x):

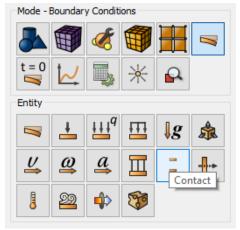
ВС Туре	BC Name	ID	Formula Table Plot		
3C lype SC lype SC lype Displacement Displacement Pressure		ID 1 3 2 1	Formula Table Plot X -10 -9.8 -9.6 -9.6 -9.4 -9.2 -9.2 -9 -8.8 -8.6 -8.4 -8.2 -8.4 -8.2 -8 -9 -9 -9 -9 -9 -9 -9 -9 -8 -8 -8 -8 -8 -8 -8	Value -54.4021 -36.6479 -36.6479 22.289 22.289 41.2118 58.4917 73.4397 85.4599 94.0731 98.9358	 Time X Y Z Temperature Frequency Import Export Clear Import
			-7.8	99.8543 96.792	

Viewing of the graph corresponding to the formula -100*sin(x)

Setting contact interaction

Contact problems are highly nonlinear and require significant computer resources to be solved. Thus, to select the model resulting in the most effective solution, it is very important to understand the physical content of the problem. Two factors determine nonlinear nature of contact problems. Firstly, it is the contact area and consequently, the boundary conditions are unknown until the solutions. Secondly, it is necessary to take into account the friction in many contact problems. Effects related to the friction can result in poorly converging problems.

Contact region

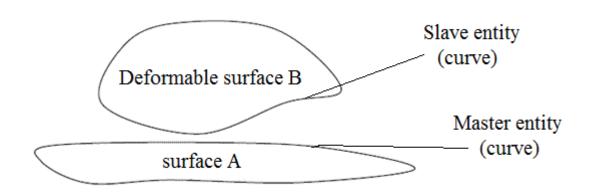

To set contact areas, select the Contact dialogue (Mode - Boundary conditions, Entity - Contact)

CAE Fidesys implemented node-surface and node-curve contact interactions.

Note: if the contact conditions are not specified, then the parts in the assembly do not interact. The interaction of assembly parts through the specified contact area means an obstacle to the mutual penetration of parts and the transfer of loads.

It's recommended to assign contact zones to separate surfaces in 3D and lines in 2D. The contact regions should be large enough so that the process of interaction of bodies does not outsteping, but at the same time it is recommended to minimize these regions to save computer resources.

Specify which of the entities will be the Master, and which - the Slave.

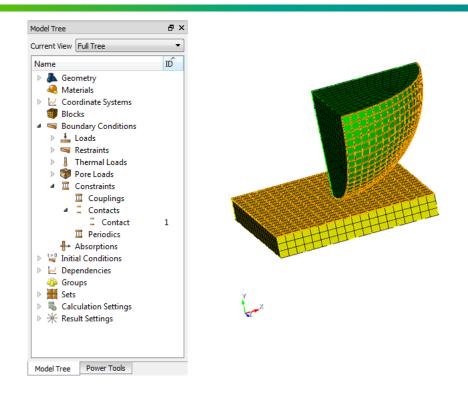

Action - Create	
1 🔁 🔁 🗄	🗏 I🖉 🔀
Master and Slave selection	ı •
ID	
O New ID	
• System Assigned ID	
Master Entity:	
Entity List	
Surface	•
Entity ID(s)	
Slave Entity:	
Entity List	
Surface	•
5 (1) (D)	
Entity ID(s)	
Offset	0.0005
Ignore Initial Overlap	
Туре	General 🔻
Friction Value	0.0
Method	Auto 🔻
Set detection settings	
(i)	Apply

It should be noted that the Master is simulated by surfaces, and the Slave - by nodes.

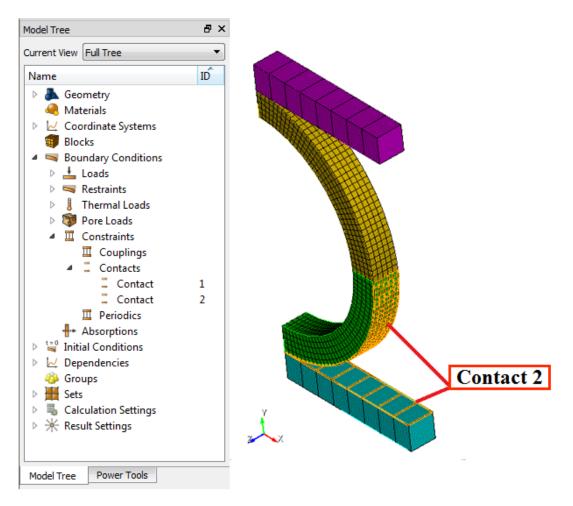
When building a contact pair, it should be kept in mind that the choice of Master and Slave can cause various results and influence on the accuracy of the solution.

Recommendations for the selection of Master and Slave entities:

- If one surface (A) is flat or concave, and the other surface (B) is a sharp edge or bulge, then surface A should be the Master.
- If both contacting surfaces are convex, then the Master surface is assumed to be less convex.
- If both surfaces are flat, the choice of Master and Slave entities is arbitrary.
- If one contact surface has a sharp edge, and the other one does not have it, then the first is taken as a Slave surface.
- If one of the contacting bodies is rigid, then its surface is assumed to be the Master.
- In some cases it is useful to create a symmetrical contact. In addition, each surface is defined as the Master, and as a Slave. It's possible to simulate, for example, the contact of two areas with sharp edges or grooved (undulating) surfaces by this methods.


Autoselection of contact

CAE Fidesys implements the automatic definition of contacting entities. To do this, select Autoselect in the drop-down list and select the corresponding entity in the Geometry panel.


Auto selection		-
Geometry entity:		
Entity List		
Global		•
Offset	0.0005	
Ignore Initial Overlap		
Туре	General	•
Friction Value	0.0	
Method	Auto	•
Set detection settings		
(i)		Apply

The applied contact pairs are displayed on the left side of the screen in the objects tree. Click on the name of the desired contact region in the Model Tree to visualize, and it will be highlighted on the model.

Offcet - is the distance between bodies at which contact interaction started. It can be considered as the size of a rigid body between the contacting bodies.

Each contact pair is assigned with an individual number (ID) and a set of properties. The number of contact pairs is not limited. To visualize the created contact pair, click with the mouse on the name of the required contact pair on the left in the same tree of objects. The selected pair will be highlighted in yellow on the model.

The following contact pair settings are available in *CAE Fidesys*:

Offset	0.0005
Ignore Initial Overlap	
Туре	General 🔻
Friction Value	0.0
Method	Auto 💌

To simulate a bonded contact, select the type of contact **Tied**. Then, if the contact is created, Master and Slave entities merge in all directions so that displacements and stresses are continuous through the contact zone.

If the motion of a rigid body is limited only by contact conditions, it is important to ensure that the elements of the contact pair are in interaction in the initial state. However, in some cases, the definition of interaction can be difficult. This can occur in the following cases:

- body contours can be complicated, and it is difficult to define the point at which the first contact will occur;
- in spite of the fact that the geometric model is constructed without gaps, floating point errors arising while meshing the model can lead to the appearance of small gaps/overlaps between the elements.

For the same reasons, an initial penetration of the Master entity into the Slave one can occur. In these cases, excessively large reactive forces may appear in the contact elements, and this may lead to a **divergence of the solution**.

Therefore, the definition of initial contact is perhaps the most important aspect of building a model for contact analysis.

Contact algorithm

CAE Fidesys implements the following contact algorithms:

- Penalty,
- Augmented Lagrangian,
- Multipoint Constraint (MPC).

When selecting the Auto method, the program automatically selects one of the listed algorithms to solve the contact problem.

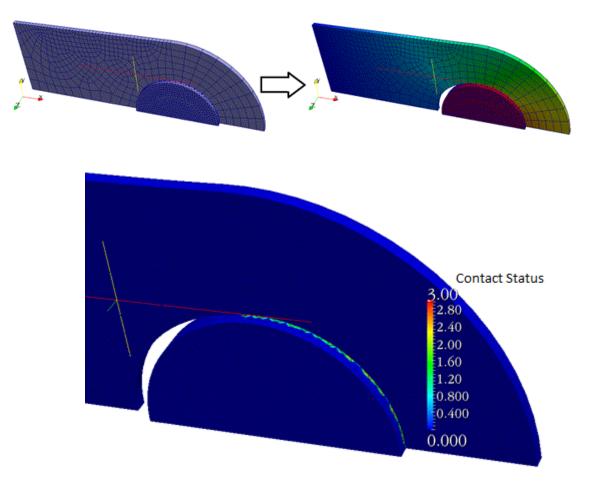
Methods of Penalties and Augmented Lagrangian require adjustments for both normal and tangential stiffness (see Contact pair settings). The main disadvantage is that the penetration between the two surfaces depends on these stiffnesses. Higher stiffness values can reduce penetration, but can lead to poor conditioning of the global stiffness matrix and poor convergence. Ideally, it is necessary to choose high enough stiffness so that the contact penetration remains small enough. At the same time, sufficiently low stiffnesses provide the best convergence of the problem.

The MPC method imposes the requirements of non-penetration and equality of normal stresses, for the application of which the method of Direct elimination is used. This approach does not require the defining of stiffness and provide a solution by one iteration (if the contact zone does not change).

Elements Type

CAE Fidesys computational algorithms make it possible to simulate a contact with non-conformable mesh. It **does not require** the use of any special finite elements in the contact area to denote the interaction of parts. This approach allows to easily set the conditions for interaction in contact or for connected surfaces.

The solution of elastoplastic problems in *CAE Fidesys* is supported for the following types of existing finite elements:


- Solid elements (3D);
- Plane elements (2D).

Contact status

The behavior of each contact element can be visualized in *Fidesys Viewer* by the **Contact Status** field.


This field has one component, which has one of the following values:

- STATUS = 0 far;
- STATUS = 2 contact with slippage;
- STATUS = 3 without slippage (or without friction).

Starting calculation

Analysis types

CAE Fidesys includes the following types of analysis:

- Static (1);
- Dynamic (transient) (2);
- Modal (3);
- Harmonic (4)
- Buckling (5);
- Composite materials effective properties calculation (6).

When starting calculation follow these steps:

- 1. Select Mode **Calculation settings** on Command Panel.
- 2. Select the necessary type of analysis: Static, Dynamic, Modal, or Effective properties analysis.
- 3. Set the parameters of the type of analysis you chose: solver type, coordinate system, fields, scheme, time settings (for dynamic analysis), etc.
- 4. Click **Apply**.
- 5. Click Start Calculation.

After starting calculation its process will be displayed in the console. It will also output the messages for the user, including the errors in case of unsuccessful or incorrect finishing of the calculation. If the calculation is finished successfully, you will see the following message in the console: "*Calculation finished successfully at <date> <ti>Calculation finished successfully at <date> <ti>Calculation finished successfully."*

All the calculations are made in Cartesian coordinate system by default. If necessary, you can also convert the results into cylindrical and spherical co ordinate systems (use the appropriate filters in *Fidesys Viewer*).

The dimension of the calculated problem is 2D or 3D. The following types of 2D problem are included:

- Plane stress;
- Plane strain.

Stress, strain and displacement fields are calculated by default. If necessary, you can also calculate principal stresses, strains, and Mises stress intensity (use the appropriate filters in *Fidesys Viewer*).

The following types of solvers of linear systems (systems of linear algebraic equations (SLAE)) appearing while discretizing the problem, are available:

- Direct (LU)
- Iterative.

The following solvers for problems of modal analysis at systems of linear algebraic equations (SLAE) are available:

- Krylov- Schur;
- Arnoldi.

For dynamic load, one of the two calculation schemes can be used:

- Explicit
- Implicit.

Types of analysis

For the calculation, the following mechanical models are supported:

- Elasticity;
- Plasticity;
- Nonlinear geometry;
- Heat transfer;
- Pore Fluid Transfer.

To choose a model, the user selects the appropriate checkboxes. Selecting multiple checkboxes simultaneously allows setting various combinations of models. For example, the selection of the checkboxes Elasticity and Plasticity gives an elastoplastic model and the selection of the checkboxes Elasticity and Thermal conductivity gives a model of thermoelasticity.

To improve the convergence of nonlinear problems, use the following settings:

Set nonlinear solver options						
Nonlinear solver op	Nonlinear solver options					
Min load substeps	10					
Max load substeps	30					
Max iterations	100					
Tolerance	1e-3					
Target iterations	5					
Line search	Line search					
Arc-Length met	hod					

For nonlinear problems, convergence of iterations at each loading step can be checked in the file Convergence.txt. The file is downloaded into the folder that is created next to the file * .pvd which stores the calculation.

For effective performance of several calculations you can use the **Results** on Command Panel (see the section **Result Analysis**).

For visualization and analysis of the obtained results you can use the program *Fidesys Viewer* included into the package.

Multistep solution

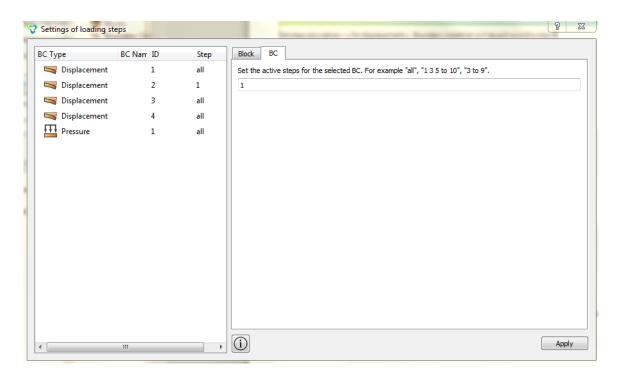
Setting steps for boundary conditions

In *CAE Fidesys*, it is possible to specify a multi-step loading through tabular dependence on time or through explicit assignment of steps.

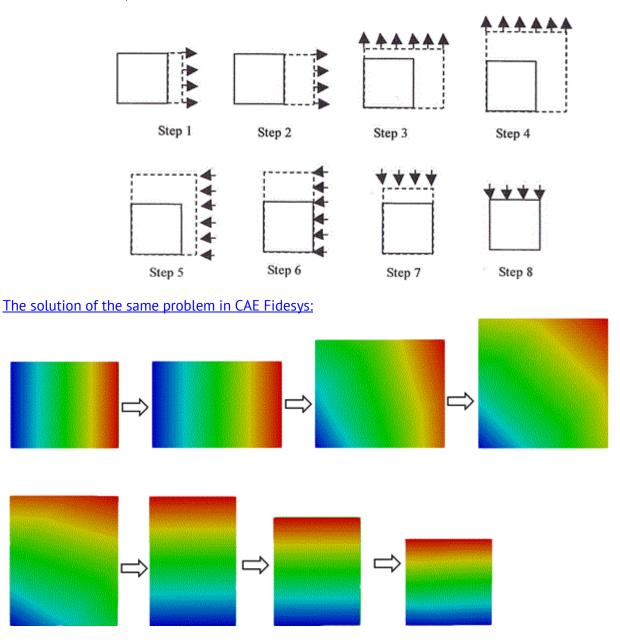
The tabular dependency is set in the section Set time and/or coordinate BC dependency, and you should set the time dependency flag. Setting the load like:

Time	Value
1	5
2	0

means a linear decrease of the value from 5 to 0.


Explicit assignment of steps for boundary conditions occurs in the Load step settings window (Mode - Calculation settings – Static - Set load steps count).

Enter the required number of calculation steps. To open the window of load step settings, click the icon 🛄


Next, specify the required settings:

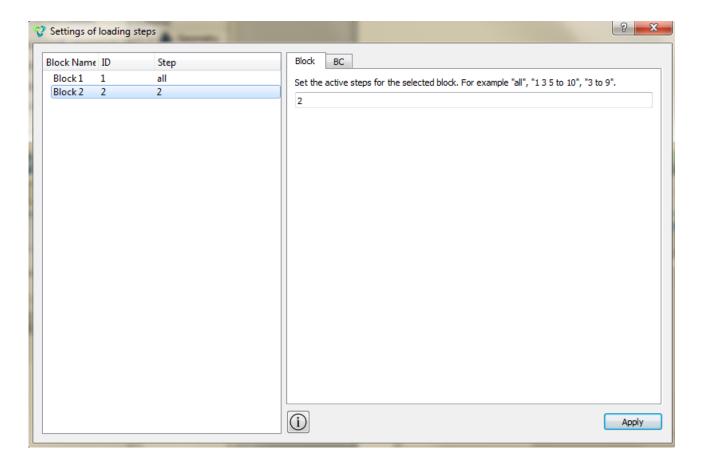
- Select the BC;
- Click in the left column for the boundary condition for which you want to set active steps of calculation.
- Set the active calculation steps for the selected boundary condition in the corresponding field.
- Setting active steps is possible in the following format: "all", "1 2 3 to 5", "1 to 5".

Click Apply.

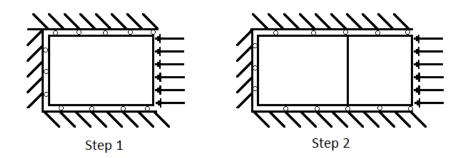
An example of a problem using active calculation steps for boundary conditions (at each step a new movement is added):

Setting steps for blocks (volumes)

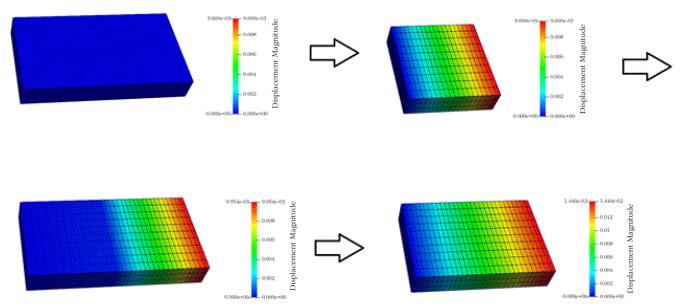
CAE Fidesys allows you to add or remove blocks (volumes \ surfaces added to the block) at specified loading steps.


Adding or excluding blocks in the calculation process takes place in the Setup of load steps window (Mode - Calculation Settings - Static / Transient / Buckling - Set load steps count). In this case, all operations occur on the basis of blocks, therefore for all geometric entities a block(s) must be created in advance.

Go to the Settings loading steps window. On the general solver settings panel, enter the required number of calculation steps and click the icon .


Next, specify the required settings:

- Select the Blocks;
- Click on the block in the left column;
- Set the active calculation steps for the selected block in the corresponding field;
- Setting active steps is possible in the following format: "all", "1 2 3 to 5", "1 to 5".


Click Apply.

An example of a problem with using active calculation steps for boundary conditions (at the first step, the model is compressed, at the second step one of the fixings is removed, a new volume is added to the deformed model, now two volumes are combined to compress):

The solution of the same problem in CAE Fidesys:

Detailed examples are given below in the Step-by-Step User Guide.

Spectral element method

It is a unique feature of *CAE Fidesys* that, in addition to the of finite element method (FEM) used by default, it enables calculations by spectral element method (SEM).

SEM brief description and advantages

Spectral element method (SEM) is a FEM modification where piecewise functions are used as basic functions consisting of high degree polynomials.

The main advantages of SEM in comparison to FEM:

1) High computational speed as there is no need to solve the system of linear algebraic equations due to diagonal form of mass matrix. The latter is obtained by specific quadrature formula for volume integration.

2) High precision of solution approximation at coarse meshing (low number of elements). The solution error is estimated as

$$\|[u]_h - u_h\| \le C(N),$$

where

$$C(N) = C_2 h^N$$
 for FEM

and

$$C(N) = C_1 h^N e^{-N}$$
 for SEM.

 C_1 and C_2 are constants, *h* is a characteristic element size, *N* is an element order, u_h is a numerical solution, $[u]_h$ is an exact solution in mesh nodes.

3) Ability of effective paralleling for OpenMP, MPI and CUDA.

SEM is most effective for the dynamic analysis using an explicit time scheme.

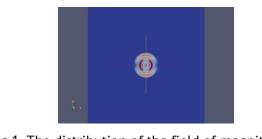
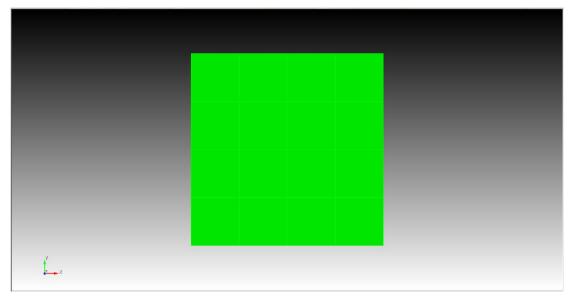
Here are the results of classical problem of wave propagation in 2D plate (size 1x1).

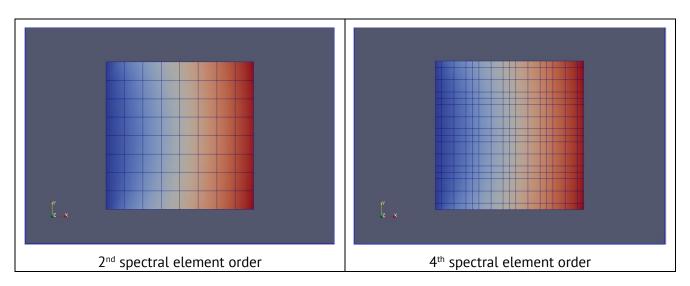
To achieve the computational error 2% and less, it is necessary to generate one of the following meshes:

a) 3-noded triangular mesh of 6 390 197 elements (characteristic element size is 4e-4)

b) 4-noded quadrilateral mesh of 1 640 961 elements (characteristic element size is 3e-3)

c) coarse spectral element mesh with 4th element order (only 16 elements are required).



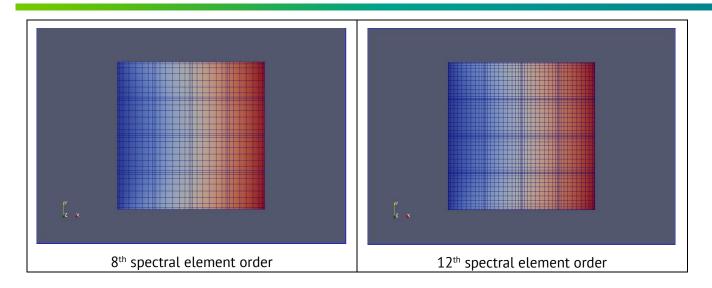

Fig.1. The distribution of the field of magnitude of displacement U across the plate at the time t_1

Fig.2. The distribution of the field of magnitude of displacement U across the plate at the time t_2

Here are the examples of computation results for different spectral element orders:

SEM Usage

2

In order to use the method of spectral elements instead of the finite element method to solve the problem, set the order of elements 3 and higher (except springs and sphere elements)::

M	1ode - E	Blocks —					
	5		Ś				
1	t = 0	\sim	5	⋇	Q		
E	intity -	Block					
1		Ι	\diamondsuit	\star	X		
A	ction -	Element	types				
2	Ť	<	T	>	8	1→ 100	
	7				×		
Block ID	(s) 1						
Categor	y Solid	đ					-
Order	5						•
(j)	-				[Apply	/

Parallel calculations on several computers using MPI technology

If you have a network of several computers with installed *CAE Fidesys* software MPI technology allows you to combine their computing capacity for parallel solution of the same problem.

MPI brief description and advantages

MPI technology currently represents a standard for parallel computing in distributed memory systems, i.e. those in which each processor has its own independent address space and communicates with the other processors via messages. MPI technology is more effective in solving problems with a large number of degrees of freedom because, on the one hand, it allows solving problems that do not fit in the computer memory and, on the other hand, large FEM or SEM problems require relatively low intensity of the messages exchange between the processors and thus they less load the network connection. This is particularly important for systems with distributed memory in which processors are connected by the common network with a capacity of 100 Mbit/s as if several computers in the office.

MPI implementation in CAE Fidesys

CAE Fidesys provides the ability to use MPI with the following types of calculations:

- Statics;
- Dynamics;
- Modal;
- Buckling.

Here are supported models to calculate via MPI:

- Elasticity;
- Elastoplasticity;
- Thermal conductivity;
- Thermoelasticity;
- Finite deformations;
- Pore Fluid Transfer.

MPI installation

Intel MPI installs and runs in conjunction with the installation of the *CAE Fidesys* software package. If the Intel MPI version has already been installed on your computer and you do not want to replace it, please contact *Fidesys* customer support for instructions on how to install and configure it.

In order to use when calculating the MPInecessary to put a tick **Use MPI** in the Toolbar in the General settings of the selected calculation type. You will then see a special menu **MPI Settings** to specify needed parameters.

In the pop-up MPI settings, select parallelization mode:

- a. Local the calculation will be carried out on the local machine using a specified number of processors. The mode gives a gain in comparison to the calculations without MPI only for the local configuration with a large number of cores.
- b. Multiple hosts. In this mode, the calculation will be launched on several computers.

MPI local usage

In order to use MPI locally on a single computer, you need to register at first (see below). Then go to the MPI Settings Panel, tick **Local** and select the number of processors in a special window. After this, you can start the calculation, no additional settings for MPI local use is not required.

🔽 Use MPI	
MPI Settings	
• Local. Number of processors:	10
C Multiple hosts (0)	Configure

MPI usage on several nodes

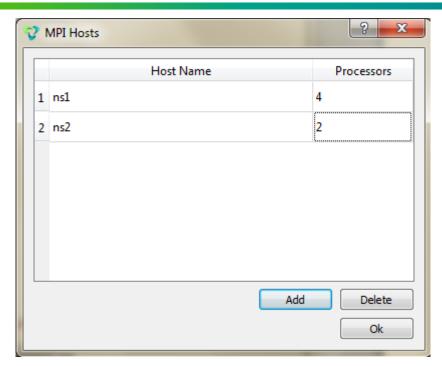
Requirements for the correct operation

- 1. Make sure that the firewall settings on all computers allow correct operation of MPI.
- 2. It is recommended to disable the firewall on all computers involved in the parallel calculations.
- 3. *CAE Fidesys* should be installed on the same path on all computers. This path cannot be network.
- 4. The path to FidesysCalc must be the same on all computers involved in the parallel calculations.
- 5. The working directory (the directory where the file .pvd and file folder of the calculation results are written) should be available at all nodes on the same path which can be network. The user on whose behalf the calculation is carried out must also have write access to the work directory in all nodes. To find out which way is the working directory, you can go to the Menu Tools → Options → Paths, the string Working Directory. In other words, the calculation should be stored in a network folder, while the network path should be indicated in the save dialog:

😯 Options			<u>? ×</u>
Calculation options Command Panels Display	System Settings		
General Geometry Defaults	Preprocessor	C:\Program Files\Fidesys\CAE-Fidesys-2.0\preprocessor\bin\fidesys.exe	Browse
···· History ···· Label Defaults ···· Layout	Calculation Executable	C:\Program Files\Fidesys\CAE-Fidesys-2.0\bin\FidesysCalc.exe	Browse,.,
Earyour Mesh Defaults Mouse Paths Post Meshing Ouality Defaults	Postprocessor	C: \Program Files \Fidesys \CAE-Fidesys-2.0 \postprocessor \fidesysviewer.exe	Browse,,,

- 6. There are no special restrictions on the connection speed between the nodes but you should keep in mind that if the connection speed is very slow, the calculation using the MPI can take as much or more time than the calculation without MPI as all the time saved will be spent on the data exchange between nodes.
- 7. This software version has no limit on the number of used nodes.

MPI setting on several nodes


After making sure that all of the above requirements are met, go to the MPI settings panel (**Calculation Settings – Static – General – Use MPI)**. Put a checkbox next to the point **Multiple hosts** and click **Configure...**:

MPI Settings	
Cocal. Number of processors:	4
Multiple hosts (0)	Configure

You will see the following window:

V MPI Hosts	? ×
Host Name	Processors
Add	Delete
Add	Ok

Using **Add** and **Delete**, add to the list all the hosts you use, in the field Name write the host name in the network, in the field Processors indicate the number of processors used on the host. After completing the list, click **Ok**.

After this, the number of hosts indicated in parentheses after the words Multiple hosts on the MPI settings panel should change:

MPI Settings	
Cocal. Number of processors:	4
Multiple hosts (2)	Configure

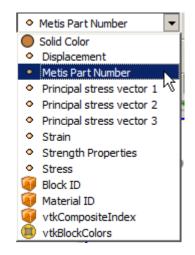
Now you can specify other calculation settings and run it as usual; it will be carried out using the MPI on several nodes.

Registration before the first usage

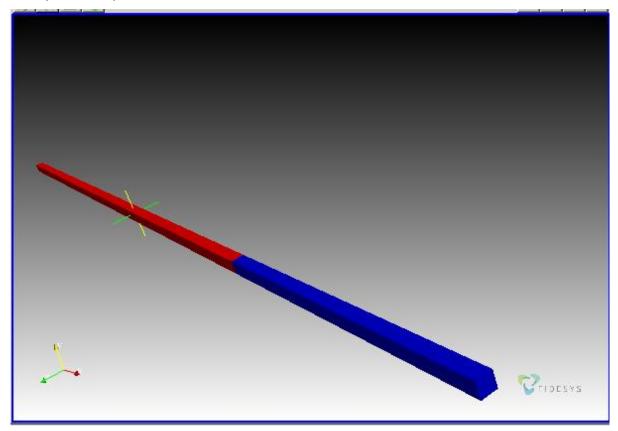
If you try to carry out the calculation using MPI for the first time, you should see error window.

In order to register (without this step, the calculation is impossible), click **Yes**. You will see Windows terminal window which you will need to enter Windows username and password on behalf of which you launch the calculation using MPI.

You can also register by running the Windows terminal window from the panel "Start" (to do this, type in the search box «cmd») and by typing the command **mpiexec** –**register** in the window. Then you need to enter login and password in the same way as when registering using a pop-up Fidesys window.


If you have already registered the service, tick **Do not show this message again.**

For more information, see the Intel MPI documentation.

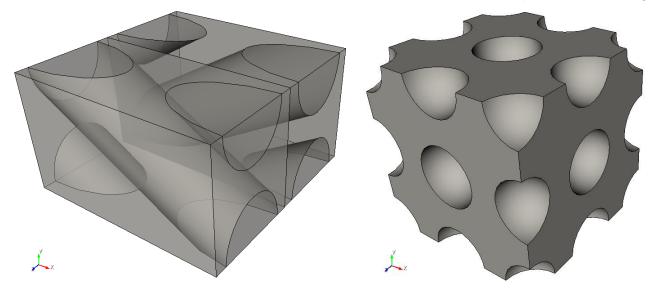

Overview of the calculation results

After performing the calculation using MPI, in the *Fidesys Viewer* postprocessor the new field **MPI Nodes** should appear that characterizes a partition on the specified earlier processors:

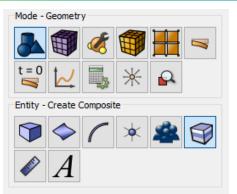
Calculation example using MPI

You can see an example of calculation on two computers in the picture below. Parts that are calculated on various computers are presented in different colors.

Heterogeneous materials effective property calculation


In *CAE Fidesys* there is the possibility of calculating the effective properties of an heterogeneous material, for example, composite or porous material.

Geometry of the model for effective property calculation


A representative volume is a geometric model for calculating the effective properties of the material of nonperiodic structures, i.e. the volume by which behavior under deformation you can be judged on the behavior of the material in general. This typically means that the size of the representative volume should be approximately an order of magnitude greater than the characteristic pore size or the inclusions in the material. A periodicity cell may be a geometric model for the calculation of the effective properties of periodic structure material.

It is important that the geometric model for the calculation of the effective properties must always be a fragment of material «cut» out of it in the form of a **rectangular parallelepiped**. When calculating, this fragment should be positioned so that the edges of the parallelepiped were strictly parallel to the coordinate planes. Automatic checking of the model form and position to calculate the effective properties is not provided, this should be controlled by the User – otherwise the calculation can pass and be correctly completed but the results will be misleading.

Examples of valid models for the calculation of the effective properties are shown below. If the tested material is solid (left), then the model for calculating its effective properties must be a solid rectangular parallelepiped with edges parallel to the coordinate planes. If the material contains pores or cavities, then the model for the calculation must contain cavities that may come to the surface (as shown on the right).

Generation of periodicity cell geometry of some composite materials with periodic structure in *CAE Fidesys* can be performed automatically. In the geometry control mode, there is a button «Create Composite» as shown below.

You can create periodicity cells of the following composite types

- Fiber-layered (two-layer) composite;
- single-layer fiber;
- single-layer fiber with shells;
- dispersed fiber reinforced (spherical inclusions);
- dispersed fiber reinforced with shells.

The user needs only to set the parameters of materials and click "Create" - the geometry will be generated automatically by means of the *CAE Fidesys* interface. It stands to reason, the user can also create the geometry for the calculation manually by means of the interface or to import; the most important thing is that the geometric model for the calculation of the effective properties is «cut» out of the material in form of the rectangular parallelepiped with edges parallel to the coordinate system in the *CAE Fidesys* interface.

Starting calculation

After creating the geometry, it is necessary to carry out the same actions as when calculating for static load: blocks creation, finite element mesh generation, material properties setting, etc, except for the boundary conditions application. To calculate the effective properties, it is unnecessary to apply the boundary conditions to the model: when calculating a number of boundary conditions types are automatically applied to the model sequentially; of the static load problem is solved for each type; results of all the problems are averaged and, as a result of averaging, the effective properties of the material are calculated. The user only needs to choose the type of boundary conditions: periodic or nonperiodic.

Periodic boundary conditions are preferred if the effective properties of the material of periodic structure are calculated and the periodicity cell serves as a model for the calculation. For example, if the material is a composite with matrix and inclusions, moreover, the stiffness of the inclusions is much higher than the one of the matrix and the inclusions are located on the surface of the model for the calculation – in this case it is necessary to use periodic conditions. If the effective properties of the material of irregular structure are studied and a representative volume is a model for the calculation, then the nonperiodic boundary conditions are preferred.

In CAE Fidesys it is the SLAE direct solver that is available to

				-		
			Ś			
	t = 0		I	⋇	Q	
	Calculat	ion settir	ngs - Eff	ective Pr	operties	,
	<u>↓</u>	450			8	Ŷ
	Effectiv	e Proper	ties - Ge	neral		
	<u>ې</u>		Z			
imer	nsions:				3D	•
_ U:	se MPI					
Тур	e of BC -					
۲	Nonperio	dic				
0	Periodic					
Pr	eload mo	del				
Mod	lel					
	Elasticity					
	Heat trar	nsfer				
	Pore Fluid	d Transfe	er			
(i)]					Apply
						Apply

Mode - Calculation Settings

calculate the effective properties.

Element types

CAE Fidesys supports the effective properties calculation for the following existing finite elements:

- Solid elements (3D);
- Plane elements (2D).

Effective property calculation and its results

As mentioned, to calculate effective properties the model undergoes a series of strains. The following types of strains are used:

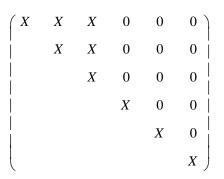
- tension (along each of the coordinate axes);
- shears (in each of the coordinate planes).

The strain magnitude is 0.2% for all types.

Effective properties are evaluated in the form of the generalized Hook's law:

$$\sigma_{ij} = C_{ijkl} \varepsilon_{kl}$$

The result of the calculation is effective elastic modules C_{ijkl} displayed to the command line and in the file called Cijkl.txt in the working directory. The modules are evaluated in the coordinate system where the calculation was carried out (which coordinate planes are parallel to the edges of calculation model).


Modules C_{iik} contain 21 independent constants – it is often more than it is necessary to describe effective

properties of the tested heterogeneous material. That is why there is a possibility of the automatic conversion of the obtained effective elastic modules into constants of orthotropic, transversally isotropic or isotropic material. After completing the calculation of the effective properties, the window «Process effective properties data» opens. In the window, obtained effective elastic modules C_{ijkl} are shown at the bottom right in the form of a symmetric matrix sized 6x6 (the matrix part below the main diagonal is not displayed by the symmetry).

When the calculation is complete, the window opens automatically. If the user closes it, it can be re-opened in the mode **Material** > **Effective properties**:

The user can assess whether the matrix with obtained C_{ijkl} to orthotropic materials with the satisfying tolerance. For the exact orthotropic material, the matrix should look as follows (where the letters X denote those components that can be nonzero).

However, since the components of the matrix are the result of numerical calculation of effective properties - they tend to contain some errors. If, from the user's point of view, the matrix corresponds to orthotropic materials with acceptable tolerance, select the «Orthotropic» type of material and click «Process Data» resulting in the fact that nine constants of orthotropic material will be counted.

If orthotropic constants in the X and Y will coincide with acceptable tolerance the user can select the type of material «Transversely isotropic» and click «Process data». Five constants of the transversally isotropic material will be calculated.

But if orthotropic constants do not depend on the direction then you can select the type of material «isotropic» and again click «Process data». Two constants of an isotropic material – Young's Modulus and Poisson's Ratio – will be calculated.

The window exterior «Process effective properties data» is shown in the figure below.

V	Process effective	properties data						? ×
Da	ta file: D:/Kozlova/I	Fidesys/result/EffProp	os.json					Browse
ſ	Elastic Properties Typ	e: Thermo Prope	rties Type: –					
	Orthotropic	Orthotrop	ic					
	C Isotropic	C Isotropic						
F	Process data Expo	ort Material,						
ſ	Elasticity Thermo							
	Name	Value	200.916	1.27259	1.27259	6.29162e	2.73672e	2.58065e
				3.13529	1.30472	9.41313e	4.63471e	-5.99118
					3.13529	-8.96413	5.80994e	8.12993e
						0.939343	-5.94309	-2.54987
							0.891985	-4.39361
								0.939295
	1							

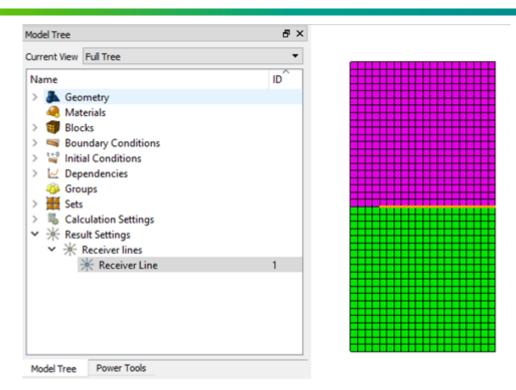
If the processed material constants satisfy the user, the option to export the material into the file XML is available in the same window. You must select a name for the effective material and the name of the XML

file into which it will be exported. When you click «Export Material...», the material with the specified name and obtained effective properties are first created whereupon all other created materials are exported into an XML file with the specified name. You can then import these materials from the created file. If heterogeneous material which efficient properties are investigated is orthotropic, transversely isotropic or isotropic from empirical considerations; and the calculation results do not correspond to that – you should try to refine the mesh or to choose a model for the calculation in another way.

SEG-Y format

SEG-Y is a sequential trail format designed for storing fully or partially processed seismic data. <u>https://en.wikipedia.org/wiki/SEG-Y</u>

In order for the selected calculation results to be recorded in the SEG-Y format, it is necessary to place the Receivers on the model in the preprocessor (**Command Panel, Mode - Receivers, Operation - Create**).

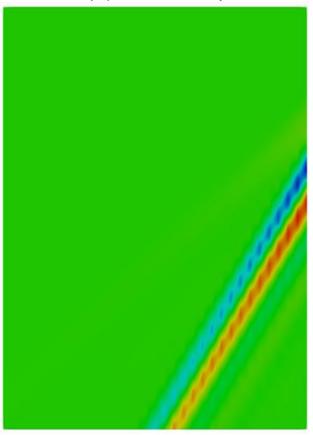

Select from the drop-down list the geometric entities that will be receivers.

Entity List	
Curve	•
Volume	
Surface	
Curve	
Vertex	
Node	
Nodeset	

Specify which data fields to save in SEG-Y format.

Displacement	~
Displacement	
Velocity	
Principal Stress	
Pressure	

Installed receiver lines are displayed in the Tree on the left in the Results Settings section.



Viewing data in SEG-Y format is possible in the *CAE Fidesys* Viewer postprocessor, and you need to open the file with the .sgy extension.

🐨 Open File: (open multiple files with <ctrl> key.)</ctrl>					?	×
Look in: C:/Program Files/Fidesys/CAE-Fidesys-2.0/postpro	cessor/bin/		- 0	0 0		3
My Documents Desktop Favorites C:\ D:\ Z:\ Windows Network CAE-Fidesys-2.0	Filename		Туре			
	File name: Files of type:	FidesysViewer Data Files (* FidesysViewer Data Files (* SEG-Y Files (*.sgy *.segy) VTK UnstructuredGri*.vtu	.pvd)		OK Cance	4
		VTK UnstructuredGr*.vtu VTK UnstructuredGrvtu *.				

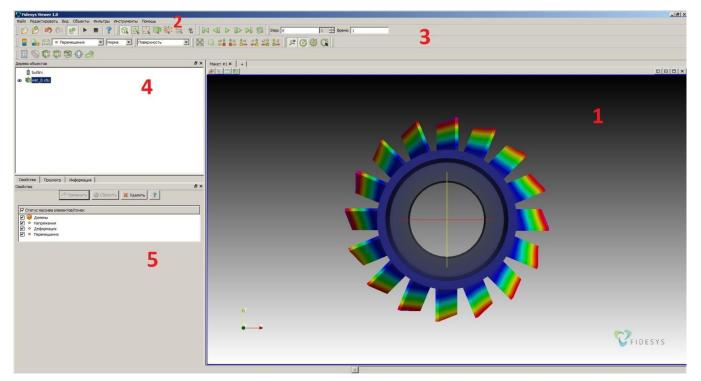
In Fidesys Viewer, it is possible to select the required subregions of the model using the Slice / Clip filters (Menu - Filters - Alphabetical Index - Slice)

An example of the resulting SEG-Y file for Vy speed in CAE Fidesys:

Features of writing data to the * .sgy file

- All data in the file header, with the exception of the results themselves, are written in integer form.
- The time step (recording step) is recorded in microseconds.
- The coordinates of the receiver are recorded in meters (If the distance between receivers is less than one meter, then the coordinates of the paths may coincide, and the wave pattern may be incorrect).
- Inline number coincides with the id of the node in which it is specified, the Crossline number matches the line number of the receivers.

Results Visualization and Postprocessing


Fidesys Viewer at a glance

The program *Fidesys Viewer* is used for visualization and analysis of the obtained results:

- Visualization of vector and tensor fields;
- Graph;
- Time dependency analysis;
- SEG-Y files.

Fidesys Viewer is included into the package *CAE Fidesys* and does not require individual installation. To use *Fidesys Viewer*, the license is not required: the results of calculations obtained by using the *CAE Fidesys* preprocessor are available for viewing in *Fidesys Viewer* even after the expiration of the license.

Main Window

Workbench (1) displays the model and visual effects.

Main Menu (2) includes standard operations for working with files and projects, managing the visualization modes, panel display settings, filters, tools, and help available in the drop-down lists of the menu.

Toolbar (3) comprises the buttons for calling the most frequently used commands while working with the program.

Pipeline Browser (4) includes the opened models and filters applied to them.

Properties Page (5) displays the properties of the selected object in the Workbench or in the Pipeline Browser.

Additional panels can be shown or hidden in the menu **View**.

Basics of the program

Fidesys Viewer allows you to view and analyze the results. Viewing and analysis are performed using multiple filters you can select the item **View** in the menu. Some of them are described below.

Display on the data field and legend model

Fields and components of display can be selected in the Toolbar:

Selection

In order to select points or cells, use the following buttons in the Toolbar:

	i (†	深 苍]
--	------	------------	---

On-screen information display

Numerical results for the data fields can be viewed in the tab **Information.** If the entire model is in focus, the fields of the tab **Information** contain a range of data – from minimum to maximum value.

The values in points can be found using the filter Probe Location (**Filters** \rightarrow **Alphabetical** \rightarrow **Probe Location**). Then you must specify the viewing point coordinates. After applying the filter, data field values are displayed only for the specified point in the tab **Information**.

To view the numerical results for the selected points is also possible by clicking **Point Information** on the Toolbar.

The values in the points/nodes/elements can be identified and viewed by using **Selection Inspector** (View \rightarrow **Selection Inspector**).

Overview of the strained model

To view the strained model, select **Filters** \rightarrow **Alphabetical** \rightarrow **Warp By Vector.** In the Properties tab, you can select the display scale.

^Z To quickly access the filter, click **Warp By Vector** on the top panel.

Spherical/cylindrical coordinate systems

To receive data from the spherical or cylindrical coordinate systems, select **Filters** \rightarrow **Alphabetical** \rightarrow **Coordinate systems**. Next, select the data field that you want to represent in new coordinates. After applying the filter, a new data field will appear in the tab Information, for example, Stress (spher.).

Graphing along straight line

To graph along a straight line, select **Filters** \rightarrow **Alphabetical** \rightarrow **Graph along a straight line**.

Specify coordinates of the beginning and end of the line. In the tab **View**, select the appropriate data field to display in the graph.

Graphing along curves

To graph along a curve, select nodes (see par. Selection) for which graph will be plotted. Next, use **Filters** \rightarrow **Alphabetical** \rightarrow **Extract selected** and then **Filters** \rightarrow **Alphabetical** \rightarrow **Show data**.

Graphing in time dependency

To plot a time dependency graph, you should allocate points of interest through the Allocation Inspector or by the button **Select points** in the standard string and then apply the filter **Filters** \rightarrow **Alphabetical** \rightarrow **Plot selection over time.**

Estimation of the mesh quality

To estimate the mesh quality, select $View \rightarrow Filters \rightarrow Alphabetical \rightarrow Mesh Quality$. Specify the necessary settings in the tab **Properties**. After applying the filter, the new fields which analysis allows concluding about the mesh quality will appear in the tab **Information**.

Slice

To view the model slice, select **Filters** \rightarrow **Alphabetical** \rightarrow **Slice.** Specify the normal or the direction in which you want to make the slice.

Cross section

To view the model cross section, select **Filters** \rightarrow **Alphabetical** \rightarrow **Cross section.** Specify the normal or the direction in which you want to make the slice.

Beam and shell 3D-display

To view beams and shells in 3D in the *Fidesys Viewer* postprocessor, you can click on the button **3D** in the standard string.

Margin of Safety

To view the model cross section, select **Filters** \rightarrow **Alphabetical** \rightarrow **Margin Of Safety.** If the ultimate strength and yield strength were not specified when preprocessing, you should set them in the tab **Properties.** Margin of safety is calculated by the first theory of strength, energy theory, Tresca theory, Mohr's theory of failure, Pisarenko-Lebedev theory. Obtained values can be viewed in the tab **Information** in the new field **Margin Of Safety**. The first component of the field is the margin of safety by the first theory of strength; the second is the margin of safety by the energy theory, etc.

builtin:			
4.pvd			
🔹 💼 MarginO	fSafety1		
Properties Inf	(
Properties 1 Int	formation		Ð ×
C ^A Apply	🖉 Reset	💢 Delete	?
Search (use Es		💢 Delete	2003
Search (use Es	sc to clear text)		
Search (use Es	sc to dear text)	ty: 🗅 🗈	?
Search (use Es	sc to dear text) s (MarginOfSafe ty (First theory of	ty: 🖸 🗈 strength)	
Search (use Es	sc to dear text) s (MarginOfSafe ty (First theory of ty (Energy theory)	ty: 🖸 🗈 strength)	
Search (use Es Properties Margin of Safe Margin of Safe Margin of Safe	sc to clear text) s (MarginOfSafe ty (First theory of ty (Energy theory) ty (theory Tresca)	ty: 🖸 🗈 strength)	
Search (use Es Properties Margin of Safe Margin of Safe Margin of Safe Margin of Safe	sc to dear text) s (MarginOfSafe ty (First theory of ty (Energy theory) ty (theory Tresca) ty (theory Mohr)	ty: D C	
Search (use Es Properties Margin of Safe Margin of Safe Margin of Safe Margin of Safe	sc to clear text) s (MarginOfSafe ty (First theory of ty (Energy theory) ty (theory Tresca)	ty: D C	
Search (use Es Properties Margin of Safe Margin of Safe Margin of Safe Margin of Safe Margin of Safe	sc to dear text) s (MarginOfSafe ty (First theory of ty (Energy theory) ty (theory Tresca) ty (theory Mohr)	ty: D C	
Search (use Es Properties Margin of Safe Margin of Safe Margin of Safe Margin of Safe Margin of Safe Margin of Safe	sc to clear text) s (MarginOfSafe ty (First theory of ty (Energy theory) ty (theory Tresca) ty (theory Mohr) ty (theory Pisareni	ty: D Coulomb)	

Harmonic analysis

To plot the frequency dependencies after performing a calculation using harmonic analysis, select **Filters** \rightarrow **Index** \rightarrow **Harmonic Analysis**. Specify the node number, the characteristics of which will be presented on the graph.

Data saving

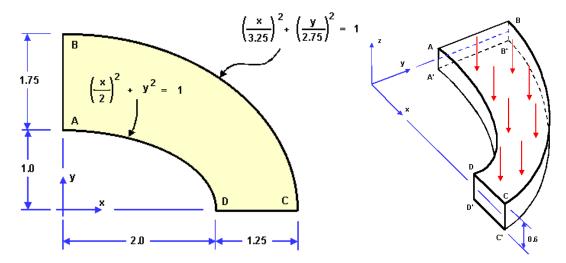
To get numerical values of the obtained results, save the data in .csv format. Click **Ctrl+S** or select **File** \rightarrow **Save** to do this. The saved file is an ordinary table of numerical data which can be opened in any text editor.

For dynamic problems, saving the model variation under deformation is available. Select File \rightarrow Save Animation to do this.

Step-by-Step User Guide

Solving any problem using **CAE FIDESYS** package includes 6 basic steps:

- Model generating
- Meshing
- Setting boundary conditions
- Setting the material
- Starting calculation
- Results analysis


See some examples with step-by-step guide below.

Static analysis (3D)

NAFEMS test "Thick Plate Pressure", Test No LE10, Date/Issue 1990-06-15/2.

The problem of static load of a plate is being solved.

The pictures below represent a geometric model of the problem:

Displacements along the normal to the sides are constrained in the side slices of the plate. All of the points of the outer curvilinear surface are fixed in the XY plane. The outer curvilinear surface is fixed along the middle line of displacements along Z axis. The pressure to the upper side is 1 MPa. The material parameters are E = 210 hPa, v = 0.3.

Test pass criterion is the following: stress σ_{yy} at the point D is -5.38MPa to within 3%.

Geometry creation

1. Create the first elliptic cylinder.

Select volume geometry generation section on Command Panel (Mode – **Geometry**, Entity – **Volume**, Action – **Create**). Select **Cylinder** in the list of geometric elements. Specify the cylinder dimensions:

- Height: 0.6
- Cross section: Elliptical
- Major Radius: 2
- Minor Radius: 1

Click **Apply**.

2. Create the second elliptic cylinder.

Select volume geometry generation section on Command Panel (Mode – **Geometry**, Entity – **Volume**, Action – **Create**). Select **Cylinder** in the list of geometric elements. Specify the cylinder dimensions:

- Height: 0.6;
- Cross section: Elliptical;
- Major Radius: 3.25;
- Minor Radius: 2.75.

Click Apply.

As a result, two generated entities are displayed in the Model Tree (Volume 1 and Volume 2):

3. Subtract the first cylinder from the second one .

Select volume geometry generation section on Command Panel (Mode – **Geometry**, Entity – **Volume**, Action – **Boolean**). Select **Subtract** in the list of operations. Set the following parameters:

- A Volume ID(s): 1 (the volumes to be subtracted);
- B Volume ID(s): 2 (volumes from which other volumes will be subtracted);
- Imprint.

Click Apply.

As a result, only one volume is displayed in the Model Tree (Volume 2).

	Mode -	Geometr	у				
	.		Ø				
	t = 0	$\mathbf{\mathbf{k}}$		✻	Q		
	Entity -	Volume					
		\diamondsuit	٢	\star	*	\bigcirc	
		A					
	Action -	Create					
	*	×	~	P	\approx		
	\bigcirc	×	2				
1	Cylinder						•
leight	0.6						
0 c	ircular			Ellipt	tical		
Major	Radius	2					
Minor	Radius	1					
i	ົ					Apply	/

Mode - Geometry				
🇞 🔀 🛃				
t=0	✻	Q		
Entity - Volume				
♥ ◇ ╱	\star	*	\bigcirc	
$\checkmark A$				
Action - Boolean				
12 🔊 🏹	r	\approx		
o x x				
Subtract				•
A Volume ID(s) 2				
B Volume ID(s) 1				
Keep Originals				
Keep B				
Keep both (A and B)				
Imprint				
	Dest		Arrol	
(i) 🤊	Prev	iew	Appl	У

4. Leave a quarter of a volume (symmetry of the problem).

Select volume geometry generation section on Command Panel (Mode – **Geometry**, Entity – **Volume**, Action – **Webcut**). Select **Coordinate Plane** in the list of possible webcut types. Set the following parameters:

- Volume ID(s): 2 (the volume to be webcut);
- Webcut with: YZ Plane;
- Offset value: 0;

Click Apply.


Do the same for the ZX Plane:

- Volume ID(s): 2 (the volume to be webcut);
- Webcut with: ZX Plane;
- Offset value: 0;

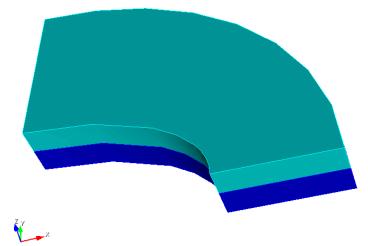
Click Apply.

	Mode -	Geometr	у				
	5		Ś				
	t = 0		5	⋇	Ω		
	Entity -	Volume					
		\diamondsuit	1	\bigstar	*	\bigcirc	
		A					
	Action -	Webcut					
	*	∞	~	r	\approx		
	\bigcirc	×	¥				
1	Coordinat	e Plane					•
Volume	e ID(s)	!					
) YZ		С) zx		⊖ x	Y	
Offset	Value 0						
Ro	tate Plan	e					
Imp	print						
Inc	lude Neig	hbors					
Me	rge						
Gro	oup Resul	ts					
(j)	e e			Prev	iew	<u>A</u> ppl	у

As a result, the original volume in the Model Tree is split into three (Volume 2, Volume 3 and Volume 4).

Delete the volumes 2 and 3. To do this, select these volumes in the Model Tree holding down Ctrl and click **Delete** in contextual menu. As a result, a quarter of the original volume is left (Volume 4).

5. Split the outer curvilinear surface into two (it is necessary for restraining this surface from displacements along the middle line).


Select surface geometry modification section on Command Panel (Mode – **Geometry**, Entity – **Volume**, Action – **Webcut**). Set the following parameters:

- Coordinate plane;
- Volume ID(s): 4 (volume to be cut);
- Plane: XY;
- Offset value: 0;
- Put a checkmark in the Merge box.

Click Apply.

The result will be two volumes 4 and 5 glued to each other along the section plane:

Meshing

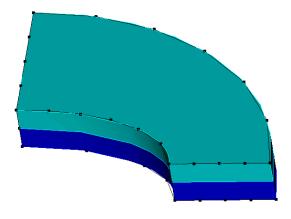
- Select meshing on curves section on Command Panel (Mode Mesh, Entity – Curve, Action – Mesh). Specify the parameters of mesh refinement:
 - Select Curves: 43 44 45 46 (using space after each curve);
 - Select the way of meshing: Equal;
 - Select the checkbox Interval;
 - Specify the number of intervals: 6

Click Apply. Click Mesh.

Select meshing on curves section on Command Panel (Mode – **Mesh**, Entity – **Curve**, Action – **Mesh**).

• Select Curves: 12 14 39 41 (using space after each curve);

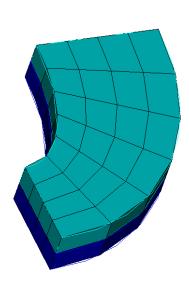
- Select the way of meshing: Equal;
- Select the checkbox Interval;
- Specify the number of intervals: 4.

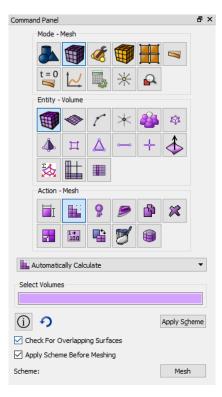

Click Apply. Click Apply Scheme

On the command panel, select the mesh generation mode on the curves (Mode - **Mesh**, Entity - **Curve**, Action - **Mesh**)

- Select Curves: 51 53 61 62 (through spaces);
- Settings for Curve: Equal;
- Set the Interval flag;
- Indicate the number of interval: 1;

Click Apply Size.

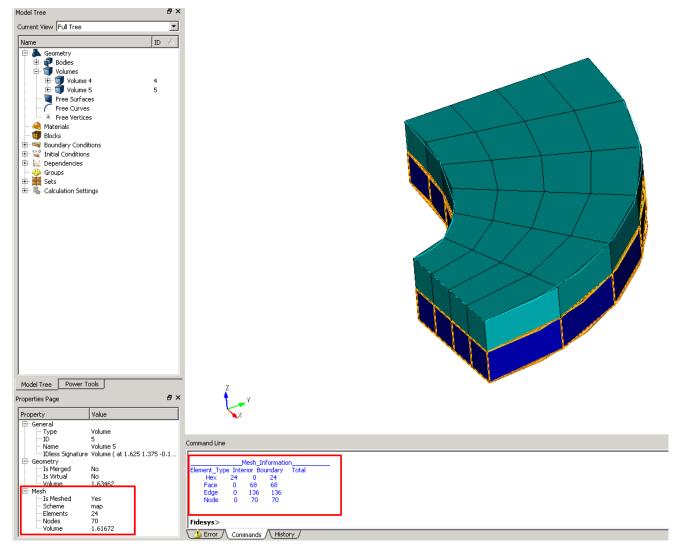

Click **Mesh**.



- 2. Select volume mesh generation section on Command Panel (Mode **Mesh**, Entity **Volume**, Action **Mesh**).
- Select Volumes: 4 5 (or by the command **all**);
- Select Meshing Scheme: Map.

Click Apply Scheme.

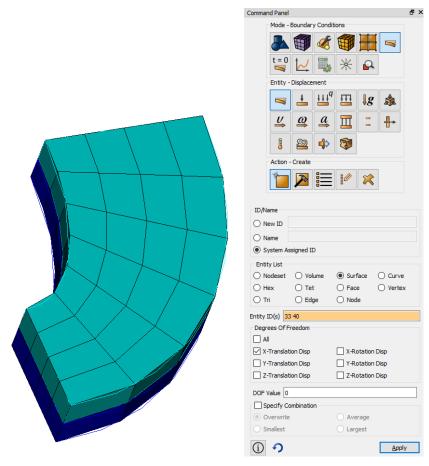
Click Mesh.



The resulting number of elements can be viewed in the Property Page by clicking on the inscription Volume 4 in the Model Tree on the left.

To view the mesh properties, you can follow these steps:

- Select the entire model
- Right-click on the model
- In the pop-up menu, select List Information List Mesh Info
- Information on the mesh will be displayed in Command Line


Setting boundary conditions

1. Fix one side (slice) along X axis.

Select Mode – **Boundary Conditions**, Entity – **Displacement**, Action – **Create** on Command Panel. Set the following parameters:

- System Assigned ID
- Entity List: Surface
- Entity ID(s): 33 40;
- Degrees of Freedom: X-Translation
- DOF Value: 0

Click Apply.

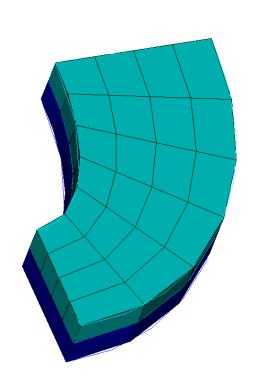
2. Fix one side (slice) along Y axis.

Select Mode – **Boundary Conditions**, Entity – **Displacement**, Action – **Create** on Command Panel. Set the following parameters:

- System Assigned ID
- Entity List: Surface
- Entity ID(s): 35 39;
- Degrees of Freedom: Y -Translation
- DOF Value: 0

3. Fix the outer curvilinear surface along X and Y axes.

Select Mode – **Boundary Conditions**, Entity – **Displacement**, Action – **Create** on Command Panel. Set the following parameters:

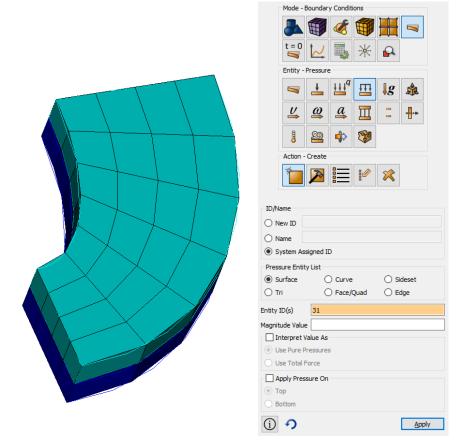

- System Assigned ID
- Entity List: Surface
- Entity ID(s): 36 38;
- Degrees of Freedom: x-Translation and y-Translation
- DOF Value: 0

Click **Apply**.

4. Fix the middle line of the outer curvilinear side along Z axis.

Select Mode – **Boundary Conditions**, Entity – **Displacement**, Action – **Create** on Command Panel. Set the following parameters:

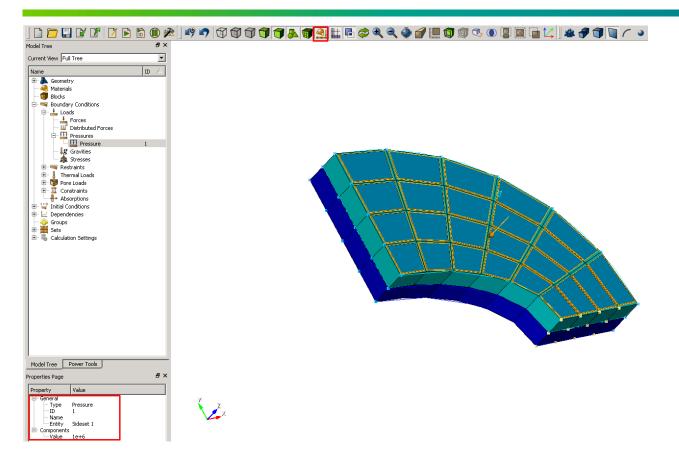
- System Assigned ID;
- Entity List: Curve;
- Entity ID(s): 50;
- Degrees of Freedom: z-Translation;
- DOF Value: 0.


	Mode - I	Boundar	y Condit	ions			
			Ś				
	t = 0		٩,	✻	Q		
	Entity -	Displace	ment				
	1	+	₩ ^q	₽	↓ <i>g</i>	歳	
	≚	⇒	₫	Ш	-	- <mark>-</mark>	
	8	<u>99</u>		8			
	Action -	Create					
	*	Þ			×		
ID/Na	ame						
0.1							
O N	ame						
۰ s	/stem As	signed II	0				
Entit	y List						
() N		-		Surf	face	O Curve	•
Он		⊖ Tet		O Face O Vertex			x
O Tr	i		je	○ Nod	e		
	D(s) 50						
-	ees Of Fr	eedom					
	Translati	an Dian			otation D	View	
	Translati				otation D		
_	Translati			_	otation D		
_	/alue 0						
	ecify Co	mhinatio	n				
	verwrite			O Ave	rage		
	nallest				-		
(j)	ົ					Арр	ly

5. Apply pressure to the upper side.

Select Mode – **Boundary Conditions**, Entity – **Pressure**, Action – **Create**. Set the following parameters:

- System Assigned ID
- Entity List: Surface
- Entity ID(s): 31
- Magnitude Value: 1e6 (an exponential number format using the Latin letter"e" is supported)


Click Apply.

All applied boundary conditions must be displayed in the Model Tree on the left. In addition, the boundary conditions are available for editing from the Model Tree.

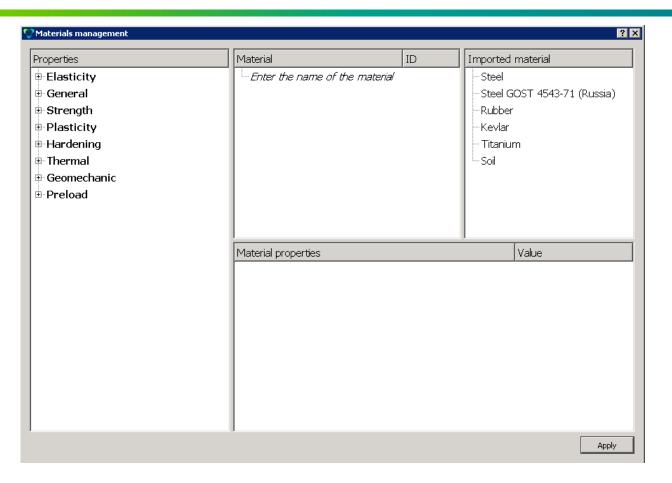
To view all the applied boundary conditions also click Show BC on the top panel.

Setting material and element type

1. Create the material.

Select setting the material properties section on Command Panel (Mode – **Blocks**, Entity – **Block**, Action – **Set Material**).

In the Materials Management window that opens, in the second column, double-click on the caption. Enter the name of the material and write "Material 1". Press the ENTER key.


Next, using the "drag & drop" method, add the necessary characteristics from the left column to the Material Properties column.

In the left column, select Elasticity - Hooke Material. Select with the mouse the characteristic Young's modulus. Hold down the left mouse button and drag the label to Material Properties. Double-click in the Value field opposite the Young Module and enter the number 210e9.

Similarly, from the Hooke Material section add the Poisson Ratio 0.3.

Click **OK**.

2. Create a block of one type of the material.

Select setting the material properties section on Command Panel (Mode – **Blocks**, Entity – **Block**, Action – **Add**). Set the following parameters:

- Block ID: 1;
- Entity list: Volume;
- Entity ID(s): 4 5 (or by the command **all**).

3. Assign the material to the block.

On the command panel, select the mode for setting material properties (Mode - **Blocks**, Entity - **Block**, Action - **Set Material**). Set the following parameters:

- Block ID (s): 1;
 - Available materials: Material 1.

Click Apply.

4. Assign the element type.

Select material properties setting section on Command Panel (Mode – **Blocks**, Entity – **Block**, Action – **Element Types**). Set the following parameters:

- Block ID(s): 1;
- Category: Solid;
- Order: 1.

	Mode - I	Blocks					
			Ś				
	t = 0			✻	Q		
	Entity -	Block					
		Ι	\diamondsuit	\star	ğ		
	Action -	Element	types				
	*		T	P	8	$1 \rightarrow 100$	
		-			*		
Block	ID(s) 1						
Categ	gory Soli	d					•
Order	1						-
i						Apply	/

Starting calculation

1. Set the type of the problem to be solved.

Select calculation settings section on Command Panel (Mode – **Calculation settings**, Calculation settings – **Static**, Static – **General**). Select:

- Dimension: 3D;
- Model: Elasticity.

Click Apply.

2. Set the solver settings.

Select calculation setting section on Command Panel (Mode – **Calculation settings**, Calculation settings – **Static**, Static – **Solver**). Select the solver method (direct or iterative) and set Convergence Parameters in case of choosing an iterative one. You can also leave all the settings by default.

Click Apply.

Click Start Calculation.

- 3. In a pop-up window select a folder to save the result and enter the file name.
- 4. If the calculation is finished successfully, you will see a message in the Console: "*Calculation finished successfully at <date> <time>*".

Results analysis

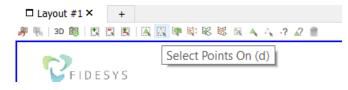
- 1. Open the file with the results. You can do this in one of the three ways.
 - Press Ctrl+E.
 - Select **Results** in the Main Menu. Click **Open last** result.
 - Select Results on Command Panel (Mode Results). Click Open Results.

Ę	Ca	lculation	Help					
	👃 🖁 Open Results Ctrl+E							
	4 0	Open R	tesults in	new win	idow	Ctrl+Shi	ft+E	
1od	e-F	Results					1	
7					\mathbf{H}			
t =	0			*	Q			
	C:/Users/Admin/CAE-Fidesys-2.0/11.pvd							
		L	_ Open	in new w	indow			
						Open last r	esult	

2. Display the component σ_{yy} of the stress field and the mesh on the model.

In *Fidesys Viewer* window set the following parameters on Toolbar:

- Representation Mode: Surface;
- Representation Field: Stress;
- Representation Component: YY.

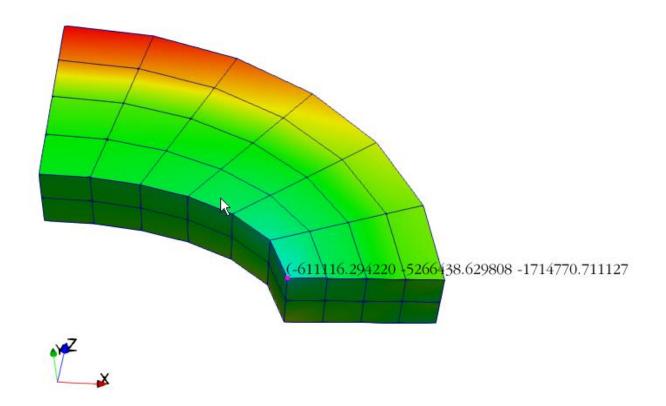


• Surface with edges.

				 1.5		
 Stress 	•	YY	•		Surface	•

3. Select a point where you need to view the stress.

Select a point on the model by using **Select Points Through**.



Select a point D on the upper side. From the main menu, select View – **Allocation Inspector**.

In **Allocation Inspector**, go to the tab **Point Tag** and select and click on the Stress line in the drop-down list.

As a result, Stress components at the point D is displayed at the picture.

Selection Display Inspector	5 ×
🥡 Cell Lat	oels 🔻
◇ Point La	bels 🔻
ID	
Displacement	203
Node ID	CLP -
Principal stress vector 1	
Principal stress vector 2	
Principal stress vector 3	
Strain	
Stress	

4. View a numerical value σ_{yy} at the selected point D.

The difference between the obtained value -5.266e+06 and the required one -5.380e+06 is 2.12%.

5. Download numerical data.

Select **File** \rightarrow **Save Data** in the Main Menu or click **Ctrl+S**. Enter the file name (*.csv format), leave it by default. Click **OK**. The saved file is an ordinary table of numerical data which can be opened in any text editor.

6. You can see the way the body is deformed under the applied pressure.

Select the filter **Warp By Vector** to do this. Set the following parameters in the tab **Properties**: set the value to 5000 in the field **Scale Factor**.

	000	0	Ø	Ø	٩	٢	Warp By Vector
Pip	eline	Brows	ser				₽ × □ Layout #1 ×

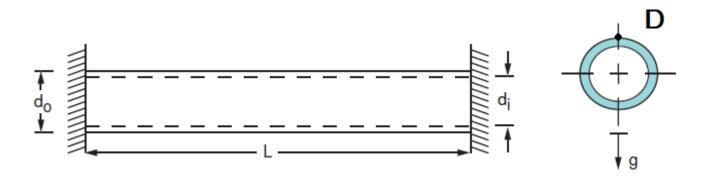
As a result, the deformed body is displayed at the picture. To see the original model, click near it in the Model Tree. The picture below shows the deformed (solid grey filling) and the original model (with the field of displacements distribution along Y axis).

Pipeline Browser	
builtin:	🥐 🐘 3D 🚳 数 🔣 🔣 🧮 🔯 🕸 🕸 略 略 略 🕺 🔍 🥠 🖉 🔮
💭 💼 WarpByVector1	CFIDESYS
Properties Information	
Properties &	
🖗 Apply 💿 Reset 🗱 Delete 💡	
Search (use Esc to clear text)	
Properties (WarpB 🖒 🖒 😥 🔒	
Vectors Displacement -	
Scale Factor 5000 🗙 🚳	in the second
😑 Display	
= View (Render View 🗅 🗈 😒 🔒	
Axes Grid Edit	wZ
Center Axes Visibility	
Orientation Axes	
✓ Orientation Axes Visibility	
Hidden Line Removal	
Camera Parallel Projection	
Background	
Single color	
○ Color	

Using Console Interface

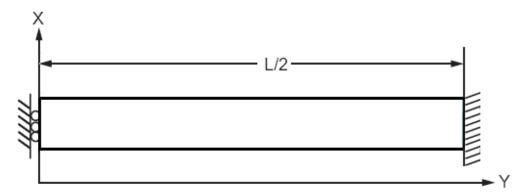
For geometry generation, meshing, setting boundary conditions and materials you can use Console Interface. The following program code allows performing the steps of the above-described guide you only need to manually specify the full path and name of the file to be saved.

reset create Cylinder height 0.6 major radius 2 minor radius 1 create Cylinder height 0.6 major radius 3.25 minor radius 2.75 subtract volume 1 from volume 2 webcut volume 2 with plane xplane offset 0 webcut volume 2 with plane yplane offset 0 delete Body 2 3 webcut volume 4 with plane zplane offset 0 merge curve 43 44 45 46 scheme equal curve 43 44 45 46 interval 6 mesh curve 46 44 45 43 curve 12 14 39 41 scheme equal curve 12 14 39 41 interval 4 mesh curve 12 14 39 41 curve 51 53 61 62 scheme equal curve 51 53 61 62 interval 1 mesh curve 51 53 61 62 volume 4 5 scheme map mesh volume 4 5 list Volume 4 mesh create displacement on surface 33 40 dof 1 fix 0 create displacement on surface 35 39 dof 2 fix 0 create displacement on surface 36 38 dof 1 dof 2 fix 0 create displacement on curve 50 dof 3 fix 0 create pressure on surface 31 magnitude 1e6 create material 1 modify material 1 name 'Material 1' modify material 1 set property 'MODULUS' value 2.1e+11 modify material 1 set property 'POISSON' value 0.3 block 1 add volume 4 5 block 1 material 1 block 1 element solid order 1 analysis type static elasticity dim3 calculation start path 'D:/Fidesys/example.pvd'



It is also possible to run the file *Example_1_Static_3D.jou* by selecting Journal Editor on Toolbar. In a pop-up window of the main menu select **File** \rightarrow **Open** and open the necessary journal file.

Static load (gravity force)


RJ. Roark, Formulas for Stress and Strain, 4th Edition? McGraw-Hill Book Co., Inc., New York, NY, 1965, pg 112, no. 33

The problem of the tube bending of under gravity force is to be solved. The pictures below represent a geometric model of the problem:

The side edges are rigidly fixed on all displacements and rotations. Material parameters are E = 30e6 psi, v = 0.0, $\rho=0.00073$ lb-sec²/in⁴. The gravity force is defined via the acceleration g=386 in/sec². The geometrical dimensions of the model: L=200 in, d₀=2 in, d_i=1 in.

Due to the symmetry of the problem, half tube will now be considered (L/2).

Test pass criterion is the following: displacement in the center of the tube u_{yy} at the point D (0, $d_0/2$, 0) is - 0.12529 within 3%.

Geometry creation

1. Create the first circular cylinder.

Select volume geometry generation section on Command Panel (Mode – **Geometry**, Entity – **Volume**, Action – **Create**). Select **Cylinder** in the list of geometric elements. Specify the cylinder dimensions:

- Height: 100;
- Cross section: Circular;
- Radius: 1;

Click Apply.

	Mode -	Geometr	у				
	.		K			1	
	t = 0			✻	Q		
	Entity -	Volume					
		\diamondsuit	(\star	*	\bigcirc	
		A					
	Action -	Create					
	*	æ	~	P	\approx		
	\bigcirc	×	2				
1	Cylinder						•
eight	100						
• c	ircular			O Ellipt	tical		
Radiu	ıs 1						
i)	ົ				[<u>A</u> pply	,

N	1odel Tree		Β×
(Current View Full Tree		•
	Name	ID	Δ
	🖨 🏊 Geometry		
	🕀 🐙 Bodies		
	🗇 🕤 Volumes		
	🕀 🗇 Volume 1	1	ור
	🗄 🕤 Volume 2	2	
	🖳 Free Surfaces		
	Free Curves		
	👾 🗶 Free Vertices		
	🧶 Materials		
	👹 Blocks		
	🕀 🤜 Boundary Conditions		
	🕀 🚆 Initial Conditions		
	🕀 🖌 Dependencies		
	🤐 Groups		
	🕀 🗮 Sets		
	🗄 🖷 駶 Calculation Settings		

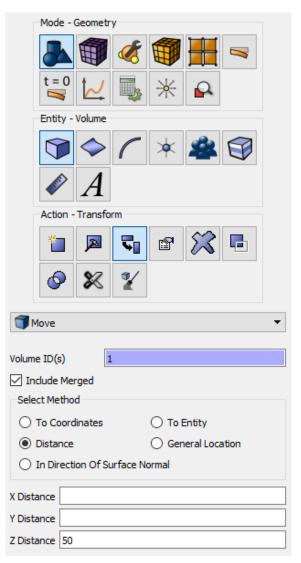
2. Create the second cylinder.

Select volume geometry generation section on Command Panel (Mode – **Geometry**, Entity – **Volume**, Action – **Create**). Select **Cylinder** in the list of geometric elements. Specify the cylinder dimensions:

- Height: 100;
- Cross section: Circular;
- Radius: 0.5;

Click Apply.

As a result, two generated entities are displayed in the Model Tree (Volume 1 and Volume 2).


3. Subtract the first cylinder from the second one.

Select volume geometry generation section on Command Panel (Mode – **Geometry**, Entity – **Volume**, Action – **Boolean**). Select **Subtract** in the list of operations. Set the following parameters:

- A Volume ID(s): 1 (the volumes to be subtracted);
- B Volume ID(s): 2 (volumes from which other volumes will be subtracted).

Click Apply.

As a result, only one volume is displayed in the Model Tree (Volume 1).

	Mode -	Geometr	у				
			Ś				
	t = 0		5	✻	Q		
	Entity -	Volume					
		\diamondsuit	(\star	*	\bigcirc	
		A					
	Action -	Boolean					
	*	∞	5	P	\approx		
	Ø	8	¥				
0	Subtract						-
	AB	→					
A v	olume ID	(s) 1					
B	olume ID	(s) 2					
K	(eep Origi	nals					
● K	(eep B						
⊖ K	(eep both	(A and E	3)				
Im	print						
i	n			Prev	iew	Appl	y

4. Place the volume to the coordinate origin.

Select volume geometry generation section on Command Panel (Mode – **Geometry**, Entity – **Volume**, Action – **Transform**). Select **Move** from the list of possible types of slices. Set the following parameters:

- Volumes ID(s): 1 (the volume to be cut);
- Checkbox Distance;
- Z Distance: 50;

Click Apply.

Thus, the center of the left end of the tube is placed in the origin of coordinates.

Meshing

1. Set the approximate size of the elements.

Select volume mesh generation section on Command Panel (Mode – **Mesh,** Entity – **Volume**, Action – **Intervals**). Specify the approximate size of the elements:

- Select volumes: 1;
- Select Approximate size from the drop-down list;
- Approximate size: 0.25;

Click Apply Size.

2. Select the way of mesh generation.

Select volume mesh generation section on Command Panel (Mode – **Mesh**, Entity – **Volume**, Action – **Mesh**).

- Select volumes: 1;
- Select meshing scheme: Polyhedron

Click Apply Size. Click Mesh.

	Mode - I	Mesh						
			Ś					
	t = 0		5	棠	Q			
	Entity -	Volume						
			r	*	2	1\$ 1		
		Ħ	Δ		+	\diamondsuit		
	2							
	Action -	Interval	s					
	Π		8	9	Þ	×		
		1→ 100		Ø				
	Approxima	ate Size					•	
Sele	ct Volume	s						
1								
Appro:	ximate Siz	e 0.25						
Pre	Preview							
	Apply Size							
<mark>∕ C</mark> h	Check For Overlapping Surfaces							
✓ Ap	Apply Size Before Meshing							
(j)	(i) 🤨 Mesh							

The resulting number of elements can be found on the property page by clicking on Volume 1 in the Model Tree on the left.

To view the mesh properties, you can follow these steps:

- Select the entire model
- Right-click on the model
- In the pop-up menu, select List Information List Mesh Info
- Information on the mesh will be displayed in Command Line

Setting boundary conditions

1. Fix the right lateral edge at all directions.

Select Mode – **Boundary Conditions,** Entity – **Displacement**, Action – **Create** on Command Panel. Set the following parameters:

- System Assigned ID;
- Entity List: Surface;
- Entity ID(s): 8;
- Degrees of Freedom: All;
- DOF Value: 0.

Click Apply.

2. Fix the left lateral edge along X and Z axes by analogy.

Select Mode – **Boundary Conditions,** Entity – **Displacement**, Action – **Create** on Command Panel. Set the following parameters:

- System Assigned ID;
- Entity List: Surface;
- Entity ID(s): 9;
- Degrees of Freedom: X-Translation Disp, Z-Translation Disp;
- DOF Value: 0.

Mode - Boundary Conditions							
		Ś					
t = 0		5	⋇	Q			
Entity -	Displace	ment					
	+	H^{q}	<u></u>	₿	歳		
$\stackrel{\underline{\nu}}{\Longrightarrow}$	⇒	₫	Ш	-	- <mark>-</mark>		
ł	<u>99</u>	\$	F				
Action - Create							
*	Þ			×			

O New ID							
O Name							
System As	signed ID						
Entity List							
○ Nodeset	O Volume	Surface	O Curve				
◯ Hex	🔿 Tet	O Face	○ Vertex				
🔿 Tri	🔘 Edge	🔘 Node					
Entity ID(s) 8							
Degrees Of F	reedom						
X-Translation Disp X-Rotation Disp							
X-Translat	ion Disp	X-Rotation	n Disp				
X-Translat		X-Rotation					
	ion Disp		n Disp				
Y-Translat	ion Disp	Y-Rotation	n Disp				
Y-Translat	ion Disp ion Disp	Y-Rotation	n Disp				
Y-Translat Z-Translat DOF Value	ion Disp ion Disp ombination	Y-Rotation	n Disp				
Y-Translat Z-Translat DOF Value Specify Co	ion Disp ion Disp ombination	Y-Rotation Z-Rotation	n Disp				
 Y-Translat Z-Translat DOF Value Specify Co Overwrite 	ion Disp ion Disp ombination	Y-Rotation Z-Rotation Average	n Disp				

3. Set the gravity force.

Select Mode – **Boundary Conditions,** Entity – **Gravity**, Action – **Create** on Command Panel. Set the following parameters:

- Global;
- Directions: Y;
- Value: -386.

Click Apply.

Setting material and element type

1. Create the material.

Select setting the material properties section on Command Panel (Mode – **Material**, Entity – **Materials management**).

In the Materials Management window that opens, in the second column, click on the caption Enter the name of the material and write "Material 1". Press the ENTER key.

In the left column, select Elasticity - Hooke Material. Select with the mouse the characteristic Young's modulus. Hold down the left mouse button and drag the label to Material Properties. Double-click in the Value field next to Young's modulus and enter the number 30e6.

Similarly, from the Hooke Material section add the Poisson Ratio 0.3 ; from the section General - Density: 0.00073.

Click **Apply**.

2. Create the block of one material type.

Select setting the material properties section on Command Panel (Mode – **Blocks**, Entity – **Block**, Action – **Add**). Set the following parameters:

- Block ID: 1;
- Entity list:: Volume;
- Entity ID(s): 1 (or by the command all).

Click **Apply**.

Apply

Mode - Blocks

Entity - Block

Mode - I	Material				
		Ś			
t = 0			✻	Q	
Entity -	Materials	s Manag	ement		
Ť	<	¢			

.					9
t = 0	2	5	*	•	
Entity -	Gravity				
1	+	₩ ^q	⊞	↓ g	俞
₩		a	Ш		-
8	22	\$	8		
Action -	Create				
*	A		10	53	

3. Assign the material to the block.

Select setting the material properties section on Command Panel (Mode – **Blocks**, Entity – **Block**, Action – **Set material**). Set the following parameters:

- Block ID(s): 1;
- Select the previously created material in the list: Material 1.

Click Apply.

Apply

(i)

4.	Assign	the	element	type	to	the	block.
----	--------	-----	---------	------	----	-----	--------

Select setting the material properties section on Command Panel (Mode – **Blocks**, Entity – **Block**, Action – **Element Types**). Set the following parameters:

- Block ID(s): 1;
- Category: Solid;
- Order: 1

Starting calculation

1. Set the type of the problem to be solved.

Select calculation setting section on Command Panel (Mode – **Calculation settings**, Calculation settings – **Static**, Static – **General**). Select:

- Dimension: 3D;
- Model: Elasticity.

Click **Apply**.

In a pop-up window select a folder to save the result and enter the file name.

If the calculation is finished successfully, you will see a message in the Console: "*Calculation finished successfully at* <*date> <time>*".

	Mode -	Calculatio	on Settir	ngs		
			Ś			
	t = 0	\mathbf{k}	I	✻	Q	
	Calculat	ion settir	ngs - Sta	atic		
	↓)	\$	
	Static -	General				
	Ŷ	-	2			
Dimer	nsions:				3D	•
🗌 U:	se MPI					
Mod	lel					

Use MPI	
Model	
Elasticity	
Plasticity	
Nonlinear geometry	
Heat transfer	
Pore Fluid Transfer	
Set load steps count	
Set nonlinear solver options	
(j)	Apply
	Start Calculation

Results analysis

- 1. Open the file with the results. You can do this in one of the three ways.
 - Click Ctrl+E.
 - Select Calculation → Open Results in the Main Menu. Click
 Open last result.
 - Select Results on Command Panel (Mode Results). Click Open Results.
 - To apply all of the filters changes automatically in *Fidesys Viewer*, click **Apply changes to parameters automatically** on Command Panel.
- 2. Display the U_{yy} component of the displacement field on the model.

In *Fidesys Viewer* window set the following parameters on Toolbar:

- Representation Mode: Surface;
- Representation Field: Displacement;
- Representation Component: Y.

Open last result

CAE	Fidesys – User Guide (ve	rsion 2.0)			
• After apply	Surface. Displacement ving the settings, you w	▼ Y ill see the fo	Ilowing picture:	Surface	•
	Ň			0.000e+00- 0.02 0.04 0.06 0.08 0.1 -1.254e-01- 1.254e-0	Displacement Y

3. Check the maximum value U_{yy} at the selected point D.

X

In the picture, it is the maximum in modulus Displacement (blue). It corresponds to -0.127222 in the color legend.

The difference between the resulting value -0.1254 and the required -0.12524 is 0.13%.

4. Download numerical data.

Select **File** \rightarrow **Save Data** in the Main Menu or click **Ctrl+S**. Enter the file name (*.csv format), leave it by default. Click **OK**. The saved file is an ordinary table of numerical data which can be opened in any text editor.

5. You can see the way the body is deformed under the applied pressure.

To do this, select Filters \rightarrow Alpabatical \rightarrow Warp By Vector. Set the following parameters in the tab Properties::

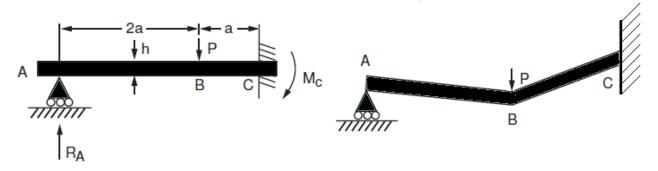
- Vectors: Displacement;
 - Scale Factor: 100.

As a result, the deformed body is displayed at the picture. To see the original model, click the button near the model in the Model Tree. The picture below shows the deformed (solid grey filling) and the original model (with the field of displacements distribution along Y axis).

Properties Information			
Properties	₽×		
Apply Reset X Delete	2		
Search (use Esc to clear text)	3		
Properties (Wi 🗋 🛍 🔅			
Vectors Displacement	•		
Scale Factor 100	×. 🕄		
Display			
📼 View (Render)	ŧ 🔒		
C Axes Grid Edit			
Center Axes Visibility			
Orientation Axes			~ /
Orientation Axes Visibility			
Hidden Line Removal	₽		
Camera Parallel Projection		X	
Background			
Single color	•		•
◯ Color ▼ Restore	Default		

Using Console Interface

For geometry generation, meshing, setting boundary conditions and materials you can use Console Interface. The following program code allows performing the steps of the above-described guide, you only need to **manually specify the full path and name of the file to be saved**.


```
reset
create Cylinder height 100 radius 1
create Cylinder height 100 radius 0.5
subtract volume 2 from volume 1
volume 1 size 0.25
volume 1 scheme sweep
mesh volume 1
list volume 1 mesh
create displacement on surface 8 dof all fix 0
create displacement on surface 9 dof 1 dof 3 fix 0
create gravity global
modify gravity 1 dof 2 value -386
create material 1
modify material 1 name 'Material1'
modify material 1 set property 'POISSON' value 0
modify material 1 set property 'MODULUS' value 3e+7
modify material 1 set property 'DENSITY' value 0.00073
block 1 add volume 1
block 1 material 1
block 1 element solid order 2
analysis type static elasticity dim3
calculation start path "D:/Fidesys/calc/example.pvd
```


It is also possible to run the file *Example_2_Static_3D.jou* by selecting Journal Editor on Toolbar. In a pop-up window of the main menu select **File** \rightarrow **Open** and open the necessary journal file.

Static load (beam model, reaction forces)

S.H. Crandall, N.C. Dahl, An Introduction to the Mechanics of Solids, McGraw-Hill Book Co., Inc., New York, NY, 1959, pg. 389, ex. 8.9

The problem of static load of a square section beam is being solved. The picture represents a geometric model of the problem: a = 50 In, beam section 1×1 in. The boundary conditions are presented in the picture; the force applied at the point B is $F_y = -1000$ lb. The material parameters are E = 30e6 psi , v = 0.3.

Test pass criterion is the following: reaction force R_A at the point A (0,0,0) is 148.15 lb, reaction moment at the point C is 27778 in-lb within 1.5%.

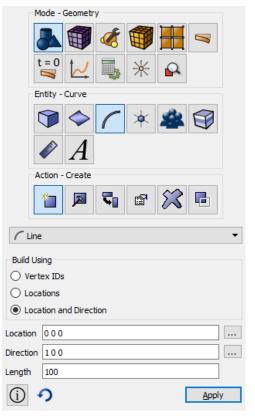
Geometry creation

1. Create a straight line 100 in length (segment AB).

Select volume geometry generation section on Command Panel (Mode – **Geometry**, Entity – **Curve**, Action – **Create**). Select **Line** in the list of geometric elements. Create it using **Location and Direction**. Set the following parameters:

- Location: 0 0 0 (*line origin*);
- Direction: 1 0 0 (along X axis);
- Length: 100;

Click Apply.

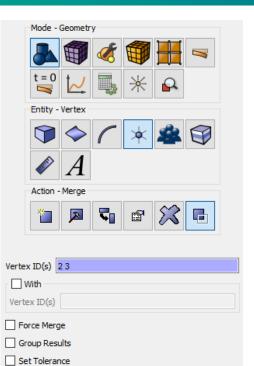

2. Create a straight line 50 in length (segment BC).

Select volume geometry generation section on Command Panel (Mode – **Geometry**, Entity – **Curve**, Action – **Create**). Select **Line** in the list of geometric elements. Create it using **Location and Direction**. Set the following parameters:

- Location: 100 0 0 (line origin);
- Direction: 1 0 0 (along X axis);
- Length: 50;

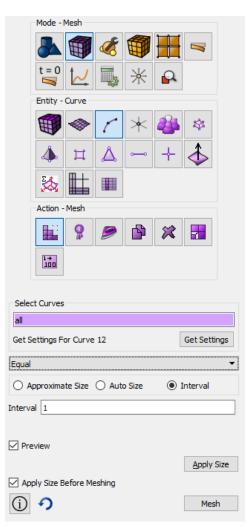
Click Apply.

As a result, in left side of the Model Tree there are two free curves having no common vertices.



3. Unite two vertices.

Select volume geometry generation section on Command Panel (Mode – **Geometry**, Entity – **Vertex**, Action – **Merge**). Set the following parameters:


• Ver tex ID: 2 3 (using space after each of them);

Click Apply.

Apply

(i) 🤊

Meshing

- Select meshing on curves section on Command Panel (Mode Mesh, Entity – Curve, Action – Mesh). Specify the parameters of mesh refinement:
 - Select Curves: all;
 - Select the way of meshing: Equal;
 - Select the meshing parameters: Interval;
 - Interval: 1.

Click Apply Size.

Click Mesh.

Setting boundary conditions

1. Fix the point C at all directions.

Select Mode – **Boundary Conditions,** Entity – **Displacement**, Action – **Create** on Command Panel. Set the following parameters:

- System Assigned ID;
- Entity List: Vertex;
- Entity ID(s): 4;
- Degrees of Freedom: All;
- DOF Value: 0.

Click **Apply**.

	Mode - Boundary Conditions								
			Ś			7			
	t = 0	\sim	5	✻	•				
	Entity -	Displace	ment						
		+	H^{q}	₽₽₽	↓ <i>g</i>	歳			
	$\stackrel{\underline{\nu}}{\Rightarrow}$	⇒	⇒	Ш	-	-			
	8	<u>9</u> 9		F					
	Action -	Create							
	*	Þ			×				
ID/N	ame								
	lew ID								
ON	lame								
) s	ystem As	signed II	D						
Enti	ty List								
ON	lodeset	🔿 Vol	ume	Surf	face (O Curve			
Он	⊖ Hex ○ Tet			O Fac	e (O Verte:	x		
От	○ Tri ○ Edge				le				
Entity	ID(s) 4								
	ees Of Fr	eedom-							
	X-Translation Disp				X-Rotation Disp				
Y-Translation Disp				Y-Rotation Disp					
Z-Translation Disp				∐ Z-R	otation D	lisp			
DOF Value 0									
Specify Combination									
Overwrite				O Average					
O s	mallest				gest				
(j)	9					Appl	у		

2. Fix the point A at the Y and Z displacement.

Select Mode – **Boundary Conditions,** Entity – **Displacement**, Action – **Create** on Command Panel. Set the following parameters:

- System Assigned ID;
- Entity List: Vertex;
- Entity ID(s): 1;
- Degrees of Freedom: Y-Translation Disp, Z-Translation Disp;
- DOF Value: 0.

3. Apply force at the point B.

Select Mode – **Boundary Conditions,** Entity –**Force**, Action – **Create** on Command Panel. Set the following parameters:

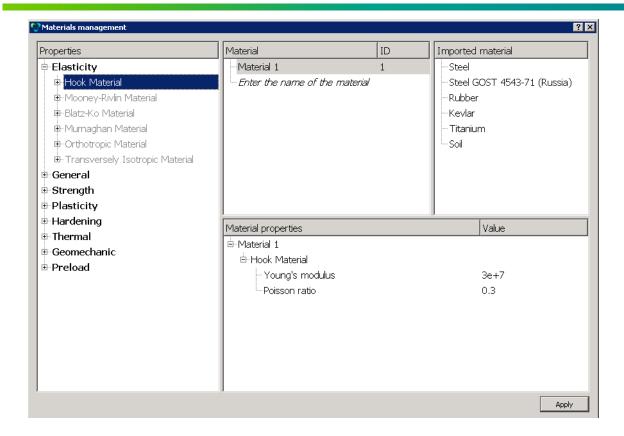
- System Assigned ID;
- Entity List: Vertex;
- Entity ID(s): 2;
- Force: 1000;
- Click Direction 0 -1 0.

Click **Apply**.

Mode - Boundary Conditions								
			4					
	t = 0	\sim		棠	Q			
	Entity -	Force						
		+	\mathbf{H}^{q}	₽₽₽	₿	歳		
	$\stackrel{\underline{\nu}}{\Rightarrow}$	⇒	⇒	Ш	-	- <mark>-</mark>		
	8	<u>9</u> 9		F				
	Action -	Create						
	*	Þ			×			
ID/N	ame							
ON	lew ID							
ON	lame							
S	ystem As	signed II	0					
Force	e Entity Li	ist						
	◯ Surface							
00	O Curve O Node							
Entity ID(s) 2								
Force 1000								
Moment								
Direction 0 -1 0								
(j)								

Setting material and element type

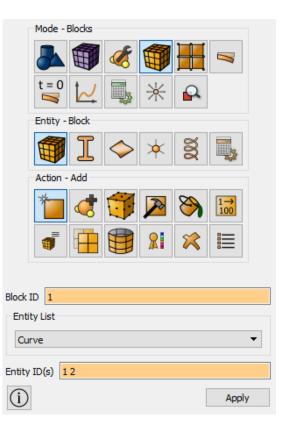
1. Create the material.


Select setting the material properties section on Command Panel (Mode – **Material**, Entity – **Materials Management**).

In the Materials Management window that opens, in the second column, click on the caption Enter the name of the material and write "Material 1". Press the ENTER key.

In the left column, select Elasticity - Hooke Material. Select with the mouse the characteristic Young's modulus. Hold down the left

mouse button and drag the label to Material Properties. Double-click in the Value field next to Young's modulus and enter the number 30e6. Similarly, from the Hooke Material section add the Poisson Ratio 0.3;



2. Create the block of one type of the material.

Select setting the material properties section on Command Panel (Mode – **Blocks**, Entity – **Block**, Action – **Add**). Set the following parameters:

- Block ID: 1;
- Entity list: Curve;
- Entity ID(s): 1 2 (or by the command all).

3. Assign the material to the block.

Select setting the material properties section on Command Panel (Mode – **Blocks**, Entity – **Block**, Action – **Set material**). Set the following parameters:

- Block ID(s): 1;
- Select the previously created material in the list: Material 1.

Click Apply.

Mode - Blocks							
👗 🗊 🌾 🍯							
t=0 🛃 🐺 🔆	•						
Entity - Block							
() I 🔷 🛪	x 🖡						
Action - Set material							
1 付 🚺 🔊							
۱۸ 🍯 🚹	*						
Block ID(s)							
Available Materials							
Material 1							
(i) Apply							

	Mode - Blocks							
	<u>_</u>		Ś					
	t = 0		5	✻	Q			
	Entity - Block							
		Ι	\diamondsuit	\star	ă	5		
	Action - Element types							
	×			Þ	8	1→ 100		
				8	×			
Block	ID(s) 1							
Categ	ory Be	am					•	
Order	1						-	
i	(i) Apply							

4. Assign the element type.

Select setting the material properties section on Command Panel (Mode – **Blocks**, Entity – **Block**, Action – **Element types**). Set the following parameters:

- Block ID(s): 1;
- Category: Beam;
- Order:1.

Setting beam cross section profile

1. Set beam parameters.

Select setting the material properties section on Command Panel (Mode - Blocks, Entity - Beam Properties). Set the checkbox Select profile. Select Rectangle in the list of geometric elements. Specify the following parameters:

- Block ID: 1;
- Height (H): 1;
- Width (B): 1;

Click **Apply**.

Starting calculation

1. Set the type of the problem to be solved.

Select calculation setting section on Command Panel (Mode -Calculation settings, Calculation settings - Static, Static -General). Select:

- Dimension: 3D;
- Model: Elasticity.

Click **Apply**.

2. Set the solver settings.

Select calculation setting section on Command Panel (Mode -Calculation settings, Calculation settings - Static, Static -Solver). Select the solver method (direct or iterative) and set Convergence Parameters in case of choosing an iterative one. You can also leave all the settings by default.

Click **Apply**.

3. Set the reaction force calculation

Go to the tab Static - Output fields and set the checkbox Calculate nodal and reaction forces.

Click **Apply**.

Click Start Calculation.

Note: Without setting the checkbox Calculate nodal and reaction forces, the field is not calculated.

Mode -	Blocks				
-					-
t = 0	2	5	*	Ω	
Entity -	Beam Pr	operties			
	I	\diamond	ֹ	x	۵
-					
Block ID				1	
0000.10					
CS Rotation A	ngle			0.0	
	ngle			0.0 Centr	oid
CS Rotation A	ngle				oid

	Mode -	Calculatio	on Settir	ngs					
			Ś						
	t = 0		I	✻	Q				
	Calculat	ion setti	ngs - Sta	atic					
	± ↓ ↑			\mathbf{X}	8				
	Static -	General							
	ŝ		Z						
Dimen	nsions:				3D		•		
🗌 U:	se MPI								
Mod	lel								
\checkmark	Elasticity								
	Plas	ticity							
	Non	linear ge	ometry						
	Heat trar	nsfer							
Pore Fluid Transfer									
Set load steps count									
Set nonlinear solver options									
(j)					[Apply	,		
U						(iddi)			
					Sta	art Calcula	ation		

- 4. In a pop-up window select a folder to save the result and enter the file name.
- 5. If the calculation is finished successfully, you will see a message in the Console: "*Calculation finished successfully at <date> <time>*".

Results analysis

- 1. Open the file with the results. You can do this in one of the three ways.
 - Click Ctrl+E.
 - Select Calculation → Open Results in the Main Menu. Click Open last result.
 - Select Results on Command Panel (Mode Results). Click Open Results.
- 2. Display the u_y component of the displacements field.

In *Fidesys Viewer* window set the following parameters on Toolbar:

- Representation Mode: Surface;
- Representation Field: Displacement;
- Representation Component: Y.

The field of displacements distribution along the Y axis wil be displayed on the model

3. Check the numerical value of the reaction force at the point A.

Display Component 2 of the Reaction Forces field.

Reaction Force	X			
----------------	---	--	--	--

On the *Fidesys Viewer* Main Panel, click Select Points On surface.

🗖 Layout #1 🗙	+	
🎉 🛞 3D 🔞 📑	. 5	🔣 🔣 🕸 🕸 🕸 🗟 🗛 🗛 🖓 🖉 📋

Select the limiting left point (point A) on the geometric model.

To quickly view the information at the fixed point, click **pointsInfo** on the Main Panel.

BB	1 🖾 🚵	C	> 🖉	C.	7	0	30
----	-------	---	---------------	----	---	---	----

In the pop-up window, components of the reaction force at the selected point will be displayed.

🙀 Points	s infor	matio	n	
Node ID	Х	Y	Z	Reaction Force
1	0	0	0	0 150.977 0

The difference between the resulting value 150.977 and the required 148.15 is less than 1,8%.

Please, do not close the window Points information.

Mode - Results								
		Ś						
t = 0		5	棠	Q				
C:/Users/Admin/CAE-Fidesys-2.0/13.pvd								
				0	pen last	result		

4. Check the numerical value of reaction moments at the point C.

Display Component Z of the Reaction_moment field.

Reaction Force	▼ Z		Surface	•
----------------	-----	--	---------	---

On the *Fidesys Viewer* Main Panel, click Select Points On surface.

□ Layout #1 ×	+	1
🎤 🎨 3D 🔞 🖱	15	■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

Select the limiting right point C on the geometric model.

In the window Points information components of the reaction moment at the selected point will be displayed.

🙀 Points					
Node ID	Х	Y	Ζ	Reaction Moment	
3	150	0	0	0 0 -27353.5	

The difference between the resulting value -27353.5 and the required -27377.3 is less than 0.01%.

5. Open 3D-image of the beam.

To display 3D-view of the beam cross section, set the focus on the calculation title and click the button

in the Fidesys Viewer standard line.

To apply all of the filters changes automatically, click **Apply changes to parameters automatically** on Command Panel.

6. Download numerical data.

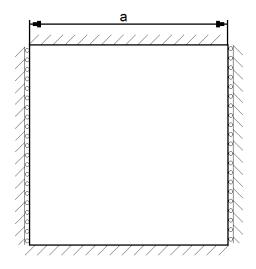
Select **File** \rightarrow **Save Data** in the Main Menu or click **Ctrl+S**. Enter the file name (*.csv format), leave it by default. Click **OK**. The saved file is an ordinary table of numerical data which can be opened in any text editor.

Using Console Interface

For geometry generation, meshing, setting boundary conditions and materials you can use Console Interface. The following program code allows performing the steps of the above-described guide, you only need to **manually specify the full path and name of the file to be saved**.

```
reset
create curve location 0 0 0 direction 1 0 0 length 100
create curve location 100 0 0 direction 1 0 0 length 50
merge vertex 2 3
curve all scheme equal
curve all interval 1
mesh curve all
create displacement on vertex 4 dof all fix
create displacement on vertex 1 dof 2 dof 3 fix
create force on vertex 2 force value 1000 direction 0 -1 0
create material 1
modify material 1 name 'Material1'
modify material 1 set property 'MODULUS' value 3e+7
```

```
modify material 1 set property 'POISSON' value 0
block 1 add curve 1 2
block 1 material 1
block 1 element beam
block 1 attribute count 7
block 1 attribute index 1 value 1 name 'Rectangle'
block 1 attribute index 2 value 0.0 name 'ey'
block 1 attribute index 3 value 0.0 name 'ez'
block 1 attribute index 4 value 0.0 name 'angle'
block 1 attribute index 5 value 0 name 'section_id'
block 1 attribute index 6 value 1 name 'geom_H'
block 1 attribute index 7 value 1 name 'geom_B'
analysis type static elasticity dim3
solver method auto use_uzawa auto try_other on
output nodalforce on energy off midresults on record3d on log on vtu on material off
calculation start path 'D:/Fidesys/example3.pvd'
```



It is also possible to run the file *Example_3_Static_Beam.jou* by selecting Journal Editor on Toolbar. In a pop-up window of the main menu select **File** \rightarrow **Open** and open the necessary journal file.

Static load (shell)

Timoshenko S.P. Voynovskiy-Kriger S. Plates and shells, Nauka, Moscow, 1966, 636 pages [in Russian]

The problem of static load of square shell which two sides are clamped and the other two are freely supported, is being solved.. The picture represents a geometric model of the problem: a = 1 m, shell thickness is 0.1 m. The boundary conditions are presented in the picture. The plate is loaded by uniform pressure of 10 kPa.

Test pass criterion is the following: the maximum deflection is 1.19e-6, moments $M_x=252 \text{ N} \cdot \text{m}$ and $M_y=332 \text{ N} \cdot \text{m}$.

Geometry creation

1. Create the square 1 m on side.

Select volume geometry generation section on Command Panel (Mode – **Geometry**, Entity – **Surface**, Acti on – **Create**). Select **Rectangle** in the list of geometric elements. Set the parameters:

- Width: 1;
- Height: Optional.

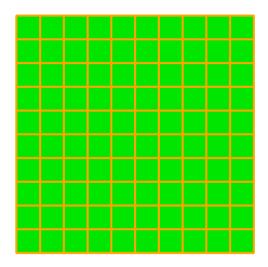

Click Apply.

Meshing

- Select surface mesh generation section on Command Panel (Mode – Mesh, Entity – Surface, Action – Mesh). Specify the following parameters:
 - Select surfaces: 1;
 - Select meshing scheme: Polyhedron;

Click Apply Scheme.

Click Mesh.



Apply Scheme Before Meshing

Mesh

Scheme:

Mode - Geometry

Setting boundary conditions

1. Fix the two edges rigidly.

Select Mode – **Boundary Conditions,** Entity – **Displacement**, Action – **Create** on Command Panel. Set the following parameters:

- System Assigned ID;
- Entity List: Curve;
- Entity ID(s): 1 3 (or sequentially click on the top and bottom edges);
- Degrees of Freedom: All;
- DOF Value: 0.

Click Apply.

2. Fix the two other edges at displacements.

Select Mode – **Boundary Conditions,** Entity – **Displacement**, Action – **Create** on Command Panel. Set the following parameters:

- System Assigned ID;
- Entity List: Curve;
- Entity ID(s): 2 4 (or sequentially click on the right and left edges);
- Degrees of Freedom: X-Translation Disp, Y-Translation Disp, Z-Translation Disp;
- DOF Value: 0.

Mode - Boundary Conditions								
		K						
t = 0			棠	Q				
Entity -	Displace	ment						
1	+	H_d	<u>+++</u>	$\downarrow g$	歳			
$\stackrel{\underline{\nu}}{\Rightarrow}$	⇒	$\stackrel{a}{\Rightarrow}$	Ш	-				
8	<u>99</u>		F					
Action - Create								
*	<u>}</u>			枀				

10/ritanic									
O New ID									
O Name									
System As	signed ID								
Entity List									
○ Nodeset	O Volume	Surface	Ourve						
◯ Hex	🔿 Tet	O Face	O Vertex						
🔿 Tri	🔘 Edge	O Node							
Entity ID(s) 1	3								
Degrees Of F	reedom								
X-Translat	ion Disp	X-Rotation	X-Rotation Disp						
Y-Translat	ion Disp	Y-Rotation Disp							
Z-Translat	ion Disp	Z-Rotation Disp							
DOF Value	DOE Value								
Specify Combination									
Overwrite Average									
🔘 Smallest		🔘 Largest							
			Apply						
() •)			<u>A</u> pply						

Apply the uniform pressure on the surface.

Select Mode – **Boundary Conditions,** Entity – **Pressure**, Action – **Create** on Command Panel. Set the following parameters:

- System Assigned ID;
- Entity List: Surface;
- Entity ID(s): 1;
- Magnitude Value: 1e4;

Click **Apply**.

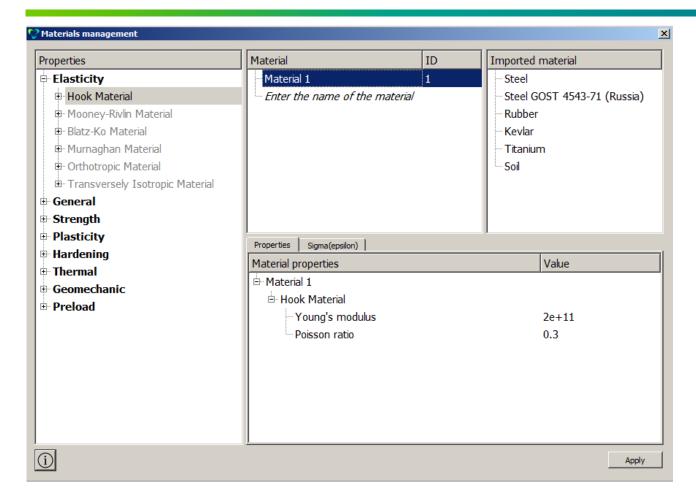
	Mode - Boundary Conditions								
			K						
	t = 0	\sim		⋇	Ω				
Entity - Pressure									
	7	+	\underline{H}_d	₽	↓ <i>g</i>	歳			
	$\stackrel{\underline{\nu}}{\Longrightarrow}$	⇒	$\stackrel{a}{\Rightarrow}$	Ш	-	- <mark>-</mark>			
	8	<u>9</u> 9		F					
	Action -	Create							
	*	\mathbf{P}			×				
ID/N	ame								
() N	ew ID								
- 	ame								
	ystem As	signed II	0						
Pres	sure Entit	y List							
• s	urface	C) Curve		🔘 Si	deset			
ОТ	ri	C) Face/(Quad	OE	lge			
ntity	ID(s)	1							
lagnit	agnitude Value 1e4								
Interpret Value As									
Use Pure Pressures									
Use Total Force									
Apply Pressure On									
🖲 Тор									
ОВ	ottom								
i	n					Арр	ly		

Setting material and element type

1. Create the material.

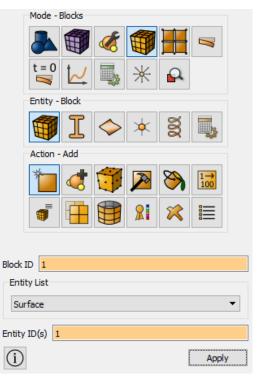
Select setting the material properties section on Command Panel (Mode – **Material**, Entity – **Materials management**).

In the Materials Management window that opens, in the second column, click on the caption Enter the name of the material and write "Material 1". Press the ENTER key.


In the left column, select Elasticity - Hooke Material. Select with the mouse the characteristic Young's modulus. Hold down the left mouse button and drag the label to Material Properties. Double-

click in the Value field next to Young's modulus and enter the number 2e11.Similarly, from the Hooke Material section add the Poisson Ratio 0.3;

F


 \mathbf{r}

2. Create the block of one type of the material.

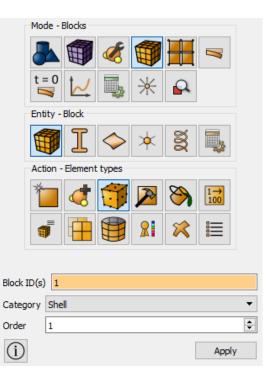
Select setting the material properties section on Command Panel (Mode – **Blocks**, Entity – **Block**, Action – **Add**). Set the following parameters:

- Block ID: 1;
- Entity list: Surface;
- Entity ID(s): 1 (or by the command **all**).

3. Assign the material to the block.

Select setting the material properties section on Command Panel (Mode – **Blocks**, Entity – **Block**, Action – **Set material**). Set the following parameters:

- Block ID(s): 1;
- Select the previously created material in the list: Material 1.


Click Apply.

4. Assign the element type.

Select setting the material properties section on Command Panel (Mode – **Blocks**, Entity – **Block**, Action – **Element types**). Set the following parameters:

- Block ID(s): 1;
- Category: Shell;
- Order:1.

5. Setting shell thickness

Select setting the material properties section on Command Panel (Mode – **Blocks**, Entity – **Shell Properties**). Select in the list of possible operations. Set the following parameters:

- Block ID: 1;
- Thickness: 0.1;
- Eccentricity: 0.5;

Click Apply.

	Mode	- Blocks						
	<u>-</u>			K				
	t = (<u>√</u>		棠	Q		
	Entity	/ - She	ell Pro	perties				
			Γ	\diamondsuit	\star	ğ		
Block I	ID	1						
Thickn	ess	0.1						
Eccent	tricity	0.5						
(j)							Apply	,

Mode - Calculation Settings

🔈 🗊 🎸 🌐 🗮 🤜
t=⁰ 🛃 🔜 🛠 🗣
Calculation settings - Static
🕂 🥕 🔘 🔪 💱
Static - General
Dimensions: 3D 🔻
Model
Elasticity
Plasticity
Nonlinear geometry
Heat transfer
Pore Fluid Transfer
Set load steps count
Set nonlinear solver options
(j) Apply
Start Calculation

Starting calculation

1. Set the type of the problem to be solved.

Select calculation setting section on Command Panel (Mode – Calculation settings, Calculation settings – Static, Static – General). Select:

- Dimension: 3D;
- Model: Elasticity.

Click **Apply**.

2. Set the solver settings.

Select calculation setting section on Command Panel (Mode – **Calculation settings**, Calculation settings – **Static**, Static – **Solver**). Select the solver method (direct or iterative) and set Convergence Parameters in case of choosing an iterative one. You can also leave all the settings by default. Click **Apply**.

3. Set the reaction force calculation

Go to the tab Static – **Output fields** and set the checkbox **Calculate nodal and reaction forces**.

Click Apply.

Click Start Calculation.

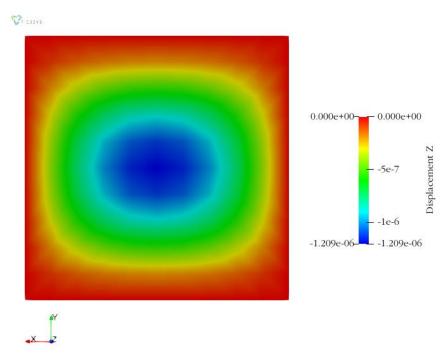
Note: Without setting the checkbox **Calculate nodal and reaction forces,** the field is not calculated.

- 4. In a pop-up window select a folder to save the result and enter the file name.
- 5. If the calculation is finished successfully, you will see a message in the Console: "*Calculation finished* successfully at <date> <time>".

Results analysis

- 1. Open the file with the results. You can do this in one of the three ways.
 - Click Ctrl+E. •
 - Select Calculation \rightarrow Open Results in the Main Menu. • Click **Open last result**.
 - Select Results on Command Panel (Mode Results). • Click **Open Results**.
- 2. Display the u_z component of the displacement field.

In Fidesys Viewer window set the following parameters on Toolbar:


- Representation Mode: Surface; •
- Representation Field: Displacement; •
- Representation Component: Z. •

♦ Displacement	Z •		Surface 💌
		114	

The field of displacements distribution along the Z axis will be displayed on the model

3. Check the numerical value of the maximum displacement.

Display maximum Component 3 of the Displacement field.

The difference between the resulting value 1.209e-6 and the required -1.19e-6 is 1.6%

ſ

C:/Users/Admin/CAE-Fidesys-2.0/14.pvd
Open in new window

2 0/14

4. Check numeric values of moments in the center of the plate.

Display component XX of the MomentsShell field.

◆ MomentsShell	▼ XX ▼	Surface	•	
Select the filter Probe Loc Location) in the Fidesys View		etical – Probe • Properties set	Properties Information operties	₽× ¥Delete ?
 the following values: Point: (0,0,0); Number of Point Radius: 0. 	ts: 1;	F	Search (use Esc to dear text Properties (Pr Fixed Radius Point : Sphere Parameters Show Sphere	
Go to the Information tab and	d look at the MomentsShe	ell field.	Center 0 0 Radius 0 Note: Use 'P' to a 'Center' or to snap to the closest mesh	
			🗖 Display	

ď

ß

Edit

View (Render \

Center Axes Visibility Orientation Axes ☑ Orientation Axes Visibility

Hidden Line Removal Camera Parallel Projection

Axes Grid

Da	ta Arrays							
Cur	Current data time: 1							
Na	ame	Data Type						
•	Displacement	[-2.88229e-24, 2.88229e-24], [-5.40845e-24, 5.40						
•	External Force	[0, 0], [0, 0], [-100, 0]						
•	External Moment	[0, 0], [0, 0], [0, 0]						
	MiddleSurfaceForces	[-8.604e-13, 1.10133e-12], [-1.22249e-12, 6.2029						
•	MomentsShell	[260.347, 260.347], [344.745, 344.745], [0, 0], [
	Nodal Force	[-8.27251e-14, 8.27251e-14], [-5.54029e-14, 5.54						
•	Nodal Moment	[-68.3822, 68.3822], [-7.39829, 7.39829], [0, 0]						
•	Node ID	[1, 121]						
•	Normal	[0, 0], [0, 0], [1, 1]						
4		► E						

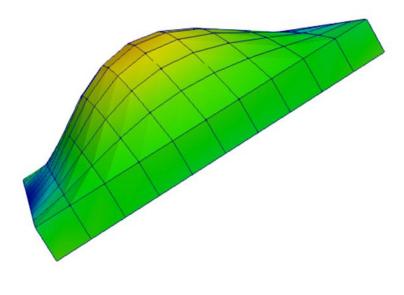
The difference between the resulting values (M_x =260.347 and M_y =344.745) and the required (M_x =252 and M_y=332) is 3.3% and 3.8%, relatively.

5. Open 3D-image of the shell.

To display 3D-view of the beam cross section, set the focus on the calculation title and click the button 3D-view in the Fidesys Viewer standard line.

A new file example *.pvd will be opened and you will be able to apply various filters to it and to view its deformed view.

Choose the new file example_3D.pvd in the Model Tree and display Filters – Alphabetical – **Warp by Vector** for it with the following fields values


- Vectors: Displacement
- Scale Factor: 2e5

Properties	Information						
Properties			8×				
😚 Apply	🔘 Reset	💢 Delete	?				
Search (u	se Esc to clear tex	t)	8				
Properties (Wa 🗅 🗈 🖉 🔒							
Vectors	• Displacement		-				
Scale Factor ,		×	3				
Display							

On the Toolbar, set once again the following parameters for the deformed type:

|--|

The first buckling mode will be displayed on the screen but the shell will be enveloped with thickness.

To apply all of the filters changes automatically, click **Apply changes to parameters automatically** on Command Panel.

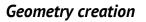
6. Download numerical data.

Select File \rightarrow Save Data in the Main Menu or click **Ctrl+S**. Enter the file name (*.csv format), leave it by default. Click **OK**. The saved file is an ordinary table of numerical data which can be opened in any text editor.

Using Console Interface

For geometry generation, meshing, setting boundary conditions and materials you can use Console Interface. The following program code allows performing the steps of the above-described guide, you only need to **manually specify the full path and name of the file to be saved**.

```
reset
create surface rectangle width 1 zplane
surface 1 scheme polyhedron
mesh surface 1
create displacement on curve 1 3 dof all fix 0
create displacement on curve 2 4 dof 1 dof 2 dof 3 fix 0
create pressure on surface 1 magnitude 1e4
create material 1
modify material 1 name 'Material1'
modify material 1 set property 'MODULUS' value 2e+11
modify material 1 set property 'POISSON' value 0.3
block 1 add surface 1
block 1 material 1
block 1 element shell
block 1 attribute count 2
block 1 attribute index 1 value 0.1 name 'thickness'
block 1 attribute index 2 value 0.5 name 'eccentricity'
analysis type static elasticity dim3
solver method auto use_uzawa auto try_other on
output nodalforce on energy off midresults on record3d on log on vtu on material off
calculation start path "D:/Fidesys/example.pvd
```



It is also possible to run the file *Example_4_Static_Shell.jou* by selecting Journal Editor on Toolbar. In a pop-up window of the main menu select **File** \rightarrow **Open** and open the necessary journal file.

Hydrostatic pressure on cylinder (setting boundary conditions according to coordinates)

Societe Francaise des Mecaniciens, Guide de validation des progiciels de calcul de structures, (Paris, Afnor Technique,1990.) Test No. SSLS08/89. I-Deas Model Solution Verification Manual

The problem of hydrostatic load of the cylindrical shell is being solved. The picture represents a geometric model of the problem: radius 1 m, shell thickness 0.02 m. The shell is fixed on the condition of the symmetry. The plate is loaded by the pressure $p = 20000 \cdot z/L$ Pa.

Test pass criterion is the following: displacement u_z at the point (0, R, L) is 2.86·10⁻⁶ m.

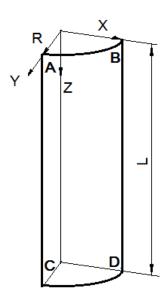
1. Create the cylinder of 1 m radius and 4 m high.

Select volume geometry generation section on Command Panel (Mode – **Geometry**, Entity – **Volume**, Action – **Create**). Select **Cylinder** in the list of geometric elements. Specify the cylinder dimensions:

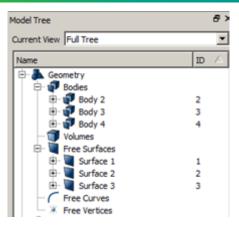
- Height: 4;
- Cross section: Circular;
- Radius: 1.

Click Apply.

2. Get the cylindrical shell out of the volumeric cylinder.

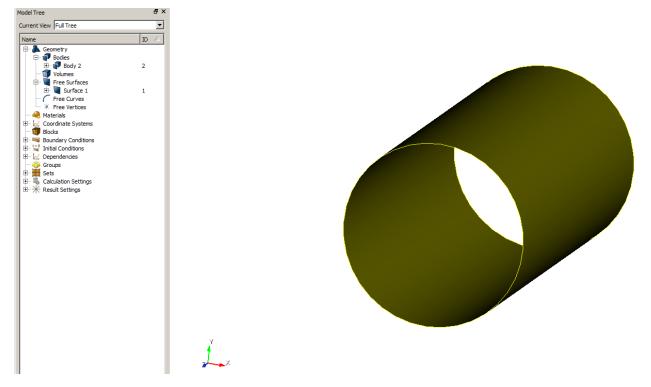

Select the volume removing section on Command Panel (Mode – **Geometry**, Entity – **Volume**, Action – **Delete**). Enter the number of the created volume – 1 into the field **Volume ID(s)**.

Put a tick against Keep lower geometry.


Click Apply.

As a result, three plane bodies (Body 2, Body 3, Body 4) are obtained.

This will be displayed in the Model Tree.



3. Delete side surfaces Surface 2 and Surface 3.

Select the surface removing section on Command Panel (Mode – **Geometry**, Entity – **Surface**, Action – **Delete**). Enter numbers – 2 3 in the window **Surface ID(s)**.

Click Apply.

As a result, only the lateral cylindrical shell of 1 m radius and 4 m high will remain of the initial volume.

4. Leave a quarter of a shell (symmetric problem).

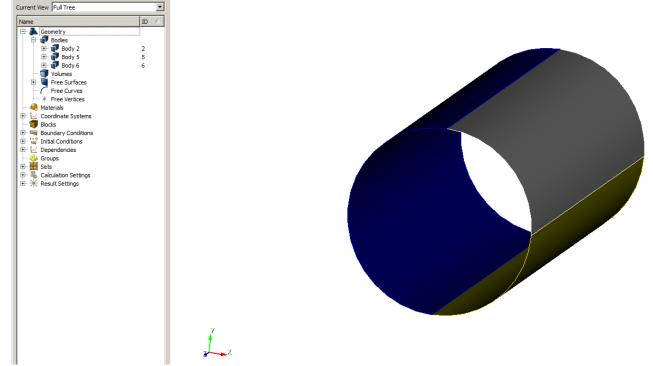
Select volume geometry generation section on Command Panel (Mode – **Geometry**, Entity – **Volume**, Action – **Webcut**). Select **Plane** in the list of possible webcut types. Set the following parameters:

- Body ID: 2 (the body to be webcut);
- Webcut with: YZ Plane;
- Offset value: 0.

Click **Apply**.

Do the same for the ZX Plane.

• Body ID: 2 (the body to be webcut);


đΧ

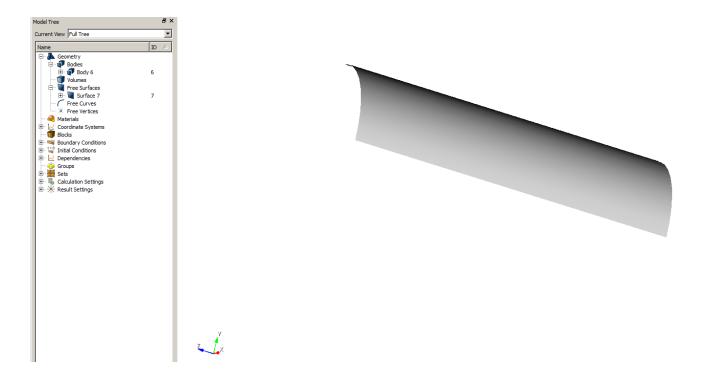
- Webcut with: ZX Plane;
- Offset value: 0.

Click **Apply**.

Aodel Tree

	Mode -	Geometr	у						
	<u>_</u>		Ś						
	t = 0			*	•				
	Entity ·	Volume							
		\diamondsuit	٢	\star	*	\bigcirc			
		A							
	Action	- Webcut							
	*	×	~	P	\approx				
	\diamond	×	2						
1	Coordina	te Plane					•		
/olume	ID(s)	2							
) YZ	-	C) zx		⊖ x	Y			
Offset	Value								
Ro	tate Plar	ne							
Imp	orint								
Include Neighbors									
	Merge								
Gro	oup Resu	ults							
(j)	Ð			Prev	iew	<u>A</u> ppl	у		

As a result, the original Body 2 in the Model Tree is split into three (Body 2, Body 5 and Body 6).


5. Delete surfaces Surface 5 and Surface 6.

Select the surface removing section on Command Panel (Mode – **Geometry**, Entity – **Surface**, Action – **Delete**). Enter numbers – 5 6 into the window **Surface ID(s)**.

Click Apply.

As a result, only a quarter of the original shell Body 6 (Surface 7) is left.

	Mode -	Geometr	у				
	.		Ś				
	t = 0			✻	•		
	Entity -	Surface					
		\diamondsuit	(\star	*	\bigcirc	
		A					
	Action -	Delete					
	*	×	₩	P	\approx		
	\bigcirc	×	\diamondsuit				
Surfac	e ID(s)	56					
Ке	ep Lower	Geomet	ry				
(j)	っ					<u>A</u> pply	

6. Move the surface to the coordinate origin.

Select surface geometry modification section on Command Panel (Mode – **Geometry**, Entity – **Surface**, Action – **Transform**). Select **Move** in the list of possible webcut types. Set the following parameters:

- Surface: 7 (the surface to be moved);
- Checkbox Distance;
- Z Distance: 2.

Mode - Geometry									
	}		Ś						
	t = 0	\sim		✻	Q				
- F	Entity -	Surface							
	7	\diamondsuit	(\star	*	\bigcirc			
		A							
	Action -	Transfo	m						
	1	∞	~	r	\approx				
	0	8	\diamondsuit						
M	ove						-		
		_							
Surface	e ID(s)	7							
✓ Ind	ude Mei	rged							
Selec	t Metho	d							
OT	o Coord	linates		O To E	Entity				
• D	istance			🔾 Gen	neral Loca	ation			
○ In Direction Of Surface Normal									
X Distar	nce								
Y Distar	nce								
Z Distar	nce 2								
<u>(</u>)	P		[Previ	ew	<u>A</u> pply	1		

Meshing

1. Specify the parameters of mesh refinement.

Select meshing on curves section on Command Panel (Mode – **Mesh,** Entity – **Curve**, Action – **Mesh**).

Split the cross-cut curves Surface 17 and Surface 18 into 10 elements.

- Select Curves: 17 18 (or click the mouse while holding down the Ctrl key on contour of the cross-cut curves);
- Select the way of meshing: Equal;
- Select splitting settings: Interval;
- Specify interval number: 10.

Click Apply Size.

Split longitudinal curves Curve 5 and Curve 16 into 20 elements.

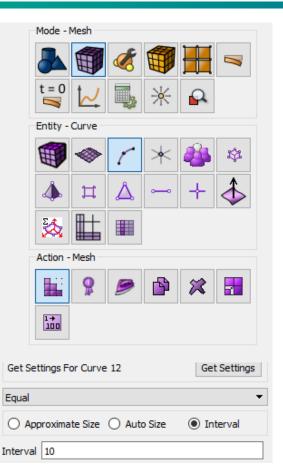
- Select Curves: 5 16 (or click the mouse while holding down the Ctrl key on contour of the longitudinal curves);
- Select the way of meshing: Equal;
- Select splitting settings: Interval;
- Specify interval number: 20.

Click Apply Size.

2. Create the mesh.

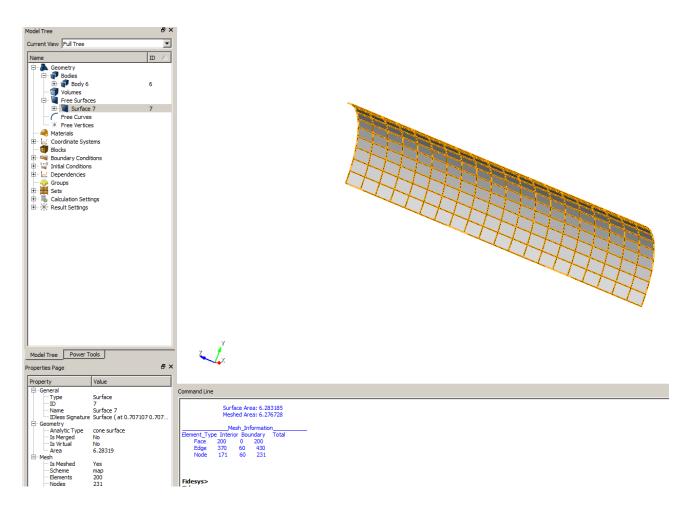
Select the surface mesh generation section on Command Panel (Mode – **Mesh,** Entity – **Surface**, Action – **Intervals**).

- Select Surfaces to Mesh (specify their ID)): 7 (or by the command *all*);
- Select meshing scheme: Automatic Sizing.


Click Apply Size.

Click Mesh.

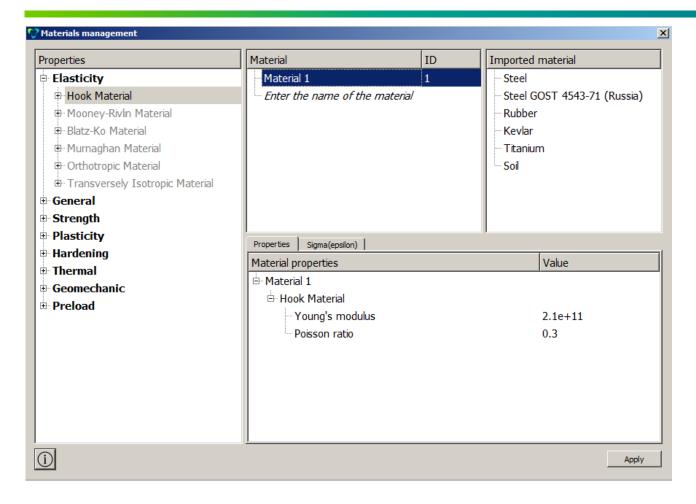
The resulting number of elements can be viewed in the Property Page by clicking on the inscription Surface 7 in the Model Tree on the left.


To view the mesh properties, you can follow these steps:

- Select the entire model
- Right-click on the model
- In the pop-up menu, select List Information List Mesh Info

	Mode - I	Mesh					
			K			1	
	t = 0			棠	Q		
	Entity -	Surface					
			r	*	2	\$	
		Ħ	٨		+	\clubsuit	
	2						
	Action -	Interval	s				
	Π		8	Ø	Þ	×	
		1+ 100		∎⇒ ⇒			
	utomatic	Sizina					-
	atomatic	Juliang					
Selec	t Surface	es					
7							

• Information on the mesh will be displayed in Command Line


Setting material and element type

1. Create the material.

Select setting the material properties section on Command Panel (Mode – **Material**, Entity – **Materials management**).

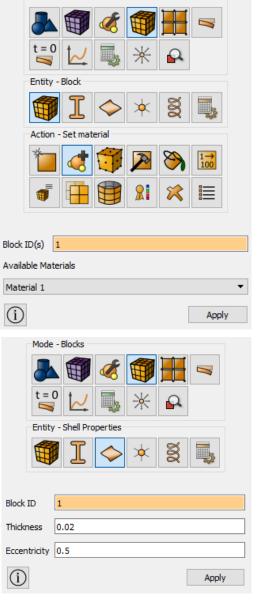
In the Materials Management window that opens, in the second column, click on the caption Enter the name of the material and write "Material 1". Press the ENTER key.

In the left column, select Elasticity - Hooke Material. Select with the mouse the characteristic Young's modulus. Hold down the left mouse button and drag the label to Material Properties. Double-click in the Value field next to Young's modulus and enter the number 2.1e11. Similarly, from the Hooke Material section add the Poisson Ratio 0.3.

2. Create the block of one type of the material.

Select setting the material properties section on Command Panel (Mode – **Blocks**, Entity – **Block**, Action – **Add**). Set the following parameters:

- Block ID: 1;
- Entity List: Surface;
- Entity ID(s): 7 (or by the command all).



3. Assign the material to the block.

Select setting the material properties section on Command Panel (Mode – **Blocks**, Entity – **Block**, Action – **Set material**). Set the following parameters:

- Block ID(s): 1;
- Select the previously created material in the list: Material 1.

Click Apply.

Mode - Blocks

4. Assign the shell thickness.

Select setting the material properties section on Command Panel (Mode – **Blocks**, Entity –**Shell propetries**). Set the following parameters:

- Block ID: 1;
- Thickness: 0.02;
- Eccentricity: 0.5.

Click Apply.

5. Assign the element type to the block.

Select setting the material properties section on Command Panel (Mode – **Blocks**, Entity – **Block**, Action – **Element types**). Set the following parameters:

- Block ID(s): 1;
- Category: Shell;
- Order: 1.

Click Apply.

Apply

(i)

Setting boundary conditions

1. Fix the cross-cut curve Surface 17 by the symmetry condition.

Select Mode – **Boundary Conditions,** Entity – **Displacement**, Action – **Create** on Command Panel. Set the following parameters:

- System Assigned ID;
- Entity List: Curve;
- Entity ID(s): 17 (or click on the cross-cut curve);
- Degrees of Freedom: Z-Translation Disp; X-Rotation Disp; Y-Rotation Disp.

Click Apply.

2. Fix the longitudinal curve Curve 5 on the symmetry condition.

Select Mode – **Boundary Conditions,** Entity – **Displacement**, Action – **Create** on Command Panel. Set the following parameters:

- System Assigned ID;
- Entity List: Curve;
- Entity ID(s): 5 (or click on the longitudinal curve);
- Degrees of Freedom: X-Translation Disp; Y-Rotation Disp; Z-Rotation Disp.

Click **Apply**.

3. Fix the longitudinal curve Curve 16 by the symmetry condition.

Select Mode – **Boundary Conditions,** Entity – **Displacement**, Action – **Create** on Command Panel. Set the following parameters:

- System Assigned ID;
- Entity List: Curve;
- Entity ID(s): 16 (or click on the longitudinal curve);
- Degrees of Freedom: Y-Translation Disp; X-Rotation Disp; Z-Rotation Disp.

Mode - I	Boundar	y Conditi	ons		
		K			
t = 0	\sim	5	棠	Q	
Entity -	Displace	ment			
1	+	H^{q}	₽₽₽	₿	歳
	∅	₫	Ш	-	- <mark>-</mark>
8	<u>9</u> 9		F		
Action -	Create				
*	Þ			×	

ID/Name						
O New ID						
O Name						
System As	signed ID					
Entity List						
○ Nodeset	🔘 Volume	O Surface	Ourve			
◯ Hex	🔿 Tet	O Face	O Vertex			
🔿 Tri	🔘 Edge	🔘 Node				
Entity ID(s)	7					
Degrees Of F	reedom					
X-Translat	ion Disp	✓ X-Rotatio	n Disp			
Y-Translat	ion Disp	Y-Rotation	n Disp			
Z-Translat	ion Disp	Z-Rotation Disp				
DOF Value						
Specify Co	ombination					
Overwrite		O Average				
\bigcirc Smallest		🔘 Largest				
(j) 🤨			<u>A</u> pply			

4. Apply pressure to the cylinder inner surface with value of 1.

Select Mode – **Boundary Conditions,** Entity – **Pressure**, Action – **Create** on Command Panel. Set the following parameters:

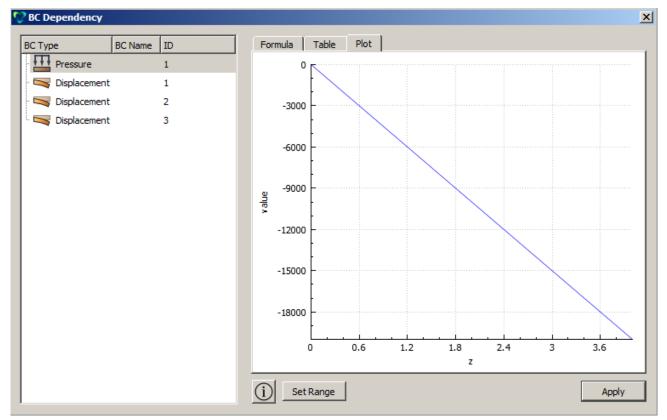
- System Assigned ID;
- Entity List: Surface;
- Entity ID(s): 7 (or click on the cylinder surface);
- Magnitude Value: 1.

Click Apply.

5. Set pressure dependency of the z-coordinate.

Select Mode – **BC Dependence.**

In the pop-up window **BC Dependency,** set the following parameters:


- BC name: Pressure 1;
- Select checkbox Formula, Manually;
- In the field below, enter -20000*z/4.

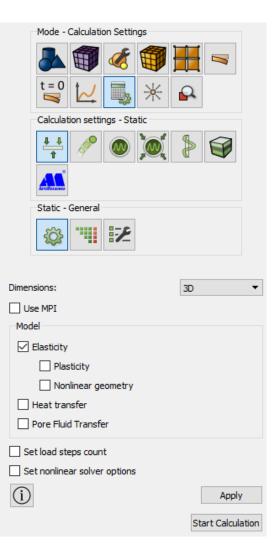
BC Dependency									×
BC Type	BC Name	ID	Formula 1	able Plot					_,
Pressure		1	Custom	-					
🖓 🤜 Displacement	t	1	-20000*z/	4					-
🖓 🔫 Displacement	t	2		1	1		1		
🛛 🖳 Displacement	t	3	Clear	+	-	*	/	^	
			sin	cos	tan	sqrt	if(A,B,C)	()	
			asin	acos	atan	exp	log	log 10	
			sinh	cosh	tanh	abs	ceil	floor	
			Available varia (temperature)	ables: t (time), x), w (frequency)	(x-coordinate),	, y (y-coordinat	e), z (z-coordina	ate), T	
			í					Apply	

To view the plotted graph, please, use the appropriate tab.

Starting calculation

1. Set the type of the problem to be solved.

Select calculation setting section on Command Panel (Mode – Calculation settings, Calculation settings – Static, Static – General). Select:


- Dimension: 3D;
- Model: Elasticity.

Click **Apply**.

Click Start Calculation.

In a pop-up window select a folder to save the result and enter the file name.

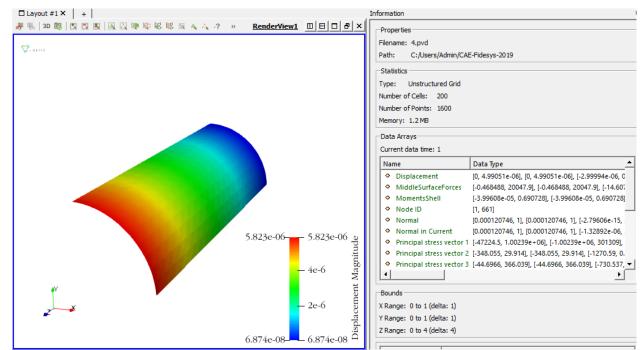
If the calculation is finished successfully, you will see a message in the Console: "*Calculation finished successfully at* <*date> <time>*".

Results analysis

- 1. Open the file with the results. You can do this in one of the three ways.
 - Click Ctrl+E.
 - Select Calculation → Open Results in the Main Menu. Click Open last result.
 - Select Results on Command Panel (Mode Results). Click Open Results.

2. Display the Uz component of the displacement field on the model.

In **Fidesys Viewer** window set the following parameters on Toolbar:


- Representation Mode: Surface;
- Representation Field: Displacement;
- Representation Component: 3.

3. Compare the numerical value of the target displacement at the point (0,1,4) with the initial one of the source -2.86e-6.

Pipeline Browser	5 × 5
builtin:	
💭 💼 ex05.pvd	
ProbeLocation1	
Properties Information	
Properties	8 ×
🚰 Apply 💿 Reset	💢 Delete 🛛 💡
Search (use Esc to clear text)	**
Properties (ProbeLocat	
Probe Type Fixed Radius Point So	urce 💌
Sphere Parameters	
Show Sphere	
Center 0 1	4
Radius 0	
Note: Use 'P' to a 'Center' on r the closest mesh point	nesh or 'Ctrl+P' to snap to
Number Of Points	

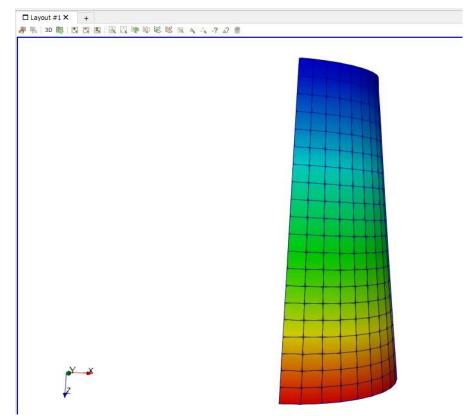
Select **Filters** \rightarrow **Alphabetical** \rightarrow **Probe Location**. In the tab Properties, set the following parameters for the filter:

- Point (0, 1, 4);
- Number of Points: 1;
- Radius: 0.

The difference between the resulting value -2.99994-06 and the required -2.86e-6 is 4.89%.

You can see the way the body is deformed under the applied pressure.

Select the filter Warp By Vector to do this. Set the following parameters in the tab Properties:


- Vectors: Displacement;
- Scale Factor: 1e5.

As a result, the deformed body is displayed at the picture.

Select the following display settings for the deformed view:

	1				-
 Displacement 	•	Magnitude 💌		Surface With Edges	·

To see the original model, click the icon [@] near the model in the Model Tree.

Consider the direction of the coordinate axes in the picture.

4. Download numerical data.

Select File \rightarrow Save Data in the Main Menu or click **Ctrl+S**. Enter the file name (*.csv format), leave it by default. Click **OK**. The saved file is an ordinary table of numerical data which can be opened in any text editor.

Using Console Interface

For geometry generation, meshing, setting boundary conditions and materials you can use Console Interface. The following program code allows performing the steps of the above-described guide, you only need to **manually specify the full path and name of the file to be saved**.

reset set node constraint on create Cylinder height 4 radius 1 delete volume 1 keep_lower_geometry delete Surface 2 3 webcut body 2 with plane xplane offset 0 preview webcut body 2 with plane xplane offset 0 webcut body 2 with plane yplane offset 0 preview webcut body 2 with plane yplane offset 0 delete Surface 5 6 move Surface 7 preview z 2 include_merged move Surface 7 z 2 include_merged curve 17 18 interval 10 curve 17 18 scheme equal curve 5 16 interval 20 curve 5 16 scheme equal surface all size auto factor 5 mesh surface all list Surface 7 mesh create material 1 modify material 1 name 'material 1' modify material 1 set property 'POISSON' value 0.3 modify material 1 set property 'MODULUS' value 2e+11 set duplicate block elements off block 1 surface 7 block 1 material 'material 1' block 1 element type shell8 undo group begin block 1 attribute count 2 block 1 attribute index 1 value 0.02 block 1 attribute index 2 value 0.5 undo group end block 1 element shell order 2 create displacement on curve 17 dof 3 dof 4 dof 5 fix create displacement on curve 5 dof 1 dof 5 dof 6 fix create displacement on curve 16 dof 2 dof 4 dof 6 fix create pressure on surface 7 magnitude 1 bcdep pressure 1 value '-20000*z/4' analysis type static elasticity dim3 calculation start path "D:/Fidesys/example.pvd"

It is also possible to run the file *Example_5_Static_3D_Shell.jou* by selecting Journal Editor on Toolbar. In a pop-up window of the main menu select **File** \rightarrow **Open** and open the necessary journal file.

Buckling (shell model)

S.P. Timoshenko, J.M Manages "Theory of elastic stability" second edition. Dunod, 1966, 500 pages

The problem of cylindrical shell buckling under the pressure uniformly distributed over the entire surface is being solved.

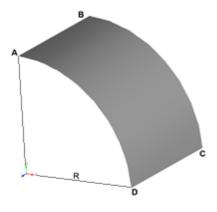
The picture represents a geometric model of the problem: R = 2 m, L = 2 m, thickness h = 0.002 m. Due to the symmetry of the problem, the 1⁄4 part of the cylinder is regarded. Constraints on the lines AB and CD are due to the conditions of symmetry; a uniformly distributed load on the surface is ABCD q = 1 kPa. The material parameters are E = 200 GPa, v = 0.3.

It is necessary to compare the first three critical values.

Geometry creation

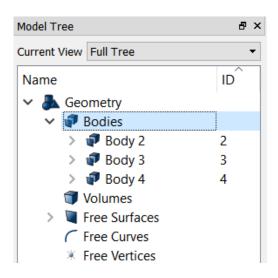
1. Create a cylinder with radius of 2 m and length of 2 m.

Select volume geometry generation section on Command Panel (Mode – **Geometry**, Entity – **Volume**, Action – **Create**). Select **Cylinder** in the list of geometric elements. Creat leaving **Circular** at the base. Set radius of 2 and height of 2


Click **Apply.**

2. Get the cylindrical shell out of the volumeric cylinder.

Select the volume removing section on Command Panel (Mode – **Geometry**, Entity – **Volume**, Action – **Delete**). Enter the number of the created volume – 1 into the field **Volume ID(s)**. Put a tick against **Keep lower geometry**.


Click Apply.

As a result, three plane bodies (Body 1, Body 2, Body 3) are obtained. This will be displayed in the Model Tree.

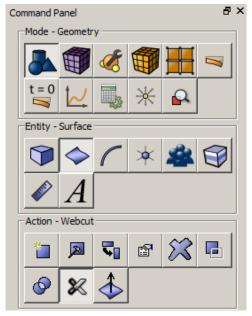
3. Delete side surfaces Body 3 and Body 4.

Select the surface removing section on Command Panel (Mode – **Geometry**, Entity – **Surface**, Action – **Delete**). Enter numbers 2 3 in the window **Surface ID(s)**.

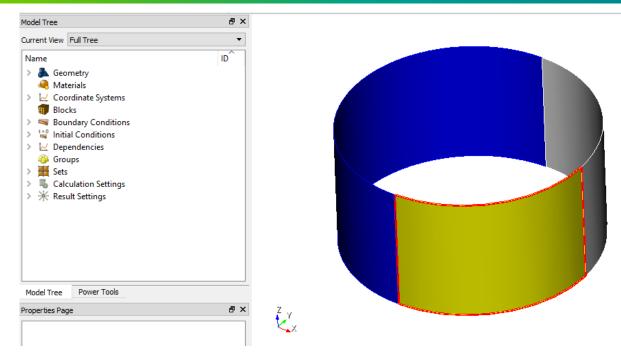
Click Apply.

As a result, only the lateral cylindrical shell of 2 m radius and 2 m high will remain of the initial volume.

4. Leave a quarter of a shell (symmetry of the problem).

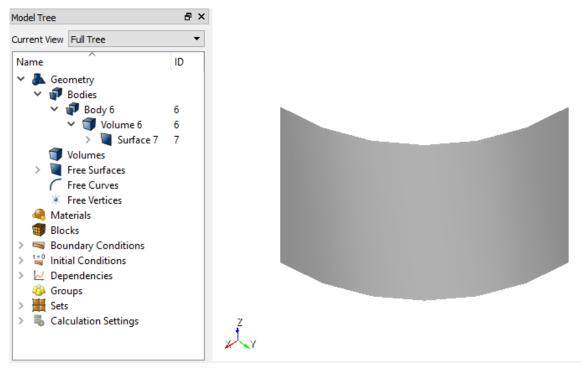

Select volume geometry generation section on Command Panel (Mode – **Geometry**, Entity – **Surface**, Action – **Webcut**). Select **Coordinate Plane** in the list of possible webcut types. Set the following parameters:

- Surface ID(s): 2 (the surface to be webcut);
- Webcut with: YZ Plane;
- Offset value: 0;
- Imprint.


Click Apply.

Do the same for the ZX Plane:

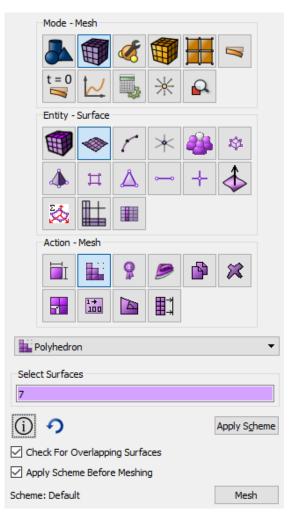
- Volume ID(s): 2 (the volume to be webcut);
- Webcut with: ZX Plane;
- Offset value: 0;
- Imprint.



As a result, the original volume in the Model Tree is split into three (Body 2, Body 5 and Body 6).

Delete the bodies 2 and 5. To do this, select these bodies in the Model Tree holding down the Ctrl key and click **Delete** in contextual menu. As a result, a quarter of the original shell is left (Body 6):

Meshing

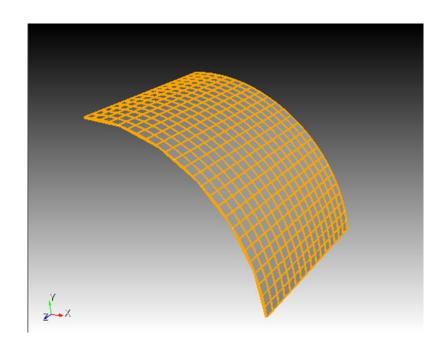

1. Create a quadrangular mesh.

Select meshing on plane section on Command Panel (Mode – **Mesh,** Entity – **Surface**, Action – **Intervals**). Specify the parameters of mesh refinement:

- Select surfaces: 7;
- The way of meshing: Approximate Size;
- Approximate Size: 0.125.

Click Apply Size.

	Mode - I	Mesh					
			Ś				
	t = 0		5	✻	Q		
	Entity -	Surface					
			C	\star	4	\$ 2	
		Ħ	Δ		+	\diamondsuit	
	2						
	Action -	Interval	s				
	Π		8	Ø	P	×	
		1+ 100		∎⇒ ∎⇒			
	Approxima	ate Size					-
Selec	ct Surface	s					
7							
Approx	ximate Siz	e 0.12	5				
Pre	view						
					[Apply S	ize
🗹 Ch	eck For C	verlappi	ng Surfa	ces	L		
🗹 Ap	ply Size B	efore Me	eshing				
(j)	9				[Mesh	ı



2. Select meshing on plane section on Command Panel (Mode – **Mesh**, Entity – **Surface**, Action – **Mesh**). Select meshing scheme:

- Select surfaces: 7;
- Select meshing scheme: Polyhedron;

Click Apply Scheme.

Click Mesh.

Setting boundary conditions

1. Fix the line AB on the conditions of symmetry.

Select Mode – **Boundary Conditions,** Entity – **Displacement**, Action – **Create** on Command Panel. Set the following parameters:

- System Assigned ID;
- Entity List: Curve;
- Entities ID(s): 5 (or click on the top line on a quarter of the shell);
- Degrees of Freedom: X-Translation Disp, Y-Rotation Disp, Z-Rotation Disp;
- DOF Value: 0.

Click Apply.

2. Fix the line CD of the conditions of symmetry.

Select Mode – **Boundary Conditions,** Entity – **Displacement**, Action – **Create** on Command Panel. Set the following parameters:

- System Assigned ID;
- Entity List: Curve;
- Entities ID(s): 16 (or click on the lower line on a quarter of the shell);
- Degrees of Freedom: Y-Translation Disp, X-Rotation Disp, Z-Rotation Disp;
- DOF Value: 0.

Click Apply.

3. Apply pressure to the entire surface of the shell.

Select Mode – **Boundary Conditions,** Entity – **Pressure**, Action – **Create** on Command Panel. Set the following parameters:

- System Assigned ID;
- Entity List: Surface;
- Entities ID(s): 7 (or click on the surface of the shell);
- Magnitude Value: 1000.

	Mode - E	Boundar	y Conditi	ions					
	<u>_</u>		Ś						
	t = 0			✻	Q				
	Entity -	Displace	ment						
		+	\mathbf{H}_d	₽₽₽	↓ <i>g</i>	歳			
	$\stackrel{\underline{\nu}}{\Rightarrow}$	⇒	₫	Ш	-	- <mark>-</mark>			
	8	<u>9</u> 9		F					
	Action -	Create							
	*	Þ			×				
ID/Na	ame								
() Ne									
○ Na									
_	stem As	signed II	5						
Entit	y List								
	odeset	O Vol	ume	O Surf	face	Curve			
			t	O Fac	e	O Vertex			
⊖ Tr	i	⊖ Edg	ge		le				
Entity I	D(s) 5								
Degre	ees Of Fr	eedom							
_	✓ X-Translation Disp				X-Rotation Disp				
Y-Translation Disp				Y-Rotation Disp					
Z-Translation Disp									
DOF V	alue 0								
	ecify Co	mbinatio	n						
0	verwrite			O Ave	rage				
⊖ Sn	nallest				jest				
(i)	9					<u>A</u> pply			

Setting material and element type

1. Create the material.

Select setting the material properties section on Command Panel (Mode – **Material**, Entity – **Materials management**).

In the Materials Management window that opens, in the second column, click on the caption Enter the name of the material and write "Material 1". Press the ENTER key.

In the left column, select Elasticity - Hooke Material. Select with the mouse the characteristic Young's modulus. Hold down the left mouse button and drag the label to Material Properties. Double-click in the Value field next to Young's

modulus and enter the number 2e11. Similarly, from the Hooke Material section add the Poisson Ratio 0.3.

Properties	Material	ID	Imported material
 Elasticity 	Material 1	Material 1 1	
 Hook Material Young's modulus Poisson ratio Lame modulus Shear modulus Mooney-Rivlin Material Blatz-Ko Material Murnaghan Material Orthotropic Material 	Enter the name of the mate	rial	Steel GOST 4543-71 (Russia) Rubber Kevlar Titanium Soil
 > Transversely Isotropic Material > General > Strength > Plasticity > Hardening > Thermal > Geomechanic > Preload 	Material properties ✓ Material 1 ✓ Hook Material Young's modulus Poisson ratio		Value 2e+11 0.3

2. Create a block of one type of the material.

Select setting the material properties section on Command Panel (Mode – Blocks, Entity – Block, Action - Add). Set the following parameters:

- Block ID: 1; •
- Entity list: Surface; •
- Entity ID(s): 7 (or by the command **all**). •

Click **Apply**.

	Mode -	Blocks					
						1	
	t = 0	\sim	5	棠	Q		
	Entity -	Block					
		I	\diamondsuit	\star	ğ		
	Action -	Add					
	*	<	T	\mathbf{P}	8	1→ 100	
	(枀		
Block I	ID 1						
Entit	ty List —						
Sur	face						•
Entity	ID(s) 7						
(j)						Apply	,

	Mode -	Blocks					
			Ś				
	t = 0	\mathbf{k}	5	✻	Q		
	Entity -	Block					
		I	\diamondsuit	\star	ă	5	
	Action -	Set mat	erial				
	*		T	\mathbf{P}	8	1→ 100	
	(8	×		
Block I	ID(s) 1						
Availa	ble Mate	rials					
Mate	rial 1						•
\bigcirc					[Anal	
U						Appl	У

3. Assign the material to the block.

Select setting the material properties section on Command Panel (Mode - Blocks, Entity - Block, Action – **Set material**). Set the following parameters:

> Block ID(s): 1; •

Select the previously created material in the list: Material 1.

Click Apply.

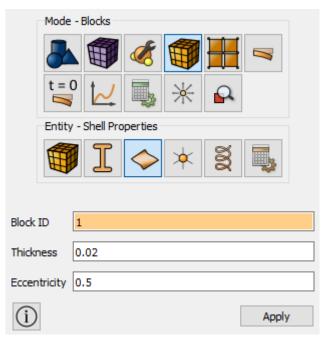
4. Assign the element type.

Select setting the material properties section on Command Panel (Mode – **Blocks**, Entity – **Block**, Action – **Element Types**). Set the following parameters:

- Block ID(s): 1;
- Category: Shell;
- Order: 1.

Click Apply.

Mo	de - B	locks					
5	Ł		K				
t :	= 0	\sim		棠	Q		
Ent	ity - E	Block					
		I	\diamondsuit	\star	ğ	5	
Act	ion -	Element	types				
¥		<	1	Þ	8	1→ 100	
	-			8	枀		
Block ID(s)	1						
Category	Shel	I					•
Order	1						+


Setting shell thickness

1. Set the shell thickness.

Select setting the material properties section on Command Panel (Mode – **Blocks**, Entity – **Block**, Action – **Shell properties**). Set the following parameters:

- Block ID: 1;
- Thickness: 0.02;
- Eccentricity: 0.5;

Click **Apply**.

Apply

(i)

Starting calculation

	Mode -	Calculatio	on Settin	igs			
			K				
	t = 0			棠	Ω		
	Calculat	ion settir	ngs - Sta	bility			
	<u>↓</u> ↓)	8		
	Anolesawe						
	Stability	- Genera	al				
	ŝ	•	λ	Z			
Dimen	sions:				3D		-
🗌 Us	e MPI						
							_
Тур				linear			•
Se	ettings						
Nu	umber of	buckling	modes	3			
Mod							
_	Elasticity						
	Heat trar						
	Pore Flui	d Transfe	er				
Se	t load st	eps coun	t				
(j)						Apply	y 1
0							
					Sta	art Calcul	ation

1. Set the type of the problem to be solved.

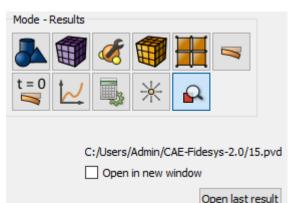
Select calculation setting section on Command Panel (Mode – **Calculation settings**, Calculation settings – **Stability**, Stability – **General**). Select 3 in the field **Number of buckling modes**. Leave other parameters by default. Click **Apply**. Click **Start calculation**.

In a pop-up window select a folder to save the result and enter the file name.

If the calculation is finished successfully, you will see a message in the Console: "*Calculation finished successfully at <date> <time>*".

Results analysis

1. Compare the obtained results.


The first three critical values are displayed in Command Line.

Command Line	đΧ
Warning: Model is not fixed along Z direction.	~
FidesysCalc parse fc done	
Step 1. SubStep 1. Load time 1.00000000. Load step 1.00000000e+00. Done. Successfully.	
Case 1. Done. Successfully.	
load multipliers(1) = 72.58303016	
load multipliers(2) = 159.01535818	
load multipliers(3) = 292.51700475	
Case 2. Done. Successfully.	
Calculation finished.	
Calculation finished successfully at 2019-02-18 17:12:24	
Fidesys>	~
Error / Commands / History /	

Compare the obtained results with those in the table:

N⁰	Theor. value	FIDESYS	
1	72.260	72.5865	0.45%
2	164.835	159.28	3.37%
3	293.040	292.571	0.16%

- 2. Open the file with the results. You can do this in one of the three ways.
 - Click Ctrl+E.
 - Select Calculation \rightarrow Open Results in the Main Menu. Click Open last result.
 - Select **Results** on Command Panel (Mode **Results**). Click **Open Results**.

3. In a pop-up *Fidesys Viewer* window select a filter Warp By Vector.

- 4. In a pop-up filter **Warp By Vector** in the tab **Properties**, set the following parameters:
 - Vectors: Mode 1 displacement
 - Scale Factor: 0.1
- 5. Display Mode 1 displacement

In *Fidesys Viewer* window set the following parameters on Toolbar:

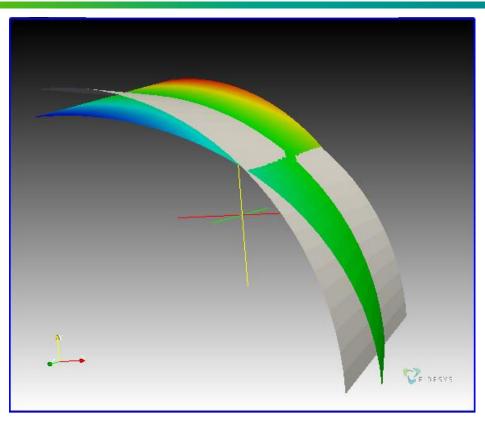
◆ Mode 1 displacement ▼ Magnitud ▼ Critical value:	Surface 👻
--	-----------

Make sure that the first required critical value is displayed in the window **Critical value**.

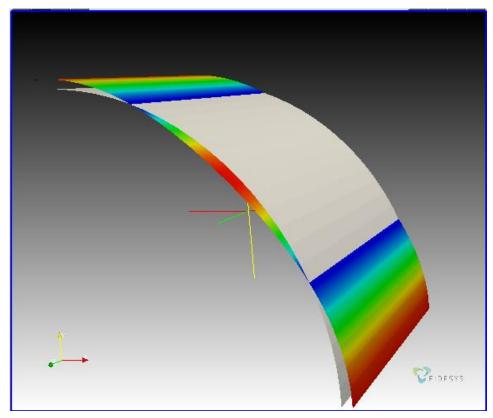
6. View results

As a result, the deformed body is displayed at the picture. To see the original model, click ⁽⁴⁾ near the model in the Model Tree. The picture below shows the deformed (solid grey filling) and the original model (with the distribution field Displacements for Mode 1).

Pipeline Browser 🗗 🗙	□ Layout #1 × +	
builtin:	第 % 30 8 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Buckling.pvd	W HLERVS	
WarpByVector 1	C FICESAR	
Properties Information		
Properties & X		
Papply Reset Delete		
Search (use Esc to clear text)		
🕂 Properties (E		
🕂 Display (Unsi		
📟 View (Rende: 🖄 🗈 🕵 🔒		υ
Axes Grid Edit	1.000e+00	- 1.000e+00
Center Axes Visibility		gui
Orientation Axes		W
Orientation Axes Visibility		- 0.8 8.0 -
Hidden Line Removal		displacement Magnitude
Camera Parallel Projection	۲ (۲۰۰۰)	spla
Background	<u>ـ</u> ـــــــــــــــــــــــــــــــــــ	- 0.6 ^{sip}
Single color 🔻	<i>4.998e-01</i>	
◯ Color Restore Default	4.7900-01-	- 4.998e-01 boy N


- 7. Select the filter **Warp By Vector** to do this. Set the following field value in the tab **Properties**:
 - Vectors: Mode 2 displacement
 - Scale Factor: 0.1
- 8. Display Mode 2 displacement.

In *Fidesys Viewer* window set the following parameters on Toolbar:


📘 🎴 🎇 🛱 🗖	↔ Mode 2 displacement ▼	Magnitude Critical value: Surface
📰 🚳 🔯 🕸	\ominus 🥒 🖳 💓 🎬 🛞	X Y
ipeline Browser	₽ × □ Lavout #1 ×	Z

Make sure that the second required critical value is displayed in the window **Critical value**.

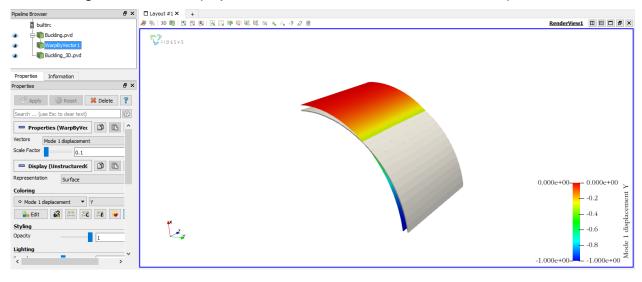
9. View results

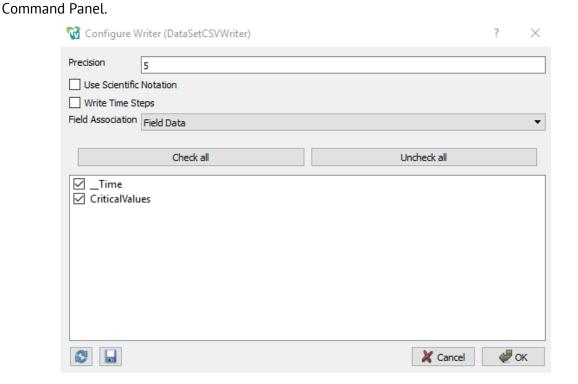
Display Mode 3 displacement in the same way, make sure that the third required critical value is displayed in the window **Critical value**.

10. Display the 3D-view of the model (shell with thickness).

To do this, click on the name of the source file in the Model Tree. After this click 3D-view button in the default string.

The file* _3D.pvd with a 3D-image of the shell must be opened and you will be able to apply various filters to it and to view its deformed view.


Choose the new file example_3D.pvd in the Model Tree and display Filters **Warp by Vector** for it with the following fields values:


- Vectors: Mode 1 displacement
- Scale Factor: 0.1

On the Toolbar, set once again the following parameters for the deformed type:

♦ Mode 6 (72.32 Hz): displacement ▼ Magnitude ▼ Eigen value: 72.3192 Surface ▼

The first buckling mode will be displayed on the screen but the shell will be enveloped with thickness.

To apply all of the filters changes automatically, click **Apply changes to parameters automatically** on

11. Download numerical data.

Select File \rightarrow Save Data in the Main Menu or click **Ctrl+S**. Enter the file name (*.csv format), leave it by default. Click **OK**. In the pop-up window select:

• Field Association: Field Data

The saved file is an ordinary table of numerical data which can be opened in any text editor.

Using Console Interface

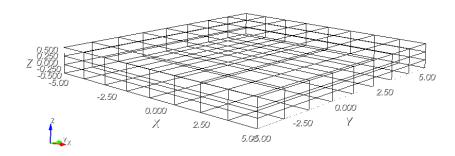
For geometry generation, meshing, setting boundary conditions and materials you can use Console Interface. The following program code allows performing the steps of the above-described guide, you only need to **manually specify the full path and name of the file to be saved**.

```
reset
set node constraint on
create Cylinder height 2 radius 2
delete volume 1 keep_lower_geometry
delete Surface 3 2
webcut body 2 with plane xplane offset 0 imprint preview
webcut body 2 with plane xplane offset 0 imprint
webcut body 2 with plane yplane offset 0 imprint preview
webcut body 2 with plane yplane offset 0 imprint
delete Surface 5 6
surface 7 size 0.125
surface 7 scheme Polyhedron
mesh surface 7
create displacement on curve 16 dof 2 dof 4 dof 6 fix 0
create displacement on curve 5 dof 1 dof 5 dof 6 fix 0
create pressure on surface 7 magnitude 1000
create material 1
```

```
modify material 1 name 'Material 1'
modify material 1 set property 'POISSON' value 0.3
modify material 1 set property 'MODULUS' value 2e+11
set duplicate block elements off
block 1 surface 7
block 1 material 'Material 1'
block 1 element shell order 1
undo group begin
block 1 attribute count 2
block 1 attribute index 1 value 0.02
block 1 attribute index 2 value 0.5
undo group end
analysis type stability elasticity dim3
calculation start path "D:/Fidesys/example.pvd"
```


It is also possible to run the file *Example_6_Stability_Shell.jou*, by selecting Journal Editor on Toolbar. In a pop-up window of the main menu select **File** \rightarrow **Open** and open the necessary journal file.

Modal analysis (3D)


NAFEMS Selected Benchmarks for Natural Frequency Analysis "Simply Supported "Solid" Square Plate", Test No FV52.

The problem of modal analysis of a square plate is being solved.

The picture represents a geometric model of the problem and a mesh:

The size of the plate is 10 m x 10 m x 1 m. Displacements along z-axis are constrained for the edges of the plate bottom side. The material parameters are E = 200 hPa, v = 0.3, $\rho = 8000$ kg/m³.

Eigenmodes from 4 to 10 are to be compared.

Geometry creation

1. Create the plate.

Select volume geometry generation section on Command Panel (Mode – **Geometry**, Entity –**Volume**, Action – **Create**). Select **Brick** in the list of geometric elements. Set the brick dimensions:

- X (width): 10
- Y (height): 10
- Z (depth): 1

Click Apply.

Mode - Mesh

Entity - Curve

Ц

	Mode -	Geometr	у				
	t = 0						
			B	☀	•		
	Entity -	Volume					
		\diamondsuit	٢	\star	*		
		A					
	Action	- Create					
	*	R	5	P	\approx		
	Ø	×	¥				
Пв	rick						•
Brick	Dimensio	ons					
X (wid	lth) 10						
Y (hei	ght) 10)					
Z (dep	oth) 1						
(j)	າ				[<u>A</u> pply	r -

Meshing

A mesh of 8*8*3 linear hexahedral elements is to be generated (as shown at the picture with the problem setting).

1. Select meshing on curves section on Command Panel (Mode – **Mesh**, Entity – **Curve**, Action – **Mesh**). Specify the parameters of mesh refinement:

• Select Curves: 1 2 3 4 5 6 7 8 (using space after each of them);

- Select the way of meshing: Equal;
- Select splitting settings: Interval;
- Interval: 8 (see the figure)

Click Apply Size.

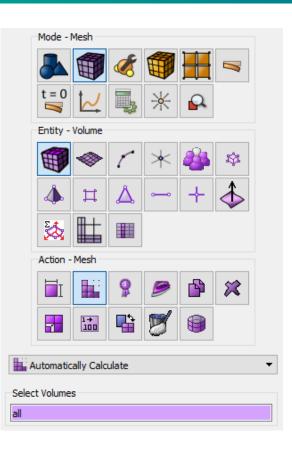
2. Select meshing on curves section on Command Panel (Mode – **Mesh,** Entity – **Curve**, Action – **Mesh**). Specify the parameters of mesh refinement:

• Select Curves: 9 10 11 12 (using space after each of them);

• Select the way of meshing: Equal;

	2						
	Action -	Mesh					
		8	9	ß	×	7	
	1+ 100						
Sele	ct Curves						
123	345678	В					
Get S	ettings F	or Curve	12		Get	Setting	3
Equal							Ŧ
	pproxima	ate Size	O Auto	o Size	International International Internationa	terval	
Interv	al 8						

- Select splitting settings: Interval;
- Interval: 3.


Click Apply Size.

Select volume mesh generation section on Command Panel (Mode – **Mesh**, Entity – **Volume**, Action – **Mesh**).

- Select Volumes: 1 (or by the command all)
- Select Meshing Scheme: Automatically Calculate

Click Apply Scheme.

Click Mesh.

Setting boundary conditions

1. Fix the bottom side edges along Z.

Select Mode – **Boundary Conditions**, Entity – **Displacement**, Action – **Create** on Command Panel. Set the following parameters:

- System Assigned ID
- Entity List: Curve
- Entity ID(s): 5 6 7 8 (using space after each of them)
- Degrees of Freedom: Z-Translation
- DOF Value: 0

Setting material and element type

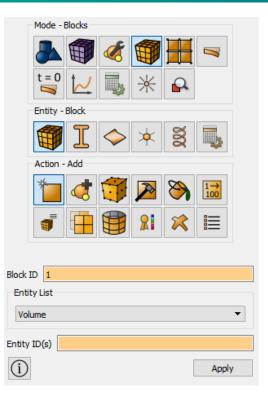
1. Create the material.

Select setting the material properties section on Command Panel (Mode – **Material**, Entity – **Materials management**).

In the Materials Management window that opens, in the second column, click on the caption Enter the name of the material and write "Material 1". Press the ENTER key.

In the left column, select Elasticity - Hooke Material. Select with the mouse the characteristic Young's modulus. Hold down the left

mouse button and drag the label to Material Properties. Double-click in the Value field next to Young's modulus and enter the number 2e11. Similarly, from the Hooke Material section add the Poisson Ratio 0.3. Density: 8000


Properties	Material	ID	Imported material
 Elasticity Hook Material Mooney-Rivlin Material Blatz-Ko Material Murnaghan Material Orthotropic Material Orthotropic Material Transversely Isotropic Material General Density Damping coefficient 	Material 1 Enter the name of the ma	Imported material Steel Steel GOST 4543-71 (Russia) Rubber Kevlar Titanium Soil	
Mass damping coefficient Stiffness damping coefficient Strength Plasticity Hardening Thermal Geomechanic Preload	Material properties Material 1 Hook Material Young's modulus Poisson ratio General Density		Value 2e+11 0.3 8000

2. Create a block of one type of the material.

Select setting the material properties section on Command Panel (Mode – **Blocks**, Entity – **Block**, Action – **Add**). Set the following parameters:

- Block ID: 1;
- Entity list: Volume;
- ID: 1 (or by the command **all**).

Click Apply.

	Mode -	Blocks					
			Ś				
	t = 0	\sim	5	棠	Q		
	Entity -	Block					
		I	\diamondsuit	✶	ğ	5	
	Action -	Set mat	erial				
	*	4	T	P	8	$1 \rightarrow 100$	
					×		
Block	ID(s) 1						
Availa	able Mate	rials					
Mate	rial 1						•
(i)					[Apply	1

3. Assign the material to the block.

Select setting the material properties section on Command Panel (Mode – **Blocks**, Entity – **Block**, Action – **Set material**). Set the following parameters:

- Block ID(s): 1;
- Select the previously created material in the list:

Material 1.

4. Assign the element type.

Select setting the material properties section on Command Panel (Mode - Blocks, Entity - Block, Action - Element Types). Select in the list of possible operations. Set the following parameters:

- Block ID(s): 1; •
- Select: Volumes; •
- Order: 1

Mode - Calculation Settings

Click Apply.

(i

			Ś				
	t = 0	\sim	۲.	✻	Q		
	Calculat	ion settir	ngs - Mo	de frequ	ency an	alysis	
	↑	6 0 0))	\$		
	ModeFre	equency	- Gener	al			
	ŝ		λ	2			
Dimen					3D		•
Us	e MPI						
Se	ttings		_				
	umber of		des 10			-	
C) Lowest						
C) Target		0.0)			
) Interva	l		All value	s		_
2	0			- 250			
Pro	eload mo	del					
(j)					P	Appl	y
					Sta	art Calcul	ation

Starting calculation

1. Set the type of the problem to be solved.

Select calculation setting section on Command Panel (Mode -**Calculation settings**, Calculation settings – **Mode frequency** analysis, ModeFrequency - General). Specify the following settings:

Interval: 20 - 250.

Click Apply.

Click Start Calculation.

2. In a pop-up window select a folder to save the result and enter the file name.

3. If the calculation is finished successfully, you will see a message in the Console: "Calculation finished successfully at <date> <time>" as well as the required eigen values and frequencies.

Results analysis

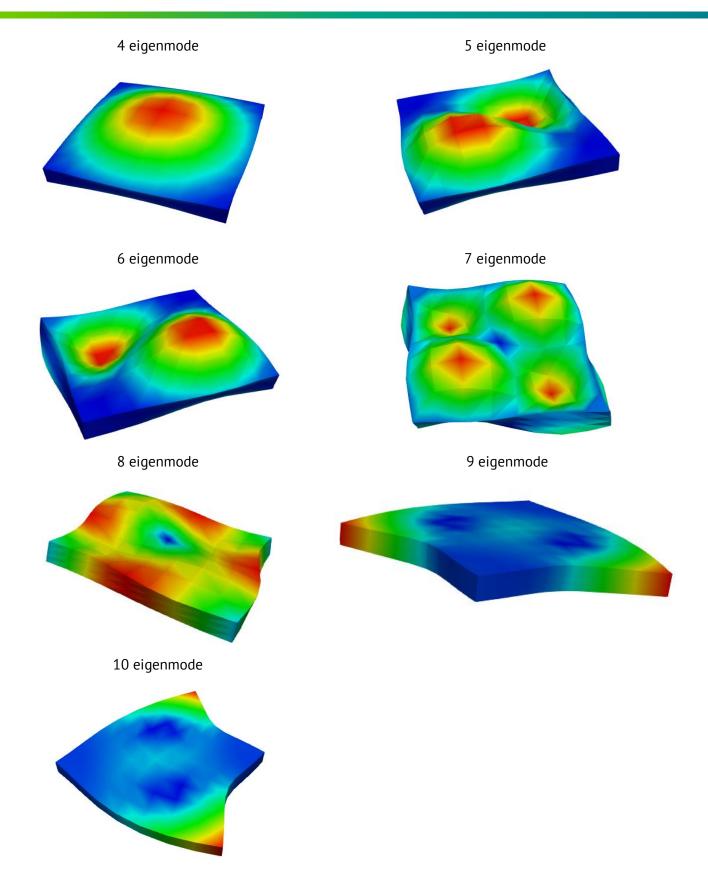
1. Compare the obtained results to those in the given table.

N⁰	NAFEMS	FIDESYS			
		Value, Hz	Error		
4	51.65	51.68	0.1%		
5	132.73	132.75	0.0%		
6	132.73	132.75	0.0%		
7	194.37	194.38	0.0%		
8	197.18	197.19	0.0%		
9	210.55	210.55	0.0%		
10	210.55	210.55	0.0%		

- 2. Open the file with the results. You can do this in one of the three ways.
 - Click Ctrl+E.

Cal	culation <u>H</u> elp	
J 01 01	Open <u>R</u> esults	Ctrl+E
↓ o	Open <u>R</u> esults in new window	Ctrl+Shift+E

- Select Calculation → Open Results in the Main Menu. Click Open last result.
- Select Results on Command Panel (Mode Results). Click Open Results.



3. You can see the way the body is deformed.

Select a filter **Warp By Vector** to do this. Set the following parameters in the tab **Properties**:

- Vectors: Eigenvalue_# (# stands for the number of the eigenvalue)
- Scale Factor: 700

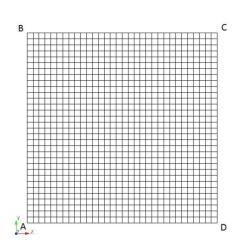
As a result, the deformed body is displayed at the picture. To see the original model, click *near* it in the Model Tree. The picture below shows the deformed model at different eigenvalues.

Using Console Interface

For geometry generation, meshing, setting boundary conditions and materials you can use Console Interface. The following program code allows performing the steps of the above-described guide, you only need to **manually specify the full path and name of the file to be saved**.

```
reset
set node constraint on
brick x 10 y 10 z 1
curve 1 2 3 4 5 6 7 8 interval 8
curve 1 2 3 4 5 6 7 8 scheme equal
curve 9 10 11 12 interval 3
curve 9 10 11 12 scheme equal
volume 1 scheme Auto
volume 1 scheme Auto
mesh volume 1
create displacement on curve 5 6 7 8 dof 3 fix 0
create material 1
modify material 1 name 'Material 1'
modify material 1 set property 'POISSON' value 0.3
modify material 1 set property 'MODULUS' value 2e+11
modify material 1 set property 'DENSITY' value 8000
set duplicate block elements off
block 1 volume 1
block 1 material 'Material 1'
block 1 element solid order 1
analysis type eigenfrequencies elasticity dim3
eigenvalue find 10 smallest
calculation start path "D:/Fidesys/example.pvd"
```


It is also possible to run the file *Example_7_EigenValue_3D.jou*, by selecting Journal Editor on Toolbar. In a pop-up window of the main menu select **File** \rightarrow **Open** and open the necessary journal file .

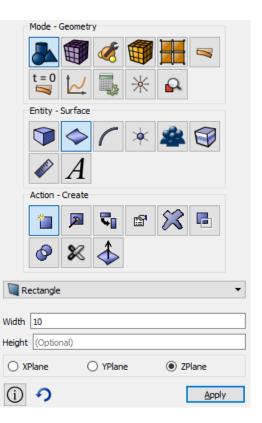

Modal analysis (shell model)

NAFEMS-Glasgow, BENCHMARK newsletter, Report No. E1261/R002, "Free Vibrations of a Simply-supported Thin Square Plate", February 1989, p.21.

The problem of modal analysis of a square plate is being solved.

The size of the plate is 10 m x 10 m, the thickness is 0.05 m. X- and Y-Translation and Z-Rotation are constrained for all nodes of the plate. All the edges are constrained in Z-direction. The X-rotation is constrained for edges AB and CD. The Y-rotation is constrained for edges BC and AD. The material parameters are E = 200 hPa, v = 0.3, ρ = 8000 kg/m³.

Eigenmodes from 1 to 8 are to be compared.



Geometry creation

1. Create the plate.

Select volume geometry generation section on Command Panel (Mode – **Geometry**, Entity – **Surface**, Action – **Create**). Select **Rectangle** in the list of geometric elements. Set the brick dimensions:

- Width: 10;
- Location: ZPlane.

Meshing

A mesh of 32*32 linear quadrilateral elements is to be generated (as shown at the picture with the problem setting.

- Select meshing on curves section on Command Panel (Mode Mesh, Entity – Curve, Action – Mesh). Specify the parameters of mesh refinement:
 - Select Curves: all;
 - Select the way of meshing: Equal;
 - Select splitting settings: Interval;
 - Interval: 32 (see the figure).

Click Apply Size.

Click **Mesh**.

	Mode -	Mesh				
			K			
	t = 0			✻	Ω	
	Entity -	Curve				
			1	\star	23	1\$1
		Ħ	Δ		+	\clubsuit
	2					
	Action -	Mesh				
		8	Ø	P	×	
	1.) 100					
Sele	ct Curves					
all						
Get Settings For Curve 12 Get Settings						
Equal						
	pproxima	te Size	O Auto	o Size	Interview	terval
Interv	al 32					

	Mode - I	Mesh							
			Ś						
	t = 0		5	棠	Q				
	Entity -	Surface							
			r	*	434	\$ 1			
		Ħ	٨		+	\diamondsuit			
	3								
	Action -	Mesh							
	Π		8	Ø	P	*			
Automatically Calculate									
Selec	t Surface	s							
1	1								

2. Select surface mesh generation section on Command Panel (Mode – **Mesh**, Entity – **Surface**, Action – **Mesh**).

- Select Surfaces: 1 (or by the command **all**)
- Select Meshing Scheme: Automatically Calculate

Click Apply Scheme.

Click **Mesh**.

Setting boundary conditions

1. Fix the plate: X- and Y-Translations and Z-Rotations.

Select Mode – **Boundary Conditions**, Entity – **Displacement**, Action – **Create** on Command Panel. Set the following parameters:

- System Assigned ID;
- Entity List: Node;
- Entity ID(s): all;
- Degrees of Freedom: X-Translation, Y-Translation and Z-Rotation;
- DOF Value: 0.

Click **Apply**.

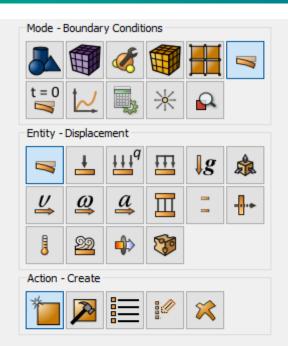
2. Fix all the edges at the Z-direction.

Select Mode – **Boundary Conditions,** Entity – **Displacement**, Action – **Create.** Set the following parameters:

- System Assigned ID;
- Entity List: Curves;
- Entity ID(s): all;
- Degrees of Freedom: Z-Translation;
- DOF Value: 0.

Click Apply.

3. Fix the edges AB and CD on X-Rotation.


Select Mode – **Boundary Conditions**, Entity – **Displacement**, Action – **Create** on Command Panel. Set the following parameters:

- System Assigned ID;
- Entity List: Curves;
- Entity ID(s): 2 4 (using space after each of them);
- Degrees of Freedom: X-Rotation;
- DOF Value: 0.

Click **Apply**.

4. Fix the edges BC and AD in Y-rotation.

Select Mode – **Boundary Conditions**, Entity – **Displacement**, Action – **Create** on Command Panel. Set the following parameters:

ID/Name						
O New ID						
O Name						
System As	signed ID					
Entity List						
O Nodeset	O Volume	O Surface	O Curve			
◯ Hex	🔾 Tet	O Face	O Vertex			
🔿 Tri	🔘 Edge	Node				
Entity ID(s) all						
Degrees Of F	reedom					
🗹 X-Translati	ion Disp	X-Rotation Disp				
✓ Y-Translati	ion Disp	Y-Rotation Disp				
Z-Translati	ion Disp	Z-Rotation Disp				
DOF Value 0						
Specify Combination						
 Overwrite 		O Average				
🔘 Smallest		🔘 Largest				
(j) 9			<u>A</u> pply			

- System Assigned ID;
- Entity List: Curves;
- Entity ID(s): 1 3 (using space after each of them);
- Degrees of Freedom: Y-Rotation;
- DOF Value: 0.

Click Apply.

Setting material and element type

1. Create the material.

Select setting the material properties section on Command Panel (Mode – **Material**, Entity – **Materials management**).

In the Materials Management window that opens, in the second column, click on the caption Enter the name of the material and write "Material 1". Press the ENTER key.

In the left column, select Elasticity - Hooke Material. Select with the mouse the characteristic Young's modulus. Hold down the left mouse

button and drag the label to Material Properties. Double-click in the Value field next to Young's modulus and enter the number 200e9.Similarly, from the Hooke Material section add the Poisson Ratio 0.3, Density: 8000.

roperties	Material	ID	Imported material
 Elasticity Hook Material Mooney-Rivlin Material Blatz-Ko Material Murnaghan Material Orthotropic Material Transversely Isotropic Material General Density Damping coefficient 	Material1 Enter the name of the	1 material	Steel Steel GOST 4543-71 (Russia) Rubber Kevlar Titanium Soil
Mass damping coefficient Stiffness damping coefficient Strength Plasticity Hardening Thermal Geomechanic Preload	Material properties Material1 Hook Material Young's modul Poisson ratio General Density	us	Value 2e+11 0.3 8000

2. Create the block of one type of the material

Select setting the material properties section on Command Panel (Mode – **Blocks**, Entity – **Block**, Action – **Add**). Set the following parameters:

- Block ID: 1;
- Entity list: Surface;
- ID: 1 (or by the command **all**).

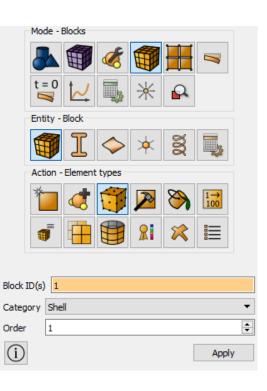
Click Apply.

	Mode -	Blocks					
			Ś				
	t = 0			✻	Q		
	Entity -	Block					
		Ι	\diamondsuit	✶	ğ	5	
	Action -	Set mat	erial				
	*		T	Þ	8	1→ 100	
	1			8	×		
Block	ID(s)						
Availa	able Mate	rials					
Mate	erial 1						•
\bigcirc	1						
\bigcirc)					Apply	/

3. Assign the material to the block.

Select setting the material properties section on Command Panel (Mode – **Blocks**, Entity – **Block**, Action – **Set material**). Set the following parameters:

• Block ID(s): 1;


• Select the previously created material in the list: Material 1.

4. Assign the element type.

Select setting the material properties section on Command Panel (Mode – **Blocks**, Entity – **Block**, Action – **Element Types**). Set the following parameters:

- Block ID(s): 1;
- Select: Surfaces;
- Order: 1.

Click Apply.

M	1ode	- Blocks					
	5		Ś				
1	t = (" [∠]	5	棠	Q		
E	intity	- Shell Pro	operties				
٢		I	\diamondsuit	\star	X		
Block ID		1					
Thicknes	ss	0.05					
Eccentri	city	0.5					
(j)					[Apply	

Setting shell thickness

1. Set the shell thickness.

Select setting the material properties section on Command Panel (Mode – **Blocks**, Entity – **Shell properties)**. Set the following parameters:

- Block ID: 1;
- Thickness: 0.05;
- Eccentricity: 0.5;

Starting calculation

1. Set the type of the problem to be solved.

Select calculation setting section on Command Panel (Mode – **Calculation settings**, Calculation settings – **Eigen Frequencies**, Eigen Frequencies – **General**). Set the default settings.

Click Apply.

Click Start Calculation.

- 2. In a pop-up window select a folder to save the result and enter the file name.
- If the calculation is finished successfully, you will see a message in the Console: "Calculation finished successfully at <date> <time>" as well as the required eigenvalues and frequencies.

	Mode -	Calculatio	on Settin	igs				
			Ś		∄	Į		
	t = 0	\sim		棠	P	L		
	Calculat	ion setti	ngs - Mo	de frequ	ency	anal	ysis	
	↑))	8		Ŷ	
	ModeFr	equency	- Gener	al				
	ŝ		λ	2				
Dimer	nsions:				3D)		•
🗌 U:	se MPI							
Se	ettings							
N	umber of	eigenmo	des 10				E	•
	Lowest							
C) Target		0.0)				
C) Interva	al		All value	2S			
2	20			250				
Pr	eload mo	del						
i							Appl	у
					[Star	t Calcu	lation

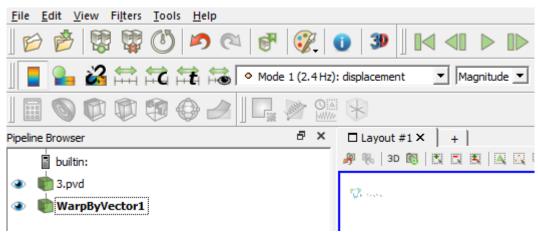
Results analysis

1. Compare the obtained results to those given in the picture.

FidesysCalc parse fc done EIGENFREQUENCY Number Eigenfrequency 2.399179 Hz 1 6.094884 Hz 2 3 6.109600 Hz 4 10.049814 Hz 5 12.473924 Hz 12.538575 Hz 6 7 16.696024 Hz 16.818848 Hz 8 9 21.961975 Hz 10 22.033991 Hz

Case 1. Done. Successfully. Calculation finished. Calculation finished successfully at 2019-02-26 16:53:06

- 2. Open the file with the results. You can do this in one of the three ways.
 - Click Ctrl+E.
 - Select Calculation --- Open Results in the Main Menu. Click Open last result.
 - Select **Results** on Command Panel (Mode **Results**). Click **Open Results**.

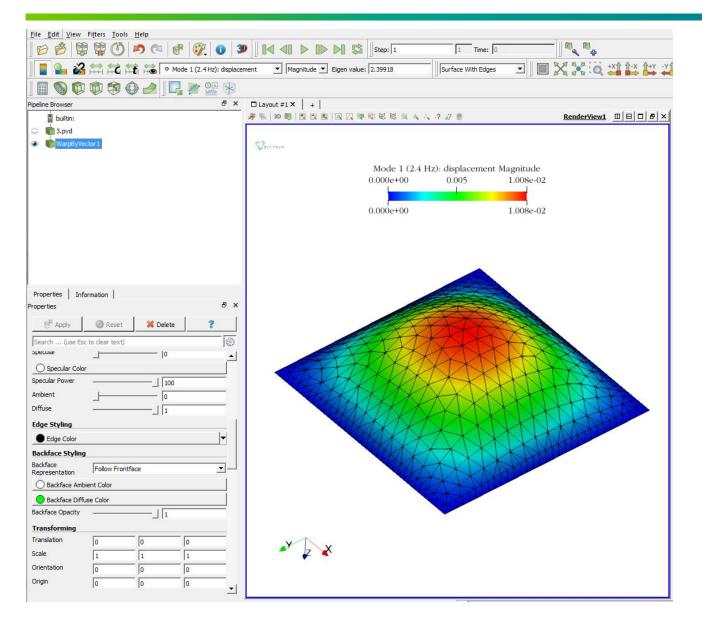

Calculation <u>H</u> elp		Mode - Results
↓ ⁸ Open <u>R</u> esults	Ctrl+E	
↓ Open <u>R</u> esults in new window	Ctrl+Shift+E	
		C:/Users/Admin/CAE-Fidesys-2.0/17.pvd
		Open in new window
		Open last result

3. You can see the way the body is deformed under the applied pressure.

Select a filter **Warp By Vector** to do this. Set the following parameters in the tab **Properties**:

- Vectors: Eigenvalue_# (# stands for the number of the eigenvalue);
- Scale Factor: 200.

As a result, the deformed body is displayed at the picture. To see the original model, click *a* near it in the Model Tree. The picture below shows the deformed model at different eigenvalues.



4. Display the 3D-view of the model (shell with thickness).

To do this, click on the name of the source file in the Model Tree. After this click 3D-view button in the default string.

The file *_3D.pvd with a 3D-image of the shell must be opened and you will be able to apply various filters to it and to view its deformed view.

Using Console Interface

For geometry generation, meshing, setting boundary conditions and materials you can use Console Interface. The following program code allows performing the steps of the above-described guide, you only need to **manually specify the full path and name of the file to be saved**.

```
reset
set node constraint on
create surface rectangle width 10 zplane
curve all interval 32
curve all scheme equal
surface 1 scheme Auto
surface 1 scheme Auto
mesh surface 1
create displacement on node all dof 1 dof 2 dof 6 fix 0
create displacement on curve all dof 3 fix 0
create displacement on curve 2 4 dof 4 fix 0
create displacement on curve 1 3 dof 5 fix 0
create material 1
modify material 1 name 'Material1'
modify material 1 set property 'MODULUS' value 2e+11
modify material 1 set property 'POISSON' value 0.3
```

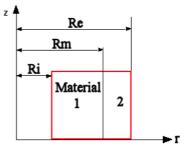
modify material 1 set property 'DENSITY' value 8000 set duplicate block elements off block 1 add surface 1 block 1 material 'Material1' block 1 element shell order 1 block 1 attribute count 2 block 1 attribute index 1 value 0.05 block 1 attribute index 2 value 0.5 analysis type eigenfrequencies dim3 preload off eigenvalue find 10 smallest calculation start path 'D:/Fidesys/example.pvd'

It is also possible to run the file *Example_8_Eigenvalue_Shell.jou*, by selecting Journal Editor on Toolbar. In a pop-up window of the main menu select **File** \rightarrow **Open** and open the necessary journal file.

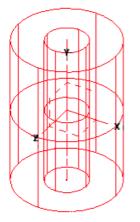
Setting heat transfer (3D, working with two blocks)

The 3D problem of a hollow two-material cylinder which inner and outer surfaces undergo the convection is being solved.

The pictures represent a geometric model of the problem:


The inner radius of the cylinder Ri = 0.30 m, the middle radius of the cylinder (at the place of material changing) Rm = 0.35 m, the external radius of the cylinder Re = 0.37 m.

Convective heat exchange with internal temperature Ti = 70 ° C and coefficient = 150 W/ m²/°C occurs on the inner surface of the cylinder. Convective heat exchange with exterior temperature $T_e = -15$ °C and coefficient $h_e = 200$ W/ m²/°C occurs on the outer surface of the cylinder.


Materials are isotropic. The material heat transfer 1 is $V_1 = 40$ W/(m·°C). The material heat transfer 2 is $V_2 = 20$ W/(m·°C).

Test pass criterion is the following:

at the point (0.3, 0, 0) heat flux 6687 W/m^2 is within 1%.

hi

Geometry creation

1. Create the first cylinder.

Select volume geometry generation section on Command Panel (Mode – **Geometry**, Entity – **Volume**, Action – **Create**). Select **Cylinder** in the list of geometric elements. Specify the cylinder dimensions:

- Height: 0.01;
- Circular;
- Radius: 0.3.

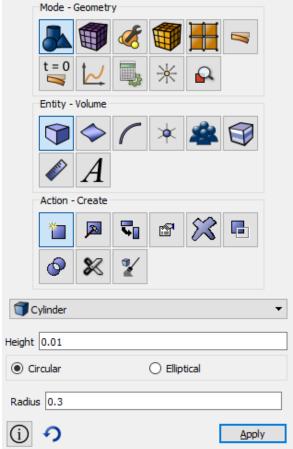
Click Apply.

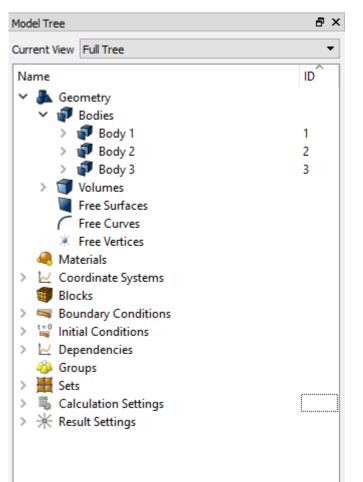
2. Create the second cylinder.

Select volume geometry generation section on Command Panel (Mode – **Geometry**, Entity – **Volume**, Action – **Create**). Select **Cylinder** in the list of geometric elements. Specify the cylinder dimensions:

- Height: 0.01;
- Circular;
- Radius: 0.35.

Click Apply.


3. Create the third cylinder.


Select volume geometry generation section on Command Panel (Mode – **Geometry**, Entity – **Volume**, Action – **Create**). Select **Cylinder** in the list of geometric elements. Specify the cylinder dimensions:

- Height: 0.01;
- Circular;
- Radius: 0.37.

Click Apply.

As a result, three generated entities are displayed in the Model Tree (Volume 1, Volume 2 and Volume 3).

4. Subtract the first cylinder from the second one.

Select volume geometry generation section on Command Panel (Mode – **Geometry**, Entity – **Volume**, Action – **Boolean**). Select **Subtract** in the list of operations. Set the following parameters:

- Body ID: 2 (volumes from which other volumes will be subtracted);
- Substract bodies (ID): 1 (the volumes to be subtracted);
- Keep Originals.

Click Apply.

5. Subtract the second cylinder from the third one.

Select volume geometry generation section on Command Panel (Mode – **Geometry**, Entity – **Volume**, Action – **Boolean**). Select **Subtract** in the list of operations. Set the following parameters:

- Body ID: 3 (volumes from which other volumes will be subtracted);
- Substract bodies (ID): 2 (the volumes to be subtracted);
- Keep Originals.

Click Apply.

As a result, five generated entities are displayed in the Model Tree: Volume 1, Volume 2, Volume 3, Volume 4 and Volume 5. Delete the thirst three bodies by right-clicking and selecting Delete.

Two entities: Volume 4 and Volume 5 are left in the Model Tree.

6. Merge obtained entities.

Select volume geometry generation section on Command Panel (Mode – **Geometry**, Entity – **Volume**, Action – **Impirint And Merge**). Select **Merge Volunes** in the list of operations. Set the following parameters:

• Body ID: 4 5 (the volumes to be united).

Rerge Volumes	-
Volume ID(s) 4	
☑ With	
Volume ID(s) 5	
Group Results	
Set Tolerance	
(j) ?	<u>A</u> pply

Mode - Ge	eometry					
		Ś			1	
t = 0	2	5	棠	Q		
Entity - V	olume					
	\diamondsuit	(\star	*		
<i>I</i>	A					
Action - B	loolean					
1	R	~	P	\approx		
Ø	8	¥				
🔘 Subtract						•
A B -	•					
A Volume ID(s)) 2					
B Volume ID(s)) 1					
Keep Origina						
Keep B						
O Keep both (/	A and B)					
Imprint						
						_
(j) 🥠			Previ	ew	Apply	ý

Meshing

- Select meshing on curves section on Command Panel (Mode

 Mesh, Entity Curve, Action Mesh). Specify the
 parameters of mesh refinement:
 - Select Curves: all (mesh will be creat on all the curves);
 - Select the way of meshing: Equal;
 - Select the meshing parameters: Interval;
 - Interval: 200.

Click Apply Size.

Mode - Mesh

	Mode - I	Mesh					
			Ś				
	t = 0			棠	Q		
	Entity -	Curve					
			1	*	43	\$	
		Ħ	Δ	-	÷	\diamondsuit	
	2						
	Action -	Mesh					
		8	۶	P	×		
	1+ 100						
Selec	t Curves						
all							
Get S	ettings F	or Curve	12		[Get Sett	ings
qual							•
A	pproxima	ite Size	O Auto	o Size	۱	Interval	
iterva	al 20						
✓ Preview							
	pply Size	Reforc !	Aeshina			<u>A</u> ppl	y Size
(i)) •	DEIVIEI	-icariii ig			М	esh

2. Select volume mesh generation section on Command Panel (Mode – **Mesh**, Entity – **Volume**, Action – **Mesh**).

- Select volumes: all (mesh will be creat on all the volumes);
- Select meshing scheme: Polyhedron.

Click Apply Scheme.

Click **Mesh**.

		E			ДД		
	t = 0	\sim		✻	Q		
	Entity -	Volume					
			C	*	43	\$	
		Ħ	Δ	-	÷	\diamondsuit	
	2						
	Action -	Mesh					
	Π		8	Ø	ß	×	
		1+ 100	•	8			
P	olyhedro	n					-
Selec	t Volume	s					
all							
<u>(</u>)	ົາ					Apply Sd	heme
Che	eck For O	verlappi	ng Surfa	ces			
	oly Schen	ne Before	e Meshin	g			
Scheme						Mes	h

Setting material and element type

1. Create Material 1.

Select setting the material properties section on Command Panel (Mode – **Blocks**, Entity – **Materials management**).

Specify the name of the material. Material 1. Drag from the left column to the section Thermal of the label Thermal isotropic in the Material Properties column.

Set the following parameters:

• Thermal Expansion coefficient: 40.

Click Apply.

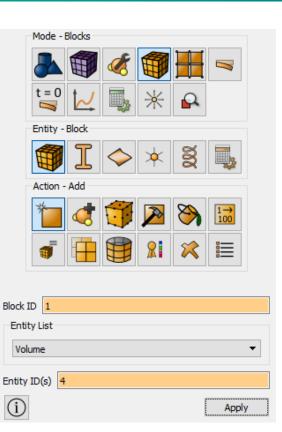
2. Create Material 2.

Select setting the material properties section on Command Panel (Mode – **Blocks**, Entity – **Materials management**).

Specify the name of the material. Material 1. Drag from the left column to the section Thermal of the label Thermal isotropic in the Material Properties column.

Set the following parameters:

• Thermal Expansion coefficient: 20.


Properties	Material	ID	Imported material
Elasticity	Material 1	1	Steel
General	Material 2	2	Steel GOST 4543-71 (Russia)
Strength	Enter the name of the r	naterial	Rubber
Plasticity			Kevlar
Hardening			Titanium
Thermal			Soil
Geomechanic			
> Preload			
	Material properties Material 2 Thermal Isotropic 	tivity coefficient	Value 20

3. Create Block 1.

Select setting the material properties section on Command Panel (Mode – **Blocks**, Entity – **Block**, Action – **Add**). Set the following parameters:

- Block ID: 1;
- Entity list: Volume;
- ID: 4.

Click Apply.

4. Assign the material to block 1.

Select setting the material properties section on Command Panel (Mode – **Blocks**, Entity – **Block**, Action – **Add**). Set the following parameters:

- Block ID(s): 1;
- Select the previously created material in the list: Material 1.



5. Create Block 2.

Select setting the material properties section on Command Panel (Mode – **Blocks**, Entity – **Block**, Action – **Add**). Set the following parameters:

- Block ID: 2;
- Entity list: Volume;
- ID: 5.

Click **Apply**.

6. Assign the material to block $N^{\circ}2$.

Select setting the material properties section on Command Panel (Mode – **Blocks**, Entity – **Block**, Action – **Set material**). Set the following parameters:

- Block ID(s): 2;
- Select the previously created material in the list: Material 2.

7. Assign the element type to the both of blocks.

Select setting the material properties section on Command Panel (Mode – **Blocks**, Entity – **Block**, Action – **Element Types**). Set the following parameters:

- Block ID(s): all;
- Select: Volumes;
- Order: 1.

Click Apply.

ID/Name		
O New ID		
○ Name		
System As	signed ID	
Entity List		
Surface		•
Entity ID(s) 10		
Surroundir	g	
🔿 On shell el	ement	
Temperature	70	
Coefficient	150	()
í		Apply

Setting boundary conditions

1. Set the process of convective heat exchange on the inner surface of the cylinder.

Select Mode – **Boundary Conditions,** Entity – **Convection**, Action – **Create** on Command Panel. Set the following parameters:

- System Assigned ID;
- Entity List: Surface;
- Entity ID(s): 10;

• Select the way of parameters setting: Surrounding;

- Temperature: 70;
- Coefficient: 150.

2. Set the process of convective heat exchange on the outer surface of the cylinder.

Select Mode – **Boundary Conditions,** Entity – **Convection**, Action – **Create** on Command Panel. Set the following parameters:

- System Assigned ID;
- Entity List: Surface;
- Entity ID(s): 15;
- Select the way of parameters setting: Surrounding;
- Temperature: -15;
- Coefficient: 200.

Click Apply.

	Mode - E	Boundar	y Conditi	ons			
			Ś				
	t = 0			*	Q		
	Entity -	Convect	ion				
		+	H^{q}	<u></u>	$\downarrow g$	歳	
	$\stackrel{\underline{\nu}}{\Rightarrow}$	⇒	$\stackrel{a}{\Rightarrow}$	Ш	-	- <mark>-</mark>	
	8	<u>99</u>	♣	3			
	Action -	Create					
	*	Þ			×		
ID/Na	ame						
0	lew ID						
0	lame						
۵ ی	System As	ssigned I	ID				
Entit	y List						
Surf	ace						•
Entity I	ID(s) 15						
•	urroundi	ng					
00	On shell e	lement					
Temp	perature	-15					
Coef	ficient	200)
i						Арр	ly

3. Fix the base of the cylinder.

Select Mode – **Boundary Conditions,** Entity – **Displacement**, Action – **Create** on Command Panel. Set the following parameters:

- System Assigned ID;
- Entity List: Surface;
- Entity ID(s): 12 13 16 17 (using space after each of them);
- Degrees of Freedom: Z-Translation;
- DOF Value: 0.

Starting calculation

1. Set the type of the problem to be solved.

Select calculation setting section on Command Panel (Mode – **Calculation settings**, Calculation settings – **Static**, Static – **General**). Select Dimension – **3D**. Untick next to the item **Elasticity**. Tick next to the item **Heat transfer**.

Click **Apply**.

- 2. In a pop-up window select a folder to save the result and enter the file name.
- 3. If the calculation is finished successfully, you will see a message in the Console: *"Calculation finished successfully at <date> <time>"*.

Results analysis

- 1. Open the file with the results. You can do this in one of the three ways.
 - Click Ctrl+E.
 - Select **Calculation** → **Open Results** in the Main Menu. Click **Open last result**.
 - Select **Results** on Command Panel (Mode **Results**). Click **Open Results**.
 - 2. Display the component of the heat flux.

In *Fidesys Viewer* window set the following parameters on Toolbar:

- Representation Mode: Surface;
- Representation Field: HeatFlux.

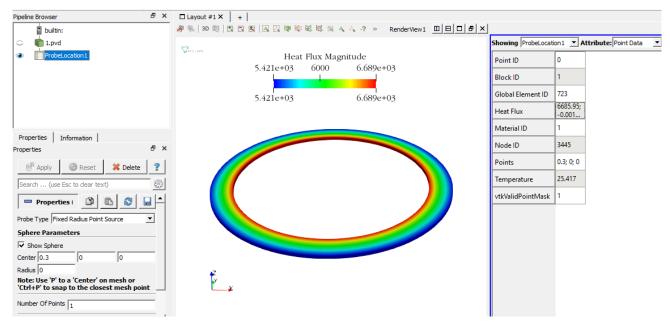
♦ HeatFlux	Magnitud 💌			Surface 💌	
------------	------------	--	--	-----------	--

To display the color legend scale, click the button **Switch the color legend visibility** on Command Panel.

Open last result

Start Calculation

3. Select a point where you need to view the heat flux.


In the Main Menu, select the filter **Probe Location**. In the tab **Properties** set the coordinates of the point A where you need to view the stress:

- Show Point;
- Point (coordinates): 0.3 0 0;
- Number of Points: 1;
- Radius: 0.

Click Apply.

To apply all of the filters changes automatically, click **Apply changes to parameters automatically** on Command Panel.

As a result, point A is displayed at the picture.

4. View a numerical value of the heat flux φ at the selected point A.

See the heat flux values in the line **HeatFlux** in the tab **Information** in the field **Data Arrays**.

Information

	ent data time: 1		
Nan	1e	Data Type	Data Ranges
۰	Block ID	[1, 1]	
۰	Global Element ID	[723, 723]	
۰	Heat Flux	[6685.95, 6685.95], [6685.95, 6685.95], [-0.00151785, -0.00151785], [9.66712e-11, 9.66712e-11]	
۰	Material ID	[1, 1]	
۰	Node ID	[3445, 3445]	
۰	Temperature	[25.417, 25.417]	
•	vtkValidPointMask	[1, 1]	

The heat flux value is calculated using the following formula:

$$\sqrt{\varphi_x^2 + \varphi_y^2 + \varphi_z^2} = \sqrt{6686.41^2 + (-0.00302395)^2 + (8.02105e - 05)^2} = 6686.41$$

The difference between the obtained value 6686.41 and the required one 6 687 is 0.01%.

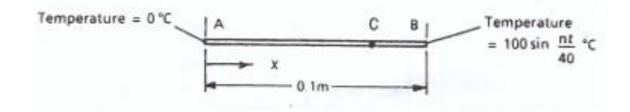
5. Download numerical data.

Select **File** \rightarrow **Save Data** in the Main Menu or click **Ctrl+S**. Enter the file name (*.csv format), leave it by default. Click **OK**. The saved file is an ordinary table of numerical data which can be opened in any text editor.

Using Console Interface

For geometry generation, meshing, setting boundary conditions and materials you can use Console Interface. The following program code allows performing the steps of the above-described guide, you only need to **manually specify the full path and name of the file to be saved**.

```
reset
create Cylinder height 0.01 radius 0.3
create Cylinder height 0.01 radius 0.35
create Cylinder height 0.01 radius 0.37
subtract body 1 from body 2 keep
subtract body 2 from body 3 keep
delete body 1 2 3
merge volume 4 5
curve all interval 200
curve all scheme equal
volume all scheme Polyhedron
mesh volume all
create material 1
modify material 1 name 'Material 1'
modify material 1 set property ' ISO_CONDUCTIVITY ' value 40
create material 2
modify material 2 name 'Material 1'
modify material 2 set property ' ISO_CONDUCTIVITY ' value 20
block 1 volume 4
block 1 material 'Material 1'
block 2 volume 5
block 2 material 'Material 2'
block all element solid order 2
create convection on surface 10 surrounding 70 coefficient 150
create convection on surface 15 surrounding -15 coefficient 200
create displacement on surface 12 13 16 17 dof 3 fix 0
analysis type static heattrans dim3
calculation start path " D:/Fidesys/example.pvd"
```



It is also possible to run the file *Example_9_Static_3D_Conduction.jou*, by selecting Journal Editor on Toolbar. In a pop-up window of the main menu select **File** \rightarrow **Open** and open the necessary journal file.

Dynamic load: nonsteady heat transfer (3D, implicit scheme)

The 3D problem of 1D nonsteady heat transfer inside a beam is being solved.

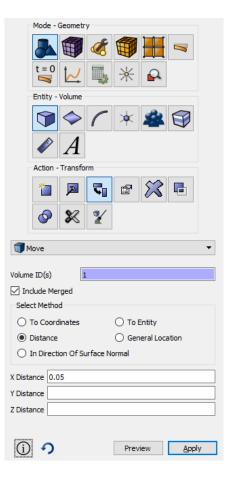
The picture below represents a geometric model of the problem:

The beam length is 0.1 m, square cross section is 0.01x0.01 m. The temperature at the point A is $T_A = 0$ °C, the temperature at the point B varies harmonically: $T_B = 100 \sin \frac{\pi t}{40}$ °C. The material parameters are isotropic, V = 35 W/(m·°C), C = 440.5 J/(kg·°C), $\rho = 7 200 \text{ kg/m}^3$.

Test pass criterion is the following: temperature T at the point C (0.8;0;0) at time t = 32c is 36.60°C within 2%.

Geometry creation

1. Create the sliver parallelepiped.


Select volume geometry generation section on Command Panel (Mode – **Geometry**, Entity – **Volume**, Action – **Create**). Select **Brick** in the list of geometric elements. Set the brick dimensions:

- Width: 0.1;
- Height: 0.01;
- Depth: 0.01.

Click Apply.

	Piou	C - (seomeu	у				
	5	<u>k</u>		Ś				
	t =	0			✻	Q		
	Enti	ty -	Volume					
	\Box		\diamondsuit	(\star	*	\bigcirc	
	-	۶	A					
	Acti	on -	Create					
	×		æ	5	ß	\approx		
	6	>	×	¥				
T e	Brick							•
Brick	Dime	nsio	ns					
X (wid	dth)	0.1						
Y (he	ight)	0.0	1					
Z (de	pth)	0.0	1					
(j)	e e)				-	Apply	,

Mode - Ceometry

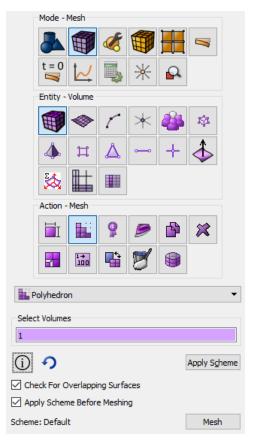
2. Combine left edge of the beam with the origin of coordinates.

Set the following parameters: Select volume geometry modification section on Command Panel (Mode – **Geometry**, Entity – **Volume**, Action – **Transform**). Select **Move** in the list of possible webcut types. Set the following parameters:

- Volume: 1;
- Select method: Distance;
- X Distance: 0.05.

Click Apply.

Meshing


1. Creat the mesh of hexahedrons.

Select volume mesh generation section on Command Panel (Mode – **Mesh,** Entity – **Volume**, Action – **Mesh**):

- Select Volumes (specify their ID): 1 (or by the command **all**);
- The way of meshing: Polyhedron.

Click Apply Scheme.

Click Mesh.

Setting material and element type

1. Create the material.

Select setting the material properties section on Command Panel (Mode – **Material**, Entity – **Materials management**).

In the Materials Management window that opens, in the second column, click on the caption Enter the name of the material and write "Material 1". Press the ENTER key.

Select setting the material properties section on Command Panel (Mode – **Blocks**, Entity – **Material**, Action – **Create Material**). Enter the name for the material. Set the following parameters:

- Density: 7200;
- Specific Heat coefficient: 440.5;
- Thermal conductivity coefficient: 35.

Click **Apply**.

😯 Materials management

×

Properties	Material	ID	Imported material
> Elasticity	Material 1	1	Steel
> General	Enter the name of the m	aterial	Steel GOST 4543-71 (Russia)
> Strength			Rubber
> Plasticity			Kevlar
> Hardening			Titanium
> Thermal			Soil
> Geomechanic			
> Preload			
	Material properties		Value
	✓ Material 1		
	✓ General		
	Density		7200
	✓ Thermal		
	Specific heat coe	fficient	440.5
	 Thermal Isotropic 		
	Thermal conducti	ivity coefficient	35
(i)			Apply

2. Create a block of one type of the material.

Select setting the material properties section on Command Panel (Mode - Blocks, Entity - Block, Action - Manage). Select Add in the list of possible operations. Set the following parameters:

- Block ID: 1; •
- Entity list: Volume; •
- ID: 1 (or by the command **all**). •

Click **Apply**.

3. Assign the material to the block.

Select setting the material properties section on Command Panel (Mode - Blocks, Entity - Block, Action - Set material). Set the following parameters:

- Block ID(s): 1; •
- Available materials: Material 1. •

Click **Apply**.

4. Assign the element type.

Select setting the material properties section on Command Panel (Mode - Blocks, Entity - Block, Action - Element Types). Set the following parameters:

- Block ID(s): 1; •
- Select: Volumes; •
- Order: 1.

Click Apply.

	Mode -	Blocks					
			Ś				
	t = 0	\mathbf{k}	I .	✻	Q		
	Entity -	Block					
		I	\diamondsuit	\star	ğ	5	
	Action -	Add					
	*	(T	P	8	$1 \rightarrow 100$	
				8	×		
Block	ID 1						
Enti	ty List						
Vo	ume						•
Entity	ID(s) 1						

(i)

(j)

Мо	de - I	Blocks					
6	k		Ś				
t	= 0	\sim	5	✻	Ω		
Ent	tity -	Block					
The second secon		Ι	\diamondsuit	\star	ğ		
Act	tion -	Set mat	erial				
Ť			1	\searrow	8	1→ 100	
-	,	Ē		8	枀		
ck ID(s) 1						
ailable I	Mater	rials					
aterial :	1						•

Apply

Apply

Setting boundary conditions

1. Set the value of temperature applied to the left side of the beam.

Select Mode – **Boundary Conditions,** Entity – **Temperature**, Action – **Create** on Command Panel. Set the following parameters:

- System Assigned ID;
- Temperature Entity List: Surface;
- Entity ID(s): 4;
- Temperature Value: 0.

Click Apply.

2. Set the value of temperature applied to the right side of the beam.

Select Mode – **Boundary Conditions,** Entity – **Temperature**, Action – **Create** on Command Panel. Set the following parameters:

- System Assigned ID;
- Temperature Entity List: Surface;
- Entity ID(s): 6;
- Temperature Value: 1.

Click Apply.

Setting time dependency of boundary conditions

1. Set time dependency of the temperature applied to the right edge of the beam.

Select Mode – **Boundary Conditions**. Click on the button **Time dependency** on Command Panel. The pop-up menu with the settings will be opened. On the left panel, select BC for which the time dependency will be set: **Temperature 2**. Put a checkbox next to the item **Formula**. Set the following parameters:

- Time dependency type: Manually;
- Enter formula: 100*sin(0.0785*t).

Click Apply.

Mode - I	BC Depe	ndency			
		Ś			
t = 0		5	⋇	Ω	

						1	
	t = 0	\sim	5	⋇	Q		
	Entity -	Tempera	ature				
	1	+	<u>↓↓↓</u> q	₽₽₽	↓ <i>g</i>	歳	
	些	⇒	⇒	Ш	-	- <mark>-</mark> >	
	8	<u>99</u>		F			
	Action -						
	*	Þ			×		
ID/N	ame						
O N	ew ID						
O N	ame						
● S	ystem As	signed II	0				
	erature l				~		
-	olume) Curve				
-	urface / ID(s)	4) Vertex			odeset	
	ate On T		l Element	ts			
Tempe	rature Va	lue 0					
í	Ð					App	ply

ſ

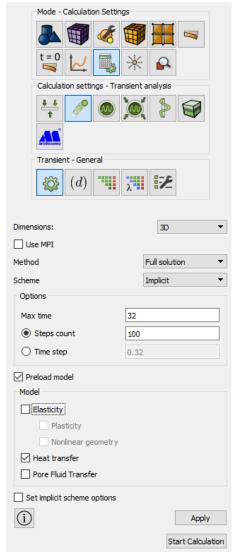
Mode - Boundary Conditions

🙄 BC	Dependency								>	×
BC Ty	pe	BC Name	ID	Formula	Table Plot					
8	Temperature		1	Custom	•					
8	Temperature		2	100 * :	sin(0.0785 *	t)				
				Clear	+	-	*	1	^	
				sin	COS	tan	sqrt	if(A,B,C)	()	
				asin	acos	atan	exp	log	log 10	
				sinh	cosh	tanh	abs	ceil	floor	
				Available (temperat	variables: t (time), ture), w (frequenc	x (x-coordinate) y)	, y (y-coordinal	te), z (z-coordina	ste), T	
				(i)					Apply]

Starting calculation

1. Set the type of the problem to be solved.

Select calculation setting section on Command Panel (Mode – **Calculation settings**, Calculation settings – **Transient analysis**, Transient analysis – **General**). Set the following calculation parameters:

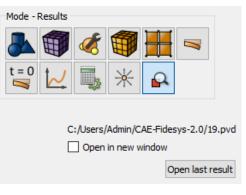

- Dimension: 3D;
- Method: Full solution;
- Scheme: Implicit;
- Max time: 32;
- Steps count: 100.
- Elasticity: untick;
- Heat transfer: tick;

Click Apply.

Click Start Calculation.

In a pop-up window select a folder to save the result and enter the file name.

If the calculation is finished successfully, you will see a message in the Console: "*Calculation finished successfully at <date>* <time>".



Results analysis

1. Open the file with the results.

You can do this in one of the three ways:

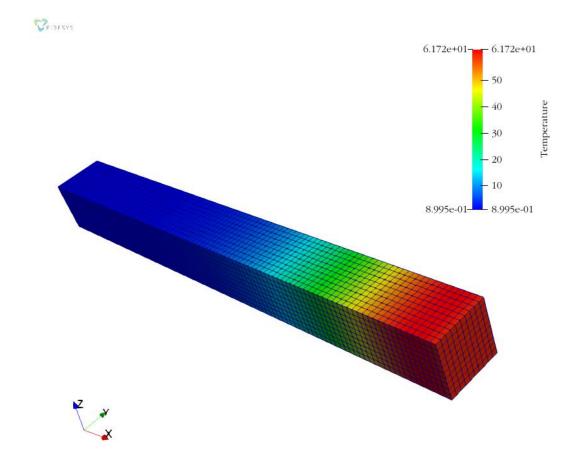
- Click Ctrl+E.
- Select Calculation → Open Results in the Main Menu. Click Open last result.
- Select **Results** on Command Panel (Mode **Results**). Click **Open last result**.

You can see the calculation results in the pop-up **Fidesys Viewer** window.

2. There is a menu on Toolbar which allows viewing animation. It consists of a cycle of solutions calculated for every moment of time. Click "Last Frame" to see the model in time moment t = 32°C.

Image: Step: Image: Step: 32		
--	--	--

3. Display the component of the temperature.


In Fidesys Viewer window set the following parameters on Toolbar:

- Representation Field: Temperature;
- Representation Mode: Surface With Edges.

ŭ 🖗 🚱 🕕	3 🛛		Step: 1 Tim	e: 1	®	P
• Temperature	•	_	Surface With Edges	•	X * Q *	X

The model displays the mesh resulting from application of the spectral element method and the field of temperature distribution.

To display the color legend scale, click the button **Switch the color legend visibility** on Command Panel.

4. To graph along one of the beam edges.

Select the filter **Plot Over Line** in the Main Menu. Set the coordinates of the points defining the line In the tab **Properties**:

- Source: High Resolution Line;
- Show Line;
- Point 1 (coordinates): 0 -0.005 0.005;
- Point 2 (coordinates): 0.1 -0.005 0.005;
- Resolution: 100;
- PassPartialArrays

Click Apply.

To apply all of the filters changes automatically, click **Apply changes to parameters automatically** on Command Panel.

Click on the graph window appeared on the right side of the screen.

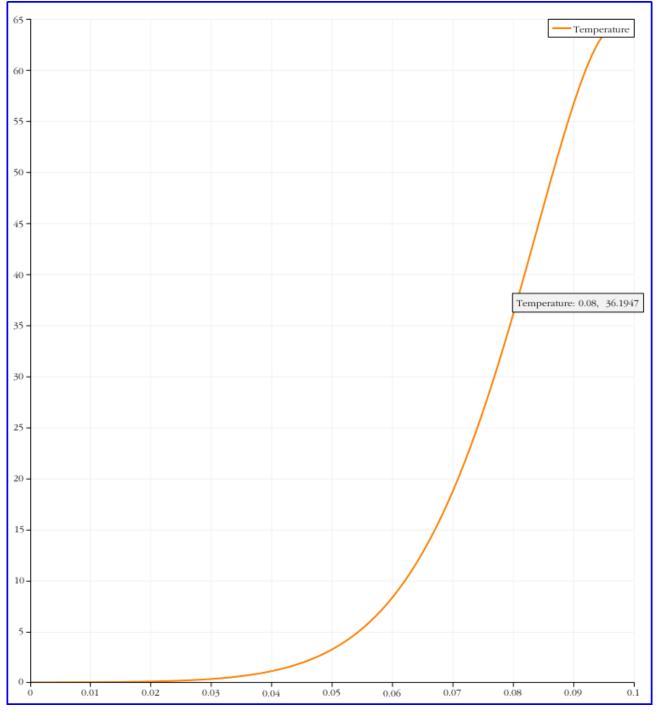
Properties		8 ×
🚰 Apply	🖉 Reset	💢 Delete 🛛 💡
Search (use E	Esc to clear text)	£33
Propertie	es i 🖸 🗈	
Probe Type High	Resolution Line S	Source 💌
Line Paramete	rs	
Length: 0. 10099	95	
Show Line		
Point1 0	-0.005	-0.005
Point2 0.1	0.005	0.005
Note: Use 'P' to mesh or 'Ctrl+ mesh point. Us '2'/'Ctrl+2' for	P [:] to snap to th e '1'/'Ctrl+1' fo	e closest
X Axis	Y Axis	Z Axis
	Center on Bounds	
Resolution 100		
🔽 Pass Partial A	rrays	
Compute Tole	rance	
📼 Display	ĎĒ	8
🗖 View (Re	nd 🗅 🗈	8 🖬 -

5. Display temperature change on the graph.

Click on the graph window, go to the tab "Display" in the filter control panel.

Set the Attribute Mode – Point Data

Next, in the field "Line Series", set up labels against the parameters that you want to display on the graph.


Untick all the options except Temperature.

The temperature dependency at points belonging to the beam edge and the coordinates of these point coordinates are displayed on the graph.

🕅 Apply		Reset	💢 Delete	?
Search (use Esc to d	:lear text)			3.05
X Axis Parameters				
Use Index For XAxis				-
X Array Name Points	Magnitude			•
	ingrittade			<u> </u>
Series Parameters				
	Variable			
Block ID				
🔲 Global Element II)			
Heat Flux_Magnit	ude			
Heat Flux_X				
Heat Flux_Y				
Heat Flux_Z				
Material ID				
Node ID			_	
Points_Magnitud	e			
Points_X				
Points_Y				
Points_Z			-	
Temperature arc_length				
			-	
vtkValidPointMas				

6. Check the numerical temperature value T at the point (0.08;0;0).

Move the cursor to the required point on the graph. You can see a tool tip with the temperature value.

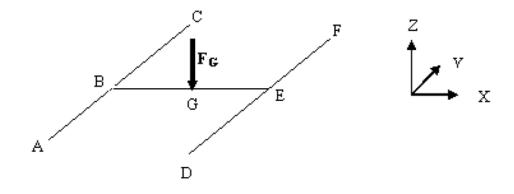
The difference between the obtained value 36.6617 and the required one 36.60 is 0.17%.

7. Download numerical data.

Select **File** \rightarrow **Save Data** in the Main Menu or click **Ctrl+S**. Enter the file name (*.csv format), leave it by default. Click **OK**. The saved file is an ordinary table of numerical data which can be opened in any text editor.

Using Console Interface

For geometry generation, meshing, setting boundary conditions and materials you can use Console Interface. The following program code allows performing the steps of the above-described guide, you only need to **manually specify the full path and name of the file to be saved**.


reset brick x 0.1 y 0.01 z 0.01 move Volume 1 x 0.05 include_merged volume 1 scheme polyhedron volume 1 size 0.001 mesh volume 1 create material 1 modify material 1 name 'Material 1' modify material 1 set property 'DENSITY' value 7200 modify material 1 set property 'ISO_CONDUCTIVITY' value 35 modify material 1 set property 'SPECIFIC_HEAT' value 440.5 block 1 add volume 1 block 1 material 1 block 1 element solid create temperature on surface 4 value 1 create temperature on surface 6 value 1 bcdep temperature 2 value '100*sin(0.0785*t)' analysis type dynamic heattrans dim3 preload on dynamic method full_solution scheme implicit maxtime 32 steps 100 newmark_gamma 0.0050.005calculation start path "D:/Fidesys/test.pvd"

It is also possible to run the file *Example_14_Dynamic_3D_Conduction_Spectr.jou*, by selecting Journal Editor on Toolbar. In a pop-up window of the main menu select **File** \rightarrow **Open** and open the necessary journal file.

Harmonic analysis (beam model)

An example with a beam construction is considered. Specified structural damping.

The model is rigidly fixed at points A, D, C, F. A force dependent on frequency is applied to the middle of the BE face. The sides of the structure have the same length: AB = BC = DE = EF = BG = EG = 2.5 m. Material parameters: Young's modulus E = 2e11 Pa, Poisson's ratio v = 0.3, density $\rho = 7800$ kg / m³. Specified structural damping 0.1.

Geometry creating

1. Create a structure and beams (lines).

Since the structure contains edges of the same length, use the parameter L = 2.5. To set a parameter, enter in the command line # {L = 2.5}.

Command Line	
Fidesys> #{L = 2.5}	
Listory Commands History	

On the toolbar, select a line creating mode (Mode -Geometry, Entity - Curve, Action - Create). From the dropdown list, select Line. On the Build panel, use select Position and Direction. Next, enter the necessary data to create the first line:

- Location: 0 0 0 (space separated); •
- Direction: 0 1 0; •
- Length: {L}.

Click Apply.

M	lode - (Geometr	у				
	5		«				
t	t = 0	\sim		棠	Q		
E	ntity -	Curve					
(\diamondsuit	1	\star	*	\bigcirc	
	AND	A					
A	ction -	Create					
	*	æ	4	P	\approx		
(Line	2						•
Build Us	ing —						
🔿 Vert	ex IDs						
	ations						
Local	ation ar	nd Direct	ion				
Location	000						
Direction	100						
Length	{L}						
(j)	0					Apply	y

Specify the necessary data to create a second line:

- Location: 0 {L} 0;
- Direction: 0 1 0;
- Length: {L}.

Click Apply.

Specify the necessary data to create a third line:

- Location: 0 {L} 0;
- Direction: 1 0 0;
- Length: {L}.

Click Apply.

Specify the necessary data to create the fourth line:

- Location: {L} {L} 0;
- Direction: 1 0 0;
- Length: {L}.

Click **Apply**.

Specify the necessary data to create a fifth line:

- Location: {2 * L} 0 0;
- Direction: 0 1 0;
- Length: {L}.

Click Apply.

Specify the necessary data to create the sixth line:

- Location: {2 * L} {L} 0;
- Direction: 0 1 0;
- Length: {L}.

Click Apply.

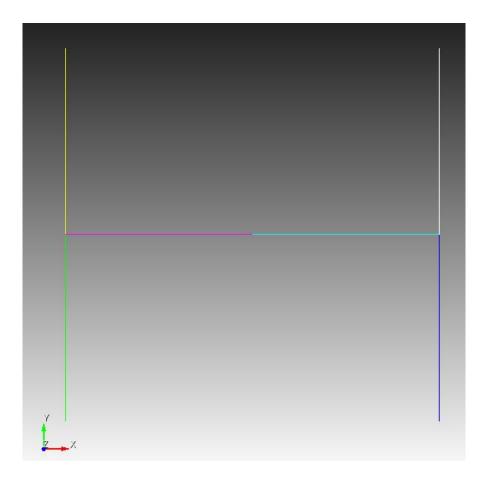
Location	0 {L} 0	
Direction	010	
Length	{L}	

Location	0 {L} 0	
Direction	100	
Length	{L}	

Location	{L} {L} 0	
Direction	100	
Length	{L}	

Location	{2*L} 0 0	
Direction	010	
Length	{L}	

Location	{2*L} {L} 0	
Direction	010	
Length	{L}	


Splicing tops on received beams. On the toolbar, select the vertex creating mode (Mode - **Geometry**, Entity - **Vertex**, Action - **Merge**). Specify:

• Vertex ID: all.

Click Apply.

Beam structures was created

Mode -	Geometr	y			
t = 0	2	5	*	Q	
Entity -	Vertex				
	\diamondsuit	٢	\star	*	\bigcirc
	A				
Action -	Merge				
*	æ	5	r	\approx	
tex ID(s)	all				

Ve

Meshing

- On the command panel, select the volume mesh mode (Mode -Mesh, Entity - Curve, Action – Mesh). Specify the following parameters:
 - Select curves: all;
 - Settings for curve: Equal;
 - Approximate size: 0.1.

Click Apply Size.

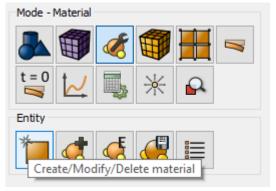
Click Mesh.

	Mode - I	Mesh					
			Ś				
	t = 0	\sim		✻	Q		
	Entity -	Curve					
			1	*	4	\$ 1	
		Ħ	Δ		+	\clubsuit	
	2						
	Action -	Mesh					
		8	Ø	ß	×		
	1→ 100						
	t Curves						
all							
Get S	ettings F	or Curve	12		Get	t Settings	
Equal 🔻							
• A	pproxima	te Size	O Auto	o Size		terval	
DDro	pproximate Size 0.1						

Specifying the material and type of element

1. Create a material.

Select setting the material properties section on Command Panel (Mode – Material, Entity – Materials management).


In the Materials Management window that opens, in the second column, click on the caption Enter the name of the material and write "Material 1". Press the ENTER key.

In the left column, select Elasticity - Hooke Material. Select with the mouse the characteristic Young's modulus. Hold down the left mouse button and drag the label to Material Properties. Double-click in the Value field next to Young's

modulus and enter the number 2e11.Similarly, from the Hooke Material section add the Poisson Ratio 0.3, Density: 7800.

Click Apply.

Close the window.

Properties	^	Material	ID	Imported material
 Elasticity 		material1	1	Steel
 Hook Material Young's modulus Poisson ratio Lame modulus Shear modulus > Mooney-Rivlin Material 		Enter the name of the ma	terial	Steel GOST 4543-71 (Russia) Rubber Kevlar Titanium Soil
 > Blatz-Ko Material > Murnaghan Material > Orthotropic Material > Transversely Isotropic Material 				
 General Density 		Material properties • material1		Value
Damping coefficient Mass damping coefficient Stiffness damping coefficient Strength Plasticity Hardening		 Hook Material Young's modulus Poisson ratio General Density 		2e+11 0.3 7800
> Thermal > Geomechanic > Preload	~			

2. Create a block of the one type of material.

On the command panel, select the mode for setting material properties (Mode - **Blocks**, Entity - **Block**, Action - **Add**). Set the following parameters:

- Block ID: 1;
- Entity list: Curve;
- Entity ID (s): all.

Click **Apply**.

	Mode -	Blocks					
			Ś				
	t = 0	\sim	5	✻	Q		
	Entity -	Block					
		Ι	\diamondsuit	✶	ą	5	
	Action -	Add					
	*		1	Þ	8	1→ 100	
					*		
Block I	D 1						
Entit	y List						
Cur	ve						•
Entity	ID(s) a	I					
i					[Apply	Y

3. Assign the material to the block.

On the command panel, select the mode for setting material properties (Mode - Blocks, Entity - Block, Action - Set Material). Set the following parameters:

- Block ID (s): 1; •
- Available materials: Material 1.


Click **Apply**.

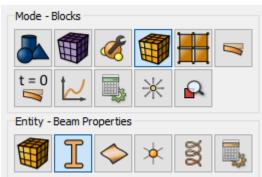
4. Assign an item type.

On the command panel, select the mode for setting material properties (Mode - Blocks, Entity - Block, Action - Element types). Set the following parameters:

- Block ID (s): 1 or all; •
- Category: Beam; •
- Order: 1. •

Click Apply.

-N	lode - I	Blocks					
					1		
	52	H	Ś		趰		
1	t = 0	\swarrow	5	⋇	Ω		
E	ntity -	Block					
١		Ι	\diamondsuit	\star	ğ	5	
A	ction -	Element	types				
1	1		T	P	8	$1 \rightarrow 100$	
				8	×		
Block ID	(s) 1						
Categor	y Bea	m					•
Order	1						-
(i)					[Apply	1


Apply

(j)

Beam section setting

- Specify the section of the beams. On the command panel, select setting material properties mode 1. (Mode - Blocks, Entity - Beam Properties). Set the following parameters:
 - Block ID: 1; •
 - CS rotation angle: 0; •
 - Calculate relative to: Centroid; •
 - Select profile: Ellipse; •
 - Minor axis (b): 0.1; •
 - Major axis (a): 0.1. •

Click Apply.

Setting boundary conditions

1. Fix the vertices A, D, C, F through all displacements and rotations.

On the command panel, select Mode - **Boundary Conditions**, Entity - **Displacement**, Action - **Create**. Set the following parameters:

- System assignment ID;
- Entity list: Vertex;
- Entity ID(s): 1 4 9 12 (or select the vertices with the mouse by pressing the Ctrl key);
- Degrees of freedom: All;
- DOF Value: 0 (can not fill).

Click **Apply**.

			K			1			
	t = 0			棠	Ω				
	Entity -	Displace	ment						
	1	+	<u></u>	<u></u>	$\downarrow g$	歳			
	$\stackrel{\underline{\nu}}{\Rightarrow}$	⇒	₫	Ш	-	- <mark>-</mark>			
	8	<u>9</u> 9		F					
	Action -	Create							
	1	P			枀				
ID/Na	ame								
() N	ew ID								
O N	ame								
System Assigned ID									
Entit	y List								
O N	odeset	🔿 Volu	me () Surfa	ce 🔾	Curve			
Он	ex	⊖ Tet	(○ Face					
ОТ	i	🔿 Edg	e () Node					

Mode - Boundary Conditions

2. Apply a force dependent on frequency.

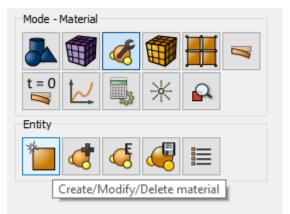
On the command panel, select Mode - **Boundary Conditions**, Entity - **Force**, Action - **Create**. Set the following parameters:

Entity ID(s) 1 4 9 12 Degrees Of Freedom

🗹 All

- System assignment ID;
- Force Entity list: Vertex;
- Entity ID(s): 6 (or select a vertex with the mouse, as shown in the figure);
- Force: 1;
- Direction: 0 0 -1 (*negative direction along the z axis*).

Click Apply


			Mode - I	Boundar	y Conditi	ons		
					Ś			
			t = 0	\sim	5	✻	<u>Q</u>	
			Entity -	Force				
				+	\amalg^q	₽	↓ <i>g</i>	歳
			⊻	⇒	₫	Ш	-	-
			8	<u>99</u>		F		
1			Action -	Create				
			*	Þ			×	
İ			Name					
	* 2		New ID					
ł		0	Name					
I		•	System As	signed II	D C			
I			ce Entity Li		_		~	
			Surface Curve) Vertex) Node	c	O N	odeset
1		1) Node			
•			r ID(s) 6 Decify Usin	a Vector				
				g vector				
		Forc						
		Mom		1				
			ection	nz				
		(i)	ゥ					<u>A</u> pply

3. Set the frequency dependence.

On the command panel, select Mode - **BC Dependency**. In the BC Dependency window that appears, select the boundary condition Force 1 in the left column, in the Formula panel from the drop-down list, select Harmonic. Enter the following data:

- Amplitude: 1e5;
- Phase: 0.

Click Apply

😯 BC Dependency				?	×
C Type	BC Name	ID 1 1	Formula Table Plot Harmonic • $f(t) = A \sin(\omega t + \varphi)$ Amplitude(A) le5 Phase(φ) 0.0	?	×
				Appl	ly

Run calculation

1. Set the type of problem you want to solve.

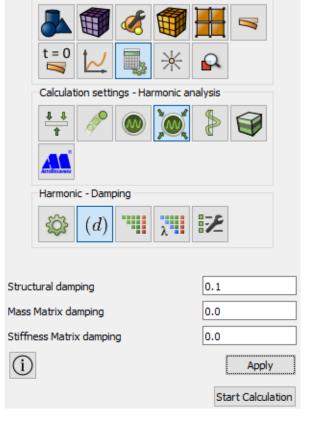
On the command panel, select the calculation settings module (Mode - Calculation Settings, Calculation Settings -Harmonic - General). Set the following calculation parameters:

- Dimension: 3D;
- Method: Mod superposition; •
- Maximum frequency number: 10; ٠
- Frequency Interval: 0-200; •
- Frequency step: 0.5; •

Click Apply.

	Mode -	Calculati	on Settin	ngs				
			K					
	t = 0		5	☀	-	Q		
	Calculat	ion setti	ngs - Ha	rmonic	ana	alysis		
	↓)	ý	₽	Ŷ	
	Antoleaners							
	Harmon	ic - Gene	ral					
	ŝ	(d)		λ		۶		
Dimer	nsions:				3	3D		•
🗌 U:	se MPI							
Metho	bd			ľ	1od	superp	osition	•
Maxin	num frequ	iency nu	mber	1	.0			-
Opt	ions							
Fre	quency Ir	nterval:						
0.0)		-	200				
0	Steps co	00						
Frequency step 0.5								
Pr	eload mo	del						
i							Apply	

2. Specify structural damping.


On the command panel, select the calculation settings module (Mode - **Calculation Settings**, Calculation Settings - **Harmonic** - **Damping**). Set the following calculation parameters:

• Structural damping: 0.1.

Click Apply.

Click Start calculation.

- 3. In the window that appears, select the directory in which the result will be stored, and enter the file name.
- 4. In the case of a successful calculation, the console displays the message: "*Calculation finished successfully at <date>* <time>".

Mode - Calculation Settings

Results analysis

1. Compare the results displayed on the command line with the results below:

Command Line							
Calculation started at 2019-02-17 15:18:29							
Using 4 CPU cores of 4 available - HPC Local (Standard) is installed.							
FidesysCalc parse fc done							
EIGENFREQUENCY							
Number Eigenfrequency							
1 8.902470 Hz							
2 11.913360 Hz							
3 14.771100 Hz							
4 14.839233 Hz							
5 19.833076 Hz							
6 39.345251 Hz							
7 40.046269 Hz							
8 49.535474 Hz							
9 50.825364 Hz							
10 54. 184752 Hz							
└ / Error / Commands / History /							

2. Open the file with the results.

This can be done in two ways:

- Press Ctrl + E.
- From the main menu, select **Results**. Click **Open** Last Result.

The *Fidesys Viewer* window will appear, in which you can view the calculation results.

new window

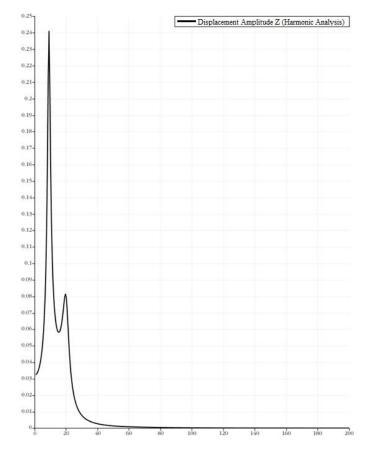
Open last result

3. In the standard line, select **Filters** -> **Alphabetical** > **Harmonic Analysis**.

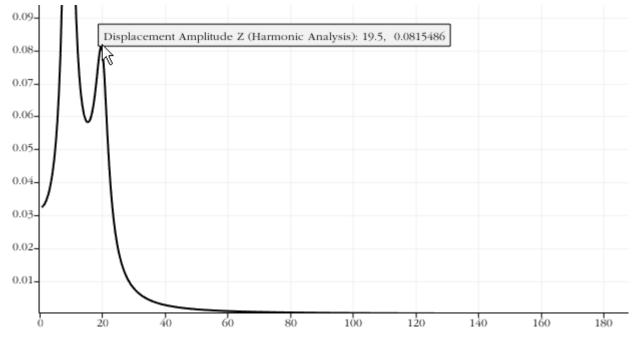
					Ī	Calculator		Warp By Scalar
	Filters	Tools	He	lp		Cell Data to Point Data	ð	Warp By Vector
	Se	arch		Ctrl+Space	Ø	Clip		
1	Re	cent		· · · ·	٨	Contour		
	Co	mmon		•		Coordinate System Conversions		
	Da	ta Analy	sis	•		Elevation		
		ohabetic		•		Extract Cells By Region		
						Extract Edges		
				🍠 🖳 3D 🔞	r.	Extract Selection		
				57		Extract Surface		
				"V FIDE!	Ŵ	FFT Of Selection Over Time		
					٢	Glyph		
						Glyph With Custom Source		
						Gradient		
						Gradient Of Unstructured DataSet		
						Harmonic Analysis		
					1.1			

The plot of Displacement (Amplitude) versus frequency must be plotted for node 2 (coincides with vertex B). For the Harmonic analysis filter in the Tree, in the Properties tab, specify:

• Node ID: 2.


Click Apply.

Pipeline Browser	₽×
builtin: builtin: garmon.analiz.pvd HarmonicAnalysis1	
Properties Information	
Properties	₽×
Pelete	?
Search (use Esc to clear text)	3
Properties (F 🕥 🗈 🗭	î
Block ID 1	~


In the section Row Parameters for the X-axis that appears, select only the Displacement Amplitude Z (Harmonic Analysis).

	Properties Information	
Pipeline Browser 🗗 🗙	Properties &	x
builtin:		_
garmon.analiz.pvd	Papply Reset Collecter 2	<u>}</u>
HarmonicAnalysis1	Search (use Esc to clear text)	32
	Search (use Lsc to deal text)	9
	Series Parameters /	^
	Variable	
	Acceleration Amplitude X (Harmonic Ani	
	Acceleration Amplitude Y (Harmonic Ani	
Properties Information	Acceleration Amplitude Z (Harmonic Ani	
Properties & X	Acceleration Phase X (Harmonic Analysis	
Papply Reset Celete ?	Acceleration Phase Y (Harmonic Analysis	
Search (use Esc to clear text)	Acceleration Phase Z (Harmonic Analysis	
	Acceleration Rotation Amplitude X (Harn	
📼 Display (XYChai 🔯 🖍	Acceleration Rotation Amplitude Y (Harn	
Composite Data Set Index	Acceleration Rotation Amplitude Z (Harn	
Multi-block Dataset	Acceleration Rotation Phase X (Harmonic	
Harmonic Analysis	Acceleration Rotation Phase Y (Harmonic	
Attribute	Acceleration Rotation Phase Z (Harmonic	
Type Point Data	Displacement Amplitude X (Harmonic Ar	
X Axis Parameters	Displacement Amplitude Y (Harmonic Ar	
Use Index For XAxis	Displacement Amplitude Z (Harmonic Ar	
X Array Name Frequency	< >	Ŧ

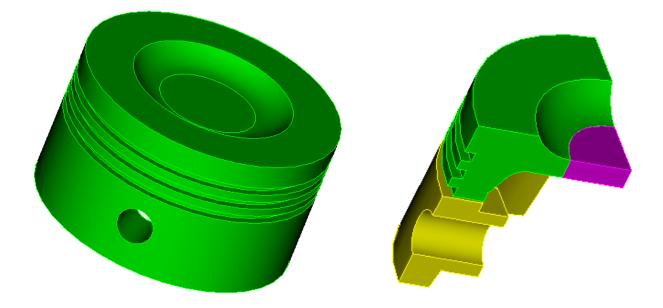
On the right side of the screen received the desired graph.

Hover over one of the peaks, then the pop-up text will display the amplitude value corresponding to the frequency.

Using the console interface

Geometry generation, mesh generation, setting boundary conditions and materials can be performed using the console interface. Below is the program code that allows you to perform the steps of the above manual, you only need to **specify the full path and name of the saved file**.

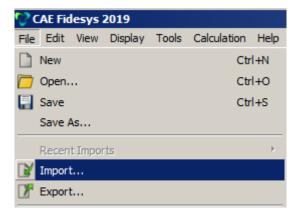
```
reset
#{L=2.5}
create curve location 0 0 0 direction 0 1 0 length {L} \#1
create curve location 0 {L} 0 direction 0 1 0 length {L} #2
create curve location 0 {L} 0 direction 1 0 0 length {L} #3
create curve location {L} {L} 0 direction 1 0 0 length {L} #4
create curve location {2*L} 0 0 direction 0 1 0 length {L} #5
create curve location {2*L} {L} 0 direction 0 1 0 length {L} #6
merge all
curve all size 0.1
curve all scheme equal
mesh curve all
create material 1
modify material 1 name "material1"
modify material 1 set property 'DENSITY' value 7800
modify material 1 set property 'POISSON' value 0.3
modify material 1 set property 'MODULUS' value 2e+11
block 1 add curve all
block 1 element beam order 1
block 1 material 'material1'
block 1 attribute count 7
block 1 attribute index 1 value 1 name 'Ellipse'
block 1 attribute index 2 value 0 name 'ey'
block 1 attribute index 3 value 0 name 'ez'
block 1 attribute index 4 value 0 name 'angle'
block 1 attribute index 5 value 1 name 'section id'
block 1 attribute index 6 value 0.1 name 'geom_b'
block 1 attribute index 7 value 0.1 name 'geom a'
```


create displacement on vertex 1 4 9 12 dof all fix create force on vertex 6 force value 1 direction nz bcdep force 1 value "harmonic(1e5,0.0, f, time)" analysis type harmonic elasticity dim3 harmonic method mode_superposition interval from 0 to 200 max_freq_num 10 frequency_step 0.5 damping structural 0.1 mass_matrix 0 stiffness_matrix 0 output nodalforce off record3d off log on vtu on0.005 calculation start path "D:/Fidesys/test.pvd"

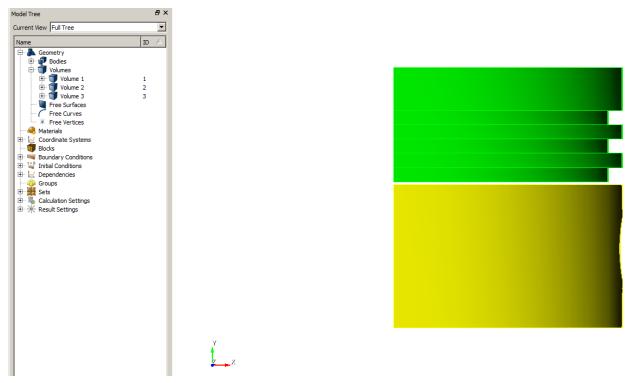
You can also run the Example_11_Harmonic_3D_Beam.jou file by selecting the journal editor on the toolbar. In the appeared window in the main menu, select **File** \rightarrow **Open** and open the required log file.

Bounded Contact Simulation

An example of the calculation of a structure consisting of several volumes that are not merged with each other is considered. There is a geometric gap between the two volumes, so instead of "gluing" the volumes, the bounded contact will be used. The model represents a quarter of the original part.



The model is fixed on the lateral faces of the symmetry conditions. The inner surface of the hole is fixed in all degrees of freedom. A pressure of 1 MPa is applied to the upper face of the part. Material parameters: Young's modulus E = 2e11 Pa, Poisson's ratio v = 0.3.


Geometry creation

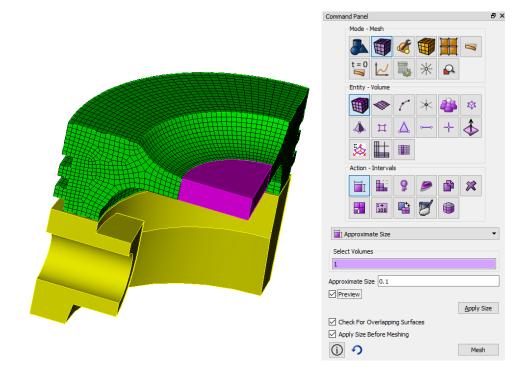
1. Import geometry

In the standard line select Menu - File - Import. Specify the path to the Geom_example_contact.stp file. In the window that appears, click Finish with all the default values of settings.

In the Tree on the left you can see three volumes into which the model is separated. All three volumes have no common surfaces.

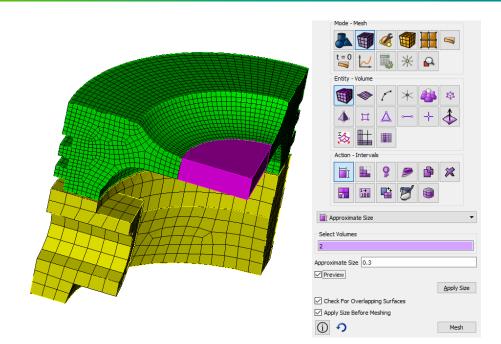
Meshing

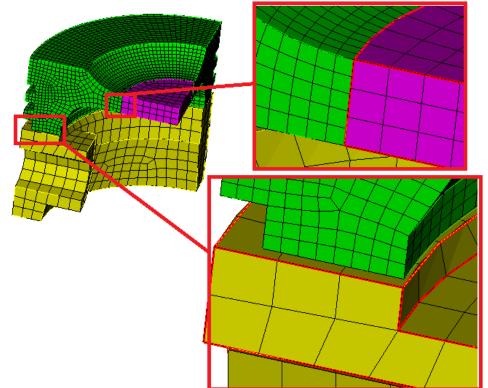
- 1. On the command panel, select the volume mesh mode (Mode Mesh, Entity Volume, Action Intervals). Specify the following parameters:
 - In the drop-down list, select: Approximate size;
 - Choice of volumes: 1;
 - Approximate size: 0.1.


Click Apply Size. Click Mesh.

- 2. On the command bar, select the volume mesh building mode (Mode **Mesh**, Entity **Volume**, Action **Intervals**). Specify the following parameters:
 - In the drop-down list, select: Approximate size;
 - Select volumes: 2;
 - Approximate size: 0.3.

Click Apply Size.

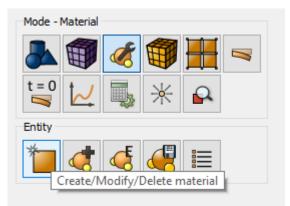

Click Mesh.


- 3. On the command panel, select the volume mesh creating mode (Mode **Mesh**, Entity **Volume**, Action **Intervals**). Specify the following parameters:
 - In the drop-down list, select: Approximate size;
 - Select volumes: 2;
 - Approximate size: 0.3.

Click Apply Size.

Click Mesh.

Thus, a non-conformal finite element mesh was created on the model.


Specifying the material and type of element

1. Create a material.

Select setting the material properties section on Command Panel (Mode – **Material**, Entity – **Materials management**).

In the Materials Management window that opens, in the second column, click on the caption Enter the name of the material and write "Material 1". Press the ENTER key.

In the left column, select Elasticity - Hooke Material. Select with the mouse the characteristic Young's modulus. Hold down the left mouse button and drag the label to Material Properties. Double-click in the Value field next to Young's modulus and enter the number 2e11.Similarly, from the Hooke Material section add the Poisson Ratio 0.3

Click **Apply**. Close the window.

Properties	Material	ID	Imported material	
🕀 Elasticity	material1	1	Steel	
🕀 General	Enter the name of t	he material	Steel GOST 4543-7	1 (Russia)
🗄 Strength			Rubber	
🗉 Plasticity			Kevlar	
Hardening			- Titanium	
- Thermal			Soil	
Geomechanic				
Preload				
		1		
	Properties Sigma(epsilon)		[
	Material properties		Value	
	🖻 material1			
	🗄 Hook Material			
	···· Young's mode	ulus	2e+11	
	Poisson ratio		0.3	
<u></u>				Apply

2. Create a block of the one type of material.

On the command panel, select Mode - **Blocks**, Entity - **Block**, Action - **Add**. Set the following parameters:

- Block ID: 1;
- Entity list: Volume;
- Entity ID(s): all.


Click **Apply**.

3. Assign the material to the block.

On the command bar, select Mode - **Blocks**, Entity - **Block**, Action - **Set Material**. Set the following parameters:

- Block ID (s): 1;
- Available materials: material1.

Click **Apply**.

Apply

	Mode -	Blocks							
			Ś			7			
	t = 0		5	✻	Q				
	Entity -	Block							
		Ι	\diamondsuit	\star	ğ				
	Action -	Element	types						
	*				8	1→ 100			
					×				
Block	ID(s) 1								
Category Solid									
Order	1						-		
i	(j) Apply								

4. Assign an element type.

 (\mathbf{i})

On the command panel, select the mode for setting material properties (Mode - **Blocks**, Entity - **Block**, Action - **Element types**). Set the following parameters:

- Block ID (s): 1 or all;
- Category: Solid;
- Order: 1.

Click **Apply**.

Setting boundary conditions

1. Fix the sides of the part with the condition of symmetry.

On the command panel, select Mode - **Boundary Conditions**, Entity - **Displacement**, Action - **Create**. Set the following parameters:

- System assignment ID;
- Entity list: Surface;
- Entity ID(s): 2 27 38 (or select the vertices with the mouse while holding down the Ctrl key);
- Degrees of freedom: X-Translation Disp;
- DOF Value: 0 (can not fill).

Click **Apply**.

On the command panel, select Mode - **Boundary Conditions**, Entity - **Displacement**, Action - **Create**. Set the following parameters:

- System assignment ID;
- Entity list: Surface;
- Entity ID(s): 5 22 23 36 (or select the vertices with the mouse by pressing the Ctrl key);
- Degrees of freedom: Z-Translation Disp;
- DOF Value: 0 (can not fill).
- Click Apply.

2. Fix the hole.

On the command panel, select Mode - **Boundary Conditions**, Entity - **Displacement**, Action - **Create**. Set the following parameters:

- System assignment ID;
- Entity list: surface;
- Entity ID(s): 30 (or select the vertices with the mouse while holding down the Ctrl key);
- Degrees of freedom: All;
- DOF Value: 0 (can not fill).

Click Apply.

Mode - Boundary Conditions							
		K					
t = 0		.	✻	Q			
Entity -	Displace	ment					
7	+	\amalg^q	₽₽	₿	歳		
	⇒	$\stackrel{a}{\Rightarrow}$	Ш	-	- <mark>-</mark>		
8	<u>99</u>		F				
Action - Create							
*	\mathbf{P}			×			

ID/Name								
O New ID								
O Name								
System Assigned ID								
Entity List								
O Nodeset	O Volume	Surface	O Curve					
O Hex	🔿 Tet	O Face	O Vertex					
🔿 Tri	🔘 Edge	O Node						
Entity ID(s) 2 27 28								
Degrees Of F	reedom							
X-Translat	ion Disp	X-Rotation	n Disp					
Y-Translation Disp		Y-Rotation	n Disp					
Z-Translat	ion Disp	Z-Rotation	n Disp					
DOF Value 0								
Specify Co	mbination							
 Overwrite 		O Average						
 Smallest 		🔘 Largest						
\bigcirc			Apply					

3. Apply pressure to the top face.

On the command panel, select Mode - **Boundary conditions**, Entity - **Pressure**, Action - **Create**. Set the following parameters:

- System assignment ID;
- Entity list: surface;
- Entity ID(s): 17 37;
- Magnitude Value: 1e6 (the exponential type of the number is supported using the Latin letter "e").

Click **Apply**.

4. Set the contact condition.

On the command panel, select Mode - **Boundary Conditions**, Entity - **Contact**, Action - **Create**. Set the following parameters:

- Auto selection;
- Entity List: Global;
- Friction Value: 0;
- Offset: 0.055;
- Type: Tied;
- Method: Auto.

Click Apply.

In the Tree on the left, find the **Boundary Conditions** - **Constraints** - **Contacts**. Automatically identified two contact pairs.

3					1
t = 0	2	۵,	⋇	•	
Entity -	Pressure				
1	<u>+</u>	₩ ^q		₿g	俞
些	⇒	₫	Ш	-	-
8	22	\$	8		
Action -	Create				

Auto selection	•
Geometry entity:	
Entity List	
Global	•
Offset	0.0055
Ignore Initial Overlap	
Туре	Tied 🔻
Friction Value	0.0
Method	Auto 🔻
Set detection settings	
(i)	Apply

Run calculation

1. Set the type of problem you want to solve.

On the command panel, select the calculation settings mode (Mode - **Calculation Settings** - **Static** - **General**). Set the following calculation parameters:

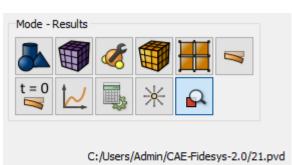
- Dimension: 3D;
- Model: Elasticity.

Click Apply.

- 2. In the window that appears, select the directory in which the result will be saved, and enter the file name.
- 3. In the case of a successful calculation, the console displays the message: "*Calculation finished successfully at* <date> <time>".

	Mode -	Calculatio	on Settir	ngs			
			Ś				
	t = 0		L	✻	Q		
	Calcula	tion settir	ngs - Sta	atic			
	↓ ↑				₽		
	Anolesawa						
	Static -	General					
	<i>:</i>		2				
Dimen	isions:				3D		•
🗌 Us	e MPI						
Mod	lel						
\checkmark	Elasticity						
	🗌 Plas	sticity					
	Nor	nlinear ge	ometry				
Heat transfer							
Pore Fluid Transfer							
	t load st	eps coun	t				
		ar solver					
$\overline{\bigcirc}$	1		00000		ſ		
U					l	Apply	/
					Sta	art Calcula	ation

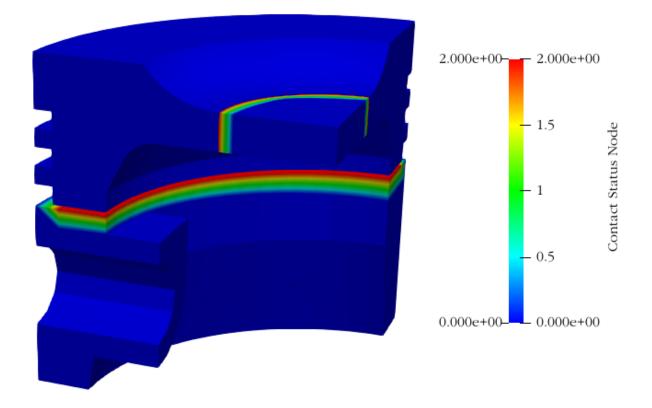
Results analysis

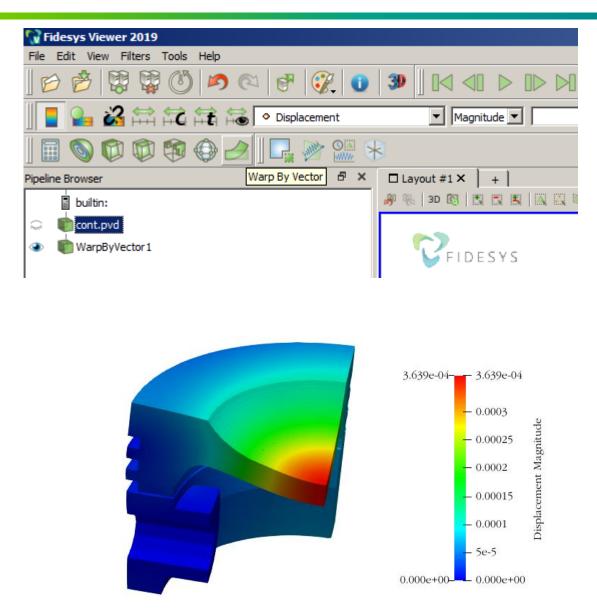

1. Open the results file.

This can be done in two ways:

- Press Ctrl + E.
- From the main menu, select **Results**. Click **Open** Last Result.

The *Fidesys Viewer* window will appear, in which you can view the calculation results.


2. Display the Contact Status Node for the model.


Open	im	DOW	window	
open	111	new	WILLOW	

Open last result

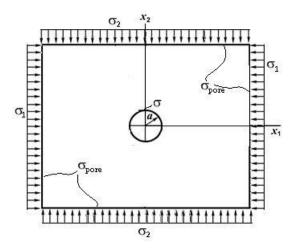
3. Display displacements for the deformed view of the model. Specify the scale of 2000.

Using the console interface

Geometry generation, mesh generation, setting boundary conditions and materials can be performed using the console interface. Below is the program code that allows you to perform the steps of the above manual, you only need to **specify the full path and name of the saved file**.

```
reset
import step "D:/Fidesys/Geom_example_contact.stp" heal
volume 1 size 0.1
mesh volume 1
volume 2 size 0.3
mesh volume 2
volume 3 size 0.2
mesh volume 3
create material 1
modify material 1 name 'material1'
modify material 1 set property 'MODULUS' value 2e+11
modify material 1 set property 'POISSON' value 0.3
block 1 add volume all
block 1 material 1
block 1 element solid
```

```
create displacement on surface 2 27 38 dof 1 fix
create displacement on surface 5 22 23 36 dof 3 fix
create displacement on surface 30 dof all fix
create pressure on surface 17 37 magnitude 1e6
create contact autoselect friction 0.0 offset 0.055 ignore_overlap off type tied method
auto
analysis type static elasticity dim3
calculation start path "D:/Fidesys/test.pvd"
```

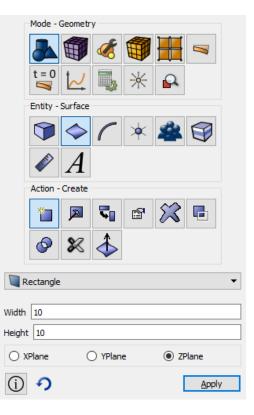


You can also run the Example_12_Contact_3D.jou file by selecting the journal editor on the toolbar. In the appeared window in the main menu, select **File** \rightarrow **Open** and open the required log file.

Change of pressure in well

The problem of finding the plastic zone around the well in the dynamics, taking into account the pore pressure until instability appears in the form of plastic deformation bands, is solved.

A square plate of considerable width and unit thickness with a small circular hole of radius **a** in its center is subjected to all-round uniform pressures with stresses $\sigma 1$ in the direction of the X1 axis and $\sigma 2$ in the direction of the X2 axis. On the lateral faces of the depending on time pore pressure applied. There is pressure on a round hole, also depending on time.


It is required to calculate plastic zones around the well in dynamics.

Geometry creating

1. Create a surface.

On the command panel, select the mode for constructing volume geometry (Mode - **Geometry**, Entity - **Surface**, Action - **Create**). From the list of geometric primitives, select **Rectangle**. Set block sizes:

- Width: 10;
- Height: 10;
- Location: ZPlane.

2. Moving to the origin of the coordinate system

It is required to move the surface so that one of the vertices is at the origin of the coordinate system.

On the command panel, select the mode for create volume geometry (Mode - **Geometry**, Entity - **Surface**, Action - **Transform**). From the list of geometric primitives, select **Move**. Set the movement parameters:

- Select method: distance;
- X distance: 5;
- Y Distance: 5.

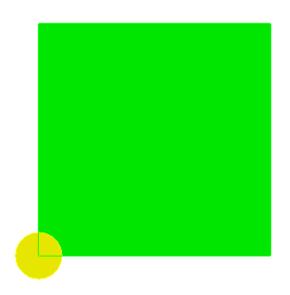
Click Apply.

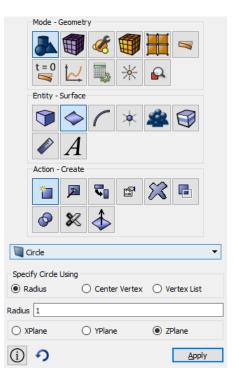
- 3. Selection of geometric entities
- 4. In the standard line we find the panel with the choice of geometric entities.

Click Select Vertices.

Mode - Geometry	
Jan 🕄 🍕	
t=0 [∠]	* 🕰
Entity - Surface	
) 🔷 (* 🛎 🕄
$\checkmark A$	
Action - Transform	
12 🔊 🖓	🖻 💢 🖬
o 🕺 🕹	•
Move	-
Move	· · ·
Surface ID(s) all	
🗹 Include Merged	
Select Method	
◯ To Coordinates	 To Entity
Distance	General Location
O In Direction Of Surface N	Normal
V Distance D	
X Distance 5	
Y Distance 5	
Z Distance	
ن	Preview Apply

Click on the left bottom vertex of the created surface and look at the obtained coordinates on the **Properties Page** on the left. Make sure that the vertex has moved to the origin.


Model Tree	ā×	
Current View Full Tree	•	
Current View Full Tree Name > Seometry Image: Second Stress Blocks > Boundary Conditions > Initial Conditions > Coroups > Sets > Calculation Settings > Kesult Settings		Y X
Properties Page		Iommand Line
Property Value V General Type Vertex ID 3 Name Vertex 3 IDless Signatur Vertex (at Vertex (at Vertex (at Vertex (string)) Is Merged No Is Virtual No	• t000	Fidesys> create surface rectangle width 10 height 10 zplane Fidesys> more surface 1 x 5 y 5 include_merged Moved Bary 1: x 5.000000e+00 y 5.000000e+00 z 0.000000e+00 Fidesys> Fidesys> Current entity is Vertex 3. Current entity is Vertex 3. Fidesys>


5. Creating a circular hole

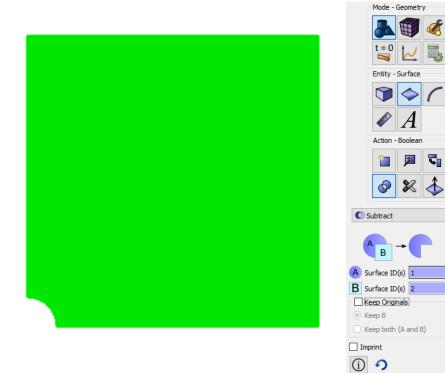
It is required to make a cut in the plate using an auxiliary circle.

On the command panel, select the mode for creating volume geometry (Mode - **Geometry**, Entity - **Surface**, Action - **Create**). From the list of geometric primitives, select **Circle**. Set block sizes:

- Radius: 1;
- Location: Zplane.

6. On the command panel, select the mode for creating volume geometry (Mode - **Geometry**, Entity - **Surface**, Action - **Boolean**). From the list of logical operations, select **Subtract**. Set the parameters of the logical operation:

Ж

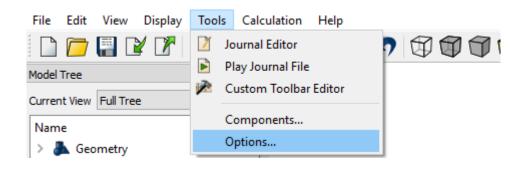

 \mathbf{x}

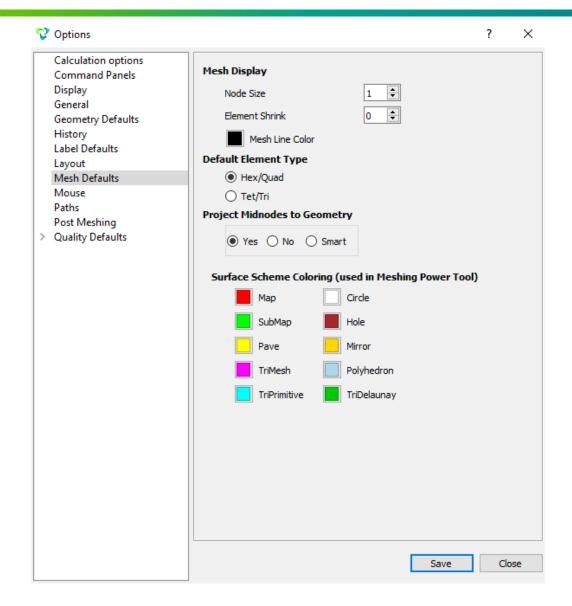
🖻 💢 🖬

Preview Apply

- A surface ID(s): 1;
- B surface ID(s): 2;

Click Apply.




Meshing

1. Changing the mesh settings

To automatically create a quadrilateral mesh, we will change the default settings. In the standard line, select **Tools** - **Settings**. In the opened window in the left column select the **Mesh Defaults**. On the **Default Element Type** panel we select the **Hex / Quad**.

Click Save.

- 2. In the command panel, select the mesh generation mode on curves (Mode **Mesh**, Entity C**urve**, Action **Mesh**). Specify the degree of reducing mesh:
 - Select curves: 7;
 - Select the mesh generation method: Bias;
 - Select the mesh generation method: Intervals & Bias;
 - Interval count: 70;
 - Bias Factor: 1.04;
 - Start vertex ID: 7 (left vertex on the given curve).

Click Apply Size.

	Mode - I	Mesh					
			Ś				
	t = 0		5	*	Q		
	Entity -	Curve					
			1	\star	4	\$ 2	
		Ħ	۵		+	\diamondsuit	
	2						
	Action -	Mesh					
		8	ø	ß	×		
	1→ 100						
Selec	ct Curves						
7							
	ettings F	or Curve	12		[Get Setti	ngs
Bias							-
	/als & Bia:	s					• •
Interv	vals & Bia: Change In		ount				• •
Interv		nterval C	ount				• •
Interv	Change In	nterval C	ount				• •
Interv	Change In rval Coun	nterval C		1.04			• •
Interv	Change In rval Coun Dual Bias Factor	nterval C		1.04		1	• •
Interv	Change In rval Coun Dual Bias Factor	nterval C t 70					• •
Interv Inter Bias	Change In rval Coun Dual Bias Factor	nterval C t 70		1 1			• •
Interv Inter Bias	Change In rval Coun Dual Bias Factor I I Factor	nterval C t 70		1 1	I		
Interv Inter Bias Sias	Change In rval Coun Dual Bias Factor I I Factor	t 70		1 1 1 1	1		• •
Interv Inter Bias Sias	Change In rval Coun Dual Bias Factor I I Factor	terval C t 70		1 1 1 1	1	1	
Interv Inter Bias Sias	Change In rval Coun Dual Bias Factor Factor Factor t Vertex I	terval C t 70		· · ·	1	ı ı	>>>
Interv C C Inter Bias Start Start	Change In rval Coun Dual Bias Factor Factor Factor t Vertex I	terval C t 70		· · ·	1	1	>>>
Interv C C Inter Bias Start Start	Change In rval Coun Dual Bias Factor Factor Factor t Vertex I	terval C t 70		· · ·	1	ı ı	>>

- 4. On the command panel, select the mesh generation mode on curves (Mode **Mesh**, Entity Curve, Action **Mesh**). Specify the degree of reducing mesh:
 - Select curves: 8;
 - Select the mesh generation method: Bias;
 - Select the mesh generation method: Intervals & Bias;
 - Bias Factor: 70;
 - Bias Factor: 1.04;
 - Start vertex ID: 6 (lower vertex on this curve).

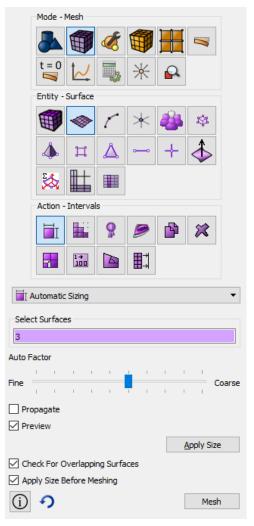
Click Apply Size.

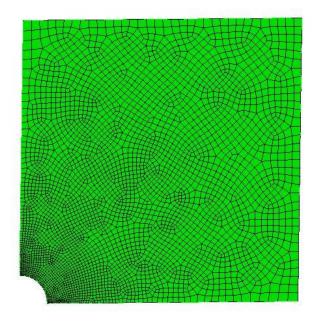
	Mode - I	Mesh					
			¢				
	t = 0			✻	Ω		
	Entity -	Curve					
			1	*	8	\$	
	\mathbf{A}	Ħ	٨		+	\diamondsuit	
	3						
	Action -	Mesh					
		8	ø	ß	×		
	1+ 100						
Selec	t Curves						
8							
Get Se	ettings Fo	or Curve	12			Get Set	tings
Bias							-
Interv	als & Bia:	s					-
⊡ c	hange In	iterval C	ount				
Inter	val Coun	t 70					
	ual Bias						
Bias F	Factor		[1.04			
<< -	I I.	1	1	1	1 1	1	>>
		1.1	.	I.	i i	1	<u> </u>
	Factor						
<< -	I I	-	1		1 1	1	>>
	1 1		' ' [-	1 1	1	
Start	Vertex I	U	l	6			
					Modify C	urve Sens	e /
∠ Pre	view						
						Apply	Size
	oly Size B	efore Me	eshing			114	
(j)	Ð					Me	sh

CAE Fidesys – User Guide (version 2.0)

- 5. In the command panel, select the mesh generation module on curves (Mode **Mesh**, Entity Curve, Action **Mesh**). Specify the degree of reducing mesh:
 - Curve selection: 6 1 4 (separated by spaces);
 - Select the mesh generation method: Equal;
 - Set the flag: Interval;
 - Indicate the number of intervals: 34.

Click Apply Size.


Click Mesh.


Entity - Curve -\$**1** \mathbf{A} Ħ 蠡 Action - Mesh 8 ß × -1 1.→ 100 Select Curves 8 Get Settings Get Settings For Curve 12 Equal 🔿 Approximate Size 🔿 Auto Size Interval Interval 34

Mode - Mesh

t = 0

- 6. On the command panel, select the surface mesh generation mode (Mode **Mesh**, Entity **Surface**, Action **Intervals**).
 - Automatic size;
 - Surface selection: 3.

Specifying the material and type of element

1. Create a material.

On the command panel, select the mode for setting material properties (Mode -Material, Entity -

Materials management). In the Material Management widget that opens, in the middle column specify the name of the material material. In the properties column, open the **Elasticity** list and drag the name **Hooke Material** into the Material Properties column.

Set the following parameters:

- Young's modulus: 1e9;
- Poisson's ratio: 0.25.

- In the left column, go to the General section and select **Density**. Drag the mouse into the right column and specify the value 2650.
 - Density: 2650.

In the left column, go to the **Plasticity** section and select the **Drucker-Prager Second Strength Criterion**.

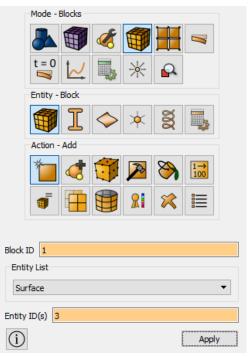
- Cohesion: 2e6;
- Internal friction angle: 20;
- Dilatancy angle: 0.001.

In the left column go to the section Geomechanics - Biot Isotropic model.

- Porosity: 0.25;
- Permeability: 1e-12;

- Fluid's viscosity: 0.005;
- Biot alpha: 0.8;
- Fluid's bulk modulus: 1e9.

Click Apply.


Properties	^ Material	ID	Imported material	
> Orthotropic Material	material	1	Steel	
> Transversely Isotropic Material	Enter the name of the	material	Steel GOST 4543-71 (Russia)	
> General			Rubber	
> Strength			Kevlar	
Plasticity			Titanium	
> Mises Criterion			Soil	
> First Drucker-Prager Criterion	Properties Sigma(epsilon)			
 Second Drucker-Prager Criterion 	Material properties		Value	
Cohesion	 Hook Material 			
Internal friction angle	Young's modu	lus	1e+9	
Dilatancy angle	Poisson ratio		0.25	
> Hardening	 General 			
> Thermal	Density		2650	
✓ Geomechanic	✓ Second Drucker-I	Prager Criterion		
 Biot Isotropic model 	Cohesion		2e+6	
Porosity	Internal frictio	n angle	20	
Permeability	Dilatancy ang	e	0.001	
Fluid's viscosity	✓ Biot Isotropic mo	del		
Biot alpha	Porosity		0.25	
Fluid's bulk modulus	Permeability		1e-12	
Fluid's density	Fluid's viscosit	у	0.005	
> Biot Transversely Isotropic model	Biot alpha		0.8	
> Biot Orthotropic model	Fluid's bulk me	odulus	1e+9	
> Preload	¥			

2. Create a block of the one type of material.

On the command panel, select the mode for setting material properties (Mode - **Blocks**, Entity - **Block**, Action - **Add**). Set the following parameters:

- Block ID: 1;
- Entity List: Surface;
- Entity ID(s): 3.

```
Click Apply.
```


3. Assign the material to the block.

On the command panel, select the mode for setting material properties (Mode - **Blocks**, Entity - **Block**, Action - **Set Material**). Set the following parameters:

- Block ID (s): 1;
- Available material: material1.

Click Apply.

Mode -	Blocks				
		4			
t = 0	\sim		*	Q	
Entity -	Block				
	Ι	\diamondsuit	\star	ğ	
Action -	Element	types			
*	(T	Þ	8	1→ 100
			8	×	

4. Assign an element type.

On the command panel, select the mode for setting material properties (Mode - **Blocks**, Entity - **Block**, Action - **Element types**). Set the following parameters:

- Block ID (s): 1;
- Category: Plane;
- Order: 2.

Block ID (s)) 1	
Category	Plane	-
Order	2	
(j)		Apply

Setting boundary conditions

1. Apply pressure to the right side curve.

On the command panel, select Mode - **Boundary conditions**, Entity - **Pressure**, Action - **Create**. Set the following parameters:

- System Assignet ID;
- Pressure Entity List: Curve;
- Entity ID(s): 4;
- Magnitude Value: 28e6 (the exponential type of number is supported using the Latin letter "e").

Click Apply.

2. Apply pressure to the right side curve.

On the command panel, select Mode - **Boundary conditions**, Entity - **Pressure**, Action - **Create**. Set the following parameters:

- System Assignet ID;
- Pressure Entity List: Curve;
- Entity ID(s): 1;
- Magnitude Value: 32e6 (the exponential type of number is supported using the Latin letter "e").

Click Apply.

3. Set the time-dependent load on the model's notch.

On the command panel, select Mode - **Boundary conditions**, Entity - **Pressure**, Action - **Create**. Set the following parameters:

- System Assignet ID;
- Pressure Entity List: Curve;
- Entity ID(s): 6;
- Magnitude Value: 0;

Click Apply.

Tressure Entry Els	•		
O Surface	Curve	O Sideset	
🔿 Tri	O Face/Quad	🔘 Edge	
Entity ID(s) 4			
Magnitude Value 28	3E6		
Interpret Value	As		
Use Pure Press	ures		
O Use Total Force	2		
Apply Pressure	On		
• Тор			
O Bottom			
(i) 🤨		<u>A</u> pply	

		Ś			
t = 0	$\mathbf{\mathbf{k}}$		棠	Q	
Entity -	Pressure	2			
1	+	H_d	⊞	$\downarrow g$	歳
$\stackrel{\underline{\nu}}{\Rightarrow}$	⇒	⇒	Ш	-	• <mark>•</mark> •••
8	<u>99</u>		F		
Action -	Create				
*	P			枀	

Mode - Boundary Conditions

ID/Name
O New ID
Name

System Assigned ID
Pressure Entity List

On the command panel, select Mode - **Boundary conditions**, Entity - **Set time and/or coordinate BC dependency**.

 \times

In the appeared **BC Dependencies** window set the following parameters:

- BC name: Pressure 3;
- Select the Formula flag: Custom;
- In the field below enter (25e6) -0.6e6 * t / 3600.

😯 BC Dependency

			E					
	BC Name	ID	Formula Ta	able Plot				
Pressure		1	Custom 🔻					
Pressure		2	(25e6)-0.6	5e6*t/3600				
Pressure		3				*	,	~
			Clear	+	-	•	1	
			sin	COS	tan	sqrt	if(A,B,C)	()
			asin	acos	atan	exp	log	log 10
			sinh	cosh	tanh	abs	ceil	floor
			(temperature),	w (frequency)			e), z (z-coordina	
			(\mathbf{i})					Apply

Click Apply.

4. Specify symmetric fixing.

On the command panel, select Mode - **Boundary Conditions**, Entity - **Displacement**, Action - **Create**. Set the following parameters:

- System Assignet ID;
- Entity List: Curve;
- Entity ID(s): 7;
- Degrees of freedom: Y-Translation Disp;

Click Apply.

Similarly, set the second fixture for the line 8.

Mode - I	Boundar	y Conditi	ons		
		K			1
t = 0	\sim		✻	Q	
Entity -	Displace	ment			
	+	H^{q}		↓ <i>g</i>	歳
$\stackrel{\underline{\nu}}{\Longrightarrow}$	⇒	⇒	Ш	-	- <mark>-</mark> >
8	<u>99</u>		F		
Action -	Create				
×		•	1		

ID/Name			
O New ID			
O Name			
System As	signed ID		
Entity List			
O Nodeset	O Volume	O Surface	Ourve
Hex	🔿 Tet	O Face	○ Vertex
🔿 Tri	🔘 Edge	O Node	
Entity ID(s) 8			
Degrees Of F	reedom		
✓ X-Translat	ion Disp	X-Rotation	n Disp
Y-Translation Disp		Y-Rotation	n Disp
Z-Translation Disp		Z-Rotation	n Disp
DOF Value 0			
Specify Co	ombination		
 Overwrite 		O Average	
 Smallest 		O Largest	
			_
(i) 🔨			Apply

	Mode - I	Boundar	y Conditi	ons		
			Ś			
	t = 0	\sim		⋇	Q	
	Entity -	Displace	ment			
	1	+	H^{q}	₽₽₽	↓ <i>g</i>	歳
	<u>v</u>	⇒	$\stackrel{a}{\Rightarrow}$	Ш	-	-
	8	<u>99</u>		3		
	Action -	Create				
	Ť	2	:=		×	
ID/N	ame					
) N	ew ID					
) N	ame					

O New ID			
O Name			
System As	signed ID		
Entity List			
○ Nodeset	O Volume	O Surface	Ourve
◯ Hex	🔘 Tet	Face	O Vertex
🔿 Tri	🔘 Edge	Node	
Entity ID(s) 7			
Degrees Of F	reedom		
X-Translat	ion Disp	X-Rotation	n Disp
Y-Translation Disp		Y-Rotation	n Disp
Z-Translation Disp		Z-Rotation	n Disp
DOF Value			
Specify Co	ombination		
Overwrite		O Average	
🔘 Smallest		🔘 Largest	
(j) 🤊			<u>A</u> pply

On the command panel, select Mode - **Boundary Conditions**, Entity - **Displacement**, Action - **Create**. Set the following parameters:

- System Assignet ID;
- Entity List: Curve;
- Entity ID(s): 8;
- Degrees of freedom: X-Translation Disp;

5. Set the pore pressure.

On the command panel, select Mode - **Boundary conditions**, Entity - **Pore pressure**, Action - **Create**. Set the following parameters:

- System Assignet ID;
- Entity List: Curve;
- Entity ID(s): 1 4 (in the ID field, numbers are separated by spaces);
- DOF Value: (25e6) -0.6e6 * t / 3600.

ID/Name	
O New ID	
○ Name	
System Assigned ID	
Entity List	
Curve	•
Entity ID(s) 14	
Value (25e6) -0.6e6 * t / 3600)
(j)	Apply

Run the calculation

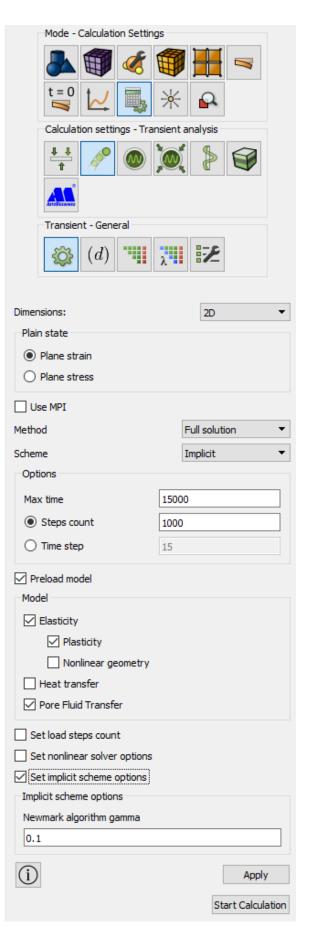
1. Set the solver parameters.

On the command panel, select the calculation settings module (Mode - **Calculation Settings**, Calculation Settings - **Transient** a**nalysis**, Transient - **General**). Set the following parameters:

- Dimension: 2D;
- Plain state: Plane strain;
- Max time: 15000;
- Steps count: 1000;

Check the **Preload model** box;

In the Models section, select the check boxes for **Elasticity**, **Plasticity**, **Pore fluid transfer**.


Select the check box for **Set implicit scheme options**.

In the field Newmark algorithm gamma, enter 0.1.

Click Apply.

Click Start calculation.

- 2. In the window that appears, select the directory in which the result will be saved, and enter the file name.
- 3. In case of a successful calculation, the console will display the message: "*Calculation finished successfully at <date> <time>*".

Results analysis

- 1. Open the file with the results. This can be done in three ways.
 - Press Ctrl + E.
 - From the main menu, select Calculation \rightarrow Results. Click Open Last Result.

Mode - Results					
J.					
t=0		*	Ω		
	C:/Users/	/Admin/C in new v		ys-2.0/2	2.pvd

Open last result

View the calculation results in the *Fidesys Viewer* window.

C

To automatically apply changes to all filters, click the corresponding button **Apply changes to parameters automatically** on the command bar.

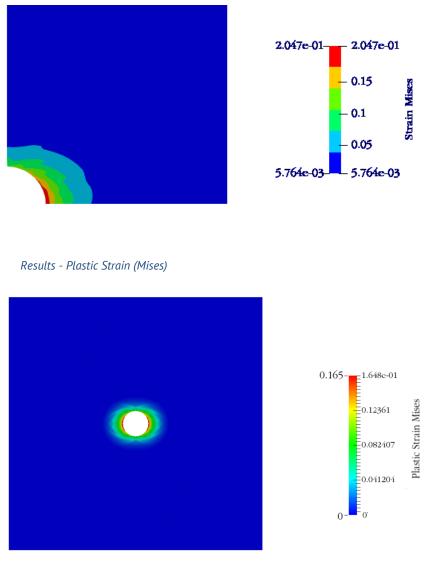
Find in the standard line	, the Edit color map icon. 🞴
	Color Discretization
	✓ Discretize
	Number Of Table

Stress

On the Color discretization panel, in the **Number of table values** field, set the value to **6**.

In the top pane, select the calculation result data to display. From the first drop-down list, select **Stress**, and from the second - **Mises**.

The results of the Mises Stress are presented below (the default results are for the last step of the calculation at the time point of 150000 s)

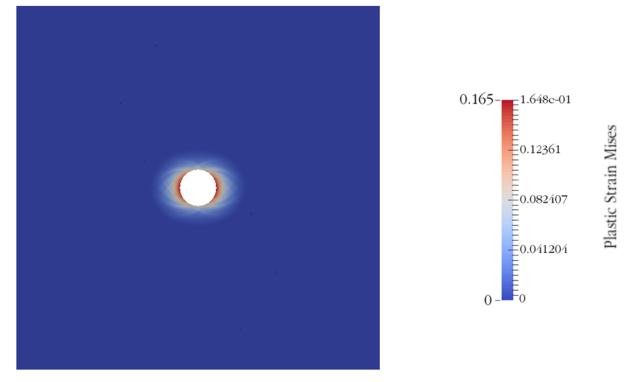

Mises

•

2.546e+07 2.546e+07
- 2e+7
— 1.5e+7
- 1e+7 5.764e+06 5.764e+06
5./04e+005./04e+00

Results - Mises Stress

Similarly, we will display the remaining results.

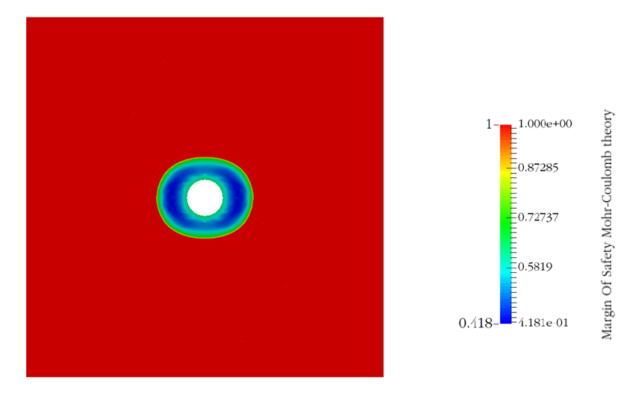


Results - Plastic strain on a full plate

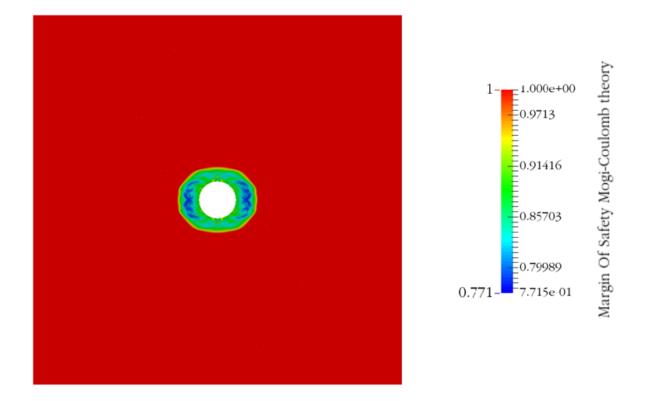
Complete the model and consider plastic deformations on the full plate. Use the **Filter** - **Alphabetical** - **Flip**. On the property page, in the **Plane** field, indicate **X**. Then we apply the filter **Flip** again to this filter, but in the **Plane** field, we specify **Y**.

On another color scheme, the kind distribution of plastic strains may be more pronounced.

?



Results - Plastic strain on the full plate (another color scheme)


Estimate the safety margin

In the standard line, select Filters \rightarrow Alphabetical Index \rightarrow Safety Factor.

Select the fields to display on the model - Safety Factor and Coulomb-More Theory.

The result of the calculation of the safety factor according to the theory of Coulomb-More

The result of the calculation of the safety factor according to the theory of Mogi- Coulomb

Thus, the calculation of the plastic zone around the well was made in dynamics, taking into account the pore pressure until instability appears in the form of plastic deformation bands.

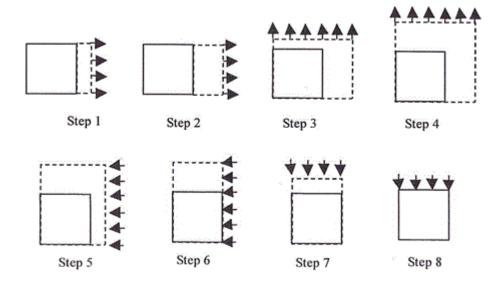
Using the console interface

Geometry creation, mesh generation, setting boundary conditions and materials can be performed using the console interface. Below is the program code that allows performing the steps of the above manual, you need only to **specify the full path and name of the saved file**.

```
reset
set node constraint on
create surface rectangle width 10 height 10 zplane
move surface 1 x 5 y 5
create surface circle radius 1 zplane
subtract body 2 from body 1
curve 7 interval 70
curve 7 scheme bias factor 1.04 start vertex 7
mesh curve 7
curve 8 interval 70
curve 8 scheme bias factor 1.04 start vertex 6
mesh curve 8
curve 6 interval 34
curve 1 4 interval 34
mesh curve 1 4 6
mesh surface all
create material 1
modify material 1 name 'material'
modify material 1 set property 'MODULUS' value 1e+09
modify material 1 set property 'POISSON' value 0.25
modify material 1 set property 'DENSITY' value 2650
```

CAE Fidesys – User Guide (version 2.0)

```
modify material 1 set property 'COHESION' value 2e+06
modify material 1 set property 'INT_FRICTION_ANGLE' value 20
modify material 1 set property 'DILATANCY_ANGLE' value 0.0001
modify material 1 set property 'BIOT_ALPHA' value 0.8
modify material 1 set property 'POROSITY' value 0.25
modify material 1 set property 'PERMEABILITY' value 1e-12
modify material 1 set property 'FLUID VISCOCITY' value 0.005
modify material 1 set property 'FLUID_BULK_MODULUS' value 1e9
block 1 add surface all
block 1 element type quad8
block 1 material 'material'
create pressure on curve 4 magnitude 28e6
create pressure on curve 1 magnitude 32e6
create pressure on curve 6 magnitude 0
bcdep pressure 3 value '(25e6)-0.6e6*t/3600'
create displacement on curve 7 dof 2 fix 0
create displacement on curve 8 dof 1 fix 0
create porepressure on curve 1 4 value 25e6
create formula 1 '(25e6)-0.6e6*t/3600'
create porepressure on curve 6 formula 1
analysis type dynamic elasticity plasticity porefluidtrans dim2 planestrain preload on
dynamic method full_solution scheme implicit maxtime 150000 timestep 1000 newmark_gamma
0.1
nonlinearopts maxiters 2000 minloadsteps 1 maxloadsteps 10000000 tolerance 1e-4 targetiter
5
calculation start path 'D:\Kirsch_pore.pvd'
```



You can also run the Example_13_Plasticity_2D.jou file by selecting the journal editor on the toolbar. In the appeared window in the main menu, select **File** \rightarrow **Open** and open the required log file.

The loading history of the elastic-plastic plate

Hinton E. Fundamental Tests for Two and Three-dimensional, Small Strain, Elastoplastic Finite Element Analysis / Emest Hinton, M.H. Ezatt. - NAFEMS, 1987.

The problem of tension-compression of a square plate is solved. Material parameters: $E = 250e3 \text{ N} / \text{mm}^2$, v = 0.25, yield strength c = 5 N / mm². The model is meshed into one finite element. The left and bottom sides are fixed perpendicularly. The boundary conditions are presented in the figure below:

Geometry creating

1. Create a square plate.

On the command panel, select the mode for creating volume geometry (Mode - **Geometry**, Entity - **Surface**, Action - **Create**). From the list of geometric primitives, select **Rectangle**. Set block sizes:

- Width: 1;
- Location: Zplane.

Re	ectangle		•
Width	1		
Height	(Option	nal)	
© XF	lane	YPlane	ZPlane
í	う		Apply

2. Move the surface to the origin of CS.

On the command panel, select the mode for creating volume geometry (Mode - **Geometry**, Entity - **Surface**, Action - **Transform**). From the list of possible transformations, select **Move**. Set the parameters:

- Surface ID(s): 1;
- Including Merged: uncheck;
- Select method: Distance;
- X Distance: 0.5;
- Y Distance: 0.5.

Click **Apply**.

Thus, the lower left corner of the plate has moved to the origin of CS.

Move			•
Surface ID((s) 1		
Include	Merged		
Select Me	thod		
🔘 To Co	oordinates	🔘 To Er	ntity
Oista	nce	Gene	eral Location
🔘 In Dir	ection Of Su	urface Norm	al
(Distance	0.5		
/ Distance	0.5		
Z Distance			
(j) 🤇		review	Apply

Meshing

- On the command panel, select the meshing mode on the curves (Mode - Mesh, Entity - Curve, Action - Mesh). Specify the degree of refining mesh:
 - Select Curves: all;
 - Select the meshing method: Equal;
 - Select the meshing options: Interval;
 - Interval: 1.

Click Apply Size.

Click Mesh.

Select Curves	
all	
Settings For Curve	Get Settings
Equal	•
Approximate Size Auto Size	• Interval
Interval 1	
Preview	
	Apply Size
Apply Size Before Meshing	
(i) 🕗	Mesh

- 2. On the command panel, select the surface meshing mode (Mode **Mesh**, Entity **Surface**, Action **Mesh**):
 - Select the mesh scheme: Automatically Calculate;
 - Select Surfaces: all.

Click Apply Scheme.

Automatically Calculate	•
Select Surfaces	
all	
<u>()</u>	Apply Scheme
Check For Overlapping Surfaces	
Apply Scheme Before Meshing	
Scheme: Default	Mesh

Specifying the material and element type

1. Create material

On the command panel, select the mode for setting material properties (Mode - **Material**, Entity - **Materials Management**). Specify the name of the material Material 1. Drag the Hooke Material inscription from the left column into the Material Properties column. Set the following parameters:

- Young's modulus: 250e3;
- Poisson ratio: 0.25;

In the window on the left, go to the section Plasticity – Mises Criterion. Drag the Yield strength feature into the Material Properties window. Enter value:

• Yield strength: 5.

Properties	Material	ID	Imported material
 Elasticity Hook Material Mooney-Rivlin Material Blatz-Ko Material Murnaghan Material Orthotropic Material Transversely Isotropic Material General Strength 	Material 1 Enter the name of the ma	1	Steel Steel GOST 4543-71 (Russia) Rubber Kevlar Titanium Soil
 Plasticity Mises Criterion First Drucker-Prager Criterion Second Drucker-Prager Criterion Hardening Thermal Geomechanic Preload 	Material properties Material 1 Hook Material Young's modulus Poisson ratio Mises Criterion Yield strength		Value 250000 0.25 5
হ			Apply

Click **Apply**.

2. Create a block of the one type of material.

On the command panel, select the mode for setting material properties (Mode - **Blocks**, Entity - **Block**, Action - **Add**). Set the following parameters:

- Block ID: 1;
- Entity list: Surface;
- Entity ID(s): 1 (or by command all).

Block ID 1	
Entity List	
Surface	▼
Entity ID(s) 1	
í	Apply

3. Assign Material to Block

On the command panel, select the mode for setting material properties (Mode - **Blocks**, Entity - **Block**, Action - **Set Material**). Set the following parameters:

- Block ID(s): 1;
- Select a previously created material from the list: Material 1.

Click Apply.

4. Assign an element type.

On the command panel, select the mode for setting material properties (Mode - **Blocks**, Entity - **Block**, Action - **Element types**). Set the following parameters:

- Block ID(s): 1;
- Category: Plane;
- Order: 2.

Click **Apply**.

Setting boundary conditions

1. Fix curve 3 in the Y direction.

On the command panel, select Mode - **Boundary Conditions**, Entity - **Displacement**, Action - **Create**. Set the following parameters:

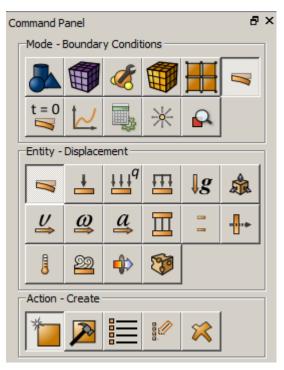
- System assigned ID;
- Entity list: Curve;
- Entity ID(s): 3;
- Degrees of freedom: Y-Translation Disp;
- DOF Value: 0.

Click **Apply**.

2. Fix curve 2 in the X direction.

On the command panel, select Mode - **Boundary Conditions**, Entity - **Displacement**, Action - **Create**. Set the following parameters:

- System assigned ID;
- Entity list: Curve;
- Entity ID(s): 2;
- Degrees of freedom: X-Translation Disp;
- DOF Value: 0.


Click Apply.

Available Materials

Block ID(s) 1

Material 1	•
(\mathbf{i})	Apply

Block ID(s)	1	
Category	Plane	•
Order	2	▲ ▼
(\mathbf{i})		Apply

3. Fix curve 4 in the X direction.

On the command panel, select Mode - **Boundary Conditions**, Entity - **Displacement**, Action - **Create**. Set the following parameters:

- System assigned ID;
- Entity list: Curve;
- Entity ID(s): 4;
- Degrees of freedom: X-Translation Disp;
- DOF Value: 0.

Click Apply.

4. Fix curve 1 in the Y direction.

On the command panel, select Mode - **Boundary Conditions**, Entity - **Displacement**, Action - **Create**. Set the following parameters:

- System assigned ID;
- Entity list: Curve;
- Entity ID(s): 1;
- Degrees of freedom: Y-Translation Disp;
- DOF Value: 0.

Click Apply.

Set the dependence of the BC on the time and / or coordinates

1. Set the dependence of the BC on the time and / or coordinates.

On the command panel, select Mode – **BC Dependency**.

Click **Displasement 3** and choose panel Table in the right side. Set the flag: Time and fill in the table as follows:

3C Dependency			-	
СТуре	BC Name ID	Formula Table Plot		
😽 Displacement	1	Time	Value	Time
isplacement 😽	2	0	0	© x
🤜 Displacement	3	1	2.5e-05	─ Y
😽 Displacement	4			🔘 Z
		2	5e-05	Temperature
		3	5e-05	Frequency
		4	5e-05	Import
		5	2.5e-05	Export
		6	0	Clear
		7	0	
		8	0	
		(i)		Apply

Click Apply.

2

2. Create table 2 for displacement 4.

Click **Displasement 4** and choose panel Table in the right side. Set the flag: Time and fill in the table as follows:

BC Dependency		-					
ВС Туре	BC Name	ID	Formula	Table	Plot		
🔫 Displacement		1		Time		Value	Time
🔫 Displacement		2	0			0	© x
Sisplacement		3				•	─ Y
疇 Displacement		4	1			0	© z
			2			0	Temperature
			3			2.5e-05	Frequency
			4			5e-05	Import
			5			5e-05	Export
			6			5e-05	Clear
			7			2.5e-05	
			8			0	
			(\mathbf{i})				Apply

Run calculation

1. Set the type of problem you want to solve.

On the command panel, select the calculation settings module (Mode - **Calculation Settings**, Calculation Settings - **Static**, Static - **General**).

Dimensions: 2D;
Plaine state: Plane straine;
Model: Elasticity, Plasticity;

- -

Load steps count: 8.

Click **Apply**.

Click Start calculation.

Dimensions:	2D 🔹
Plain state	
e Plane strain	
Plane stress	
Use MPI	
Model	
Elasticity	
Plasticity	
Nonlinear geometry	
Heat transfer	
Pore Fluid Transfer	
Set load steps count	
Load steps count 8	
Set nonlinear solver options	
\bigcirc	Apply
	Start Calculation

- 2. In the window that appears, select the directory in which the result will be saved, and enter the file name.
- 3. In the case of a successful calculation, the console displays the message: "Calculation finished successfully at" date time ".

Results analysis

1. Open the file with the results. This can be done in three ways.

Press Ctrl + E.

In the main menu, select Calculation \rightarrow Open Results. Click Open Last Result.

On the command panel, select a Results (Mode - Results). Click Open last Results.

To analyze the results, go to the *Fidesys Viewer* window.

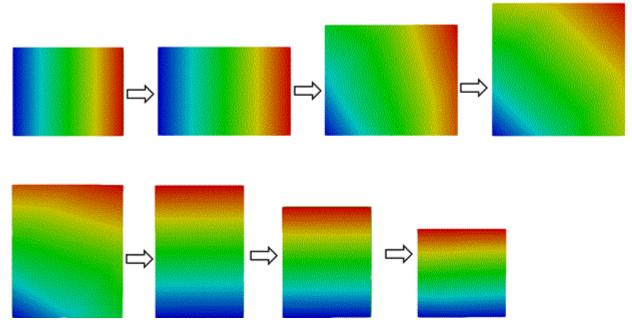
To automatically apply changes to all filters, click the corresponding button **Apply changes to parameters automatically** on the command bar.

2. Connect the filter to **Warp by vector** (Menu - Filters - Alphabetical Index - Warp by vector). Or use the corresponding button on the command bar:

For this filter, on the Properties tab, set:

- Vector: Displacement;
- Scale multiplier: 10,000;

Click Apply (unless Apply changes to parameters automatically is enabled).


3. In the top pane, select the payroll result data to display. From the first drop-down list, select **Displacement**, from the second - **Magnitude**.

Displacement

▼ Magnitude ▼

In the step view panel, set step 1. You should see the plate image in the initial state. Next, click on

Play. You should see a consistent stretching, and then compression of the plate in accordance with the loading history.

Thus, the calculation of the stress-strain state with the loading history of the plate was made.

Using the console interface

Geometry creating, meshing, setting boundary conditions and materials can be performed using the console interface. Below is the program code that allows you to perform the steps of the above manual, you only need to **specify the full path and name of the saved file**.

```
reset
create surface rectangle width 1 zplane
move surface 1 x 0.5 y 0.5
curve all interval 1
curve all scheme equal
mesh curve all
mesh surface all
create material 1
modify material 1 set property 'MODULUS' value 250e3
modify material 1 set property 'POISSON' value 0.25
modify material 1 set property 'MISES_YIELD_STRENGTH' value 5
block 1 add surface 1
block 1 material 1
block 1 element plane order 2
create displacement on curve 3 dof 2 fix 0
create displacement on curve 2 dof 1 fix 0
create table 1
modify table 1 dependency time
modify table 1 insert row 1
modify table 1 cell 1 1 value 0
modify table 1 cell 1 2 value 0.0
```

```
modify table 1 insert row 2
modify table 1 cell 2 1 value 1
modify table 1 cell 2 2 value 2.5e-5
modify table 1 insert row 3
modify table 1 cell 3 1 value 2
modify table 1 cell 3 2 value 5e-5
modify table 1 insert row 4
modify table 1 cell 4 1 value 3
modify table 1 cell 4 2 value 5e-5
modify table 1 insert row 5
modify table 1 cell 5 1 value 4
modify table 1 cell 5 2 value 5e-5
modify table 1 insert row 6
modify table 1 cell 6 1 value 5
modify table 1 cell 6 2 value 2.5e-5
modify table 1 insert row 7
modify table 1 cell 7 1 value 6
modify table 1 cell 7 2 value 0.0
modify table 1 insert row 8
modify table 1 cell 8 1 value 7
modify table 1 cell 8 2 value 0.0
modify table 1 insert row 9
modify table 1 cell 9 1 value 8
modify table 1 cell 9 2 value 0.0
create table 2
modify table 2 dependency time
modify table 2 insert row 1
modify table 2 cell 1 1 value 0
modify table 2 cell 1 2 value 0.0
modify table 2 insert row 2
modify table 2 cell 2 1 value 1
modify table 2 cell 2 2 value 0.0
modify table 2 insert row 3
modify table 2 cell 3 1 value 2
modify table 2 cell 3 2 value 0.0
modify table 2 insert row 4
modify table 2 cell 4 1 value 3
modify table 2 cell 4 2 value 2.5e-5
modify table 2 insert row 5
modify table 2 cell 5 1 value 4
modify table 2 cell 5 2 value 5e-5
modify table 2 insert row 6
modify table 2 cell 6 1 value 5
modify table 2 cell 6 2 value 5e-5
modify table 2 insert row 7
modify table 2 cell 7 1 value 6
modify table 2 cell 7 2 value 5e-5
modify table 2 insert row 8
modify table 2 cell 8 1 value 7
modify table 2 cell 8 2 value 2.5e-5
modify table 2 insert row 9
modify table 2 cell 9 1 value 8
modify table 2 cell 9 2 value 0.0
create displacement on curve 4 dof 1 fix 0
create displacement on curve 1 dof 2 fix 0
bcdep displacement 3 table 1
bcdep displacement 4 table 2
analysis type static elasticity plasticity dim2 planestrain
static steps 8
calculation start path 'D:\CAE-Fidesys-2.0\example.pvd'
```

Sequential addition of volumes in the calculation process

An example of a multi-step calculation in *CAE Fidesys* with the addition of volume in the calculation process is considered. The problem is solved in two steps of loading. At the first step, the model is a brick, one end of which is fixed along the X axis, pressure is applied along the Y axis to the other side (thus, compression occurs). At the second calculation step fixed boundary condition along the X axis for the model id deleted, instead of it a new brick is added to the same face. At the junction, the volumes merged, the opposite side of the new added volume is fixed along the X axis. At the same time, the volumes continue to compress.

Geometry creating

1. Create the first brick.

On the command panel, select the mode for creating volume geometry (Mode - **Geometry**, Entity - **Volume**, Action - **Create**). From the list of geometric primitives, select Brick. Set block sizes:

- X (width): 2;
- Y (height): 1;
- Z (depth): 0.3.

Click Apply.

2. Create a second brick.

On the command panel, select the mode for creating volume geometry (Mode - **Geometry**, Entity - **Volume**, Action - **Create**). From the list of geometric primitives, select Brick. Set block sizes:

- X (width): 1;
- Y (height): 1;
- Z (depth): 0.3.

🕤 Brick		•
Brick Dime	nsions	
X (width)	2	
Y (height)	1	
Z (depth)	0.3	
<u>(</u>)		Apply

Move	•
Volume ID(s)	1
Select Method	d
🔘 To Coordina	tes 💿 To Entity
Oistance	General Location
In Direction	Of Surface Normal
X Distance 1	
Y Distance 0.5	
Z Distance 0.15	
(i) 📀	Preview Apply

3. Move the first brick to the origin of CS.

On the command panel, select the mode for creating volume geometry (Mode - **Geometry**, Entity - **Volume**, Action - **Transform**). From the list of possible transformations, select **Move**. Set the parameters:

- Volume ID(s): 1;
- Including Merged: uncheck;
- Select Method: Distance;
- X Distance: 1;
- Y Distance: 0.5;
- Z Distance: 0.15.

Click Apply.

4. Move the second brick to the origin of CS.

On the command panel, select the mode for creating volume geometry (Mode - **Geometry**, Entity - **Volume**, Action - **Transform**). From the list of possible transformations, select **Move**. Set the parameters:

- Volume ID(s): 1;
- Including Merged: uncheck;
- Select Method: Distance;
- X Distance: 2.5;
- Y Distance: 0.5;
- Z Distance: 0.15.

Click **Apply**.

5. Merge two volumes.

On the command panel, select the mode for creating volume geometry (Mode - **Geometry**, Entity - **Volume**, Action – **Imprint and Merge**). From the list of possible transformations, select **Merge**. In the **Volume ID(s)** field, enter: all.

Action - Imprint and Merge
1 🖉 🗣 😭 🖪
Rerge Volumes 🔹
Volume ID(s) all
With
Volume ID(s)
Group Results
Set Tolerance
(i) 🕗 🛛 Apply

Meshing

- On the command panel, select the volume meshing mode (Mode -Mesh, Entity - Volume, Action - Intervals). Specify the degree of refining mesh:
 - Select Volumes: all;
 - Approximate Size: 0.1.

Click Apply Size.

Click **Mesh**.

Action - Intervals
Approximate Size
Select Volumes
all
Approximate Size 0.1
Preview
Apply Size
Check For Overlapping Surfaces
Apply Size Before Meshing
(i) 🕗 Mesh

Specifying the material and type of element

- 1. On the command panel, select the mode for setting material properties (Mode **Material**, Entity **Materials Management**). Specify the name of the material Material 1. Drag the Hooke Material inscription from the left column into the Material Properties column. Set the following parameters:
 - Young's modulus: 2.1e4;
 - Poisson's ratio: 0.3.

In the left window, go to Plasticity - Mises Criterion and drag the Yield Strength feature into the Material Properties window. Set:

• Yield Strength: 24.

Properties	Material	ID	Imported material
Elasticity	Material 1	1	Steel
 Hook Material 	Enter the name of the ma	erial	Steel GOST 4543-71 (Russia)
Young's modulus			Rubber
Poisson ratio			Kevlar
Lame modulus			Titanium
Shear modulus			Soil
Mooney-Rivlin Material			
Blatz-Ko Material			
Murnaghan Material			
Orthotropic Material			
Transversely Isotropic Material			
General			
Strength			
Plasticity	Material properties		Value
 Mises Criterion 	 Material 1 		
Yield strength	Hook Material		
First Drucker-Prager Criterion	Young's modulus		21000
Second Drucker-Prager Criterion	Poisson ratio		0.3
Hardening	Mises Criterion		
Thermal	Yield strength		24
Geomechanic			
Preload			
(j)			Apply

2. Create a block.

 \mathbf{r}

On the command panel, select the mode for setting material properties (Mode - **Blocks**, Entity - **Block**, Action - **Add**). Set the following parameters:

- Block ID: 1;
- Entity List: Volume;
- Entity ID(s): 1 2 (or the all command).

Click **Apply**.

3. Assign the material to the block.

On the command panel, select the mode for setting material properties (Mode - **Blocks**, Entity - **Block**, Action - **Set Material**). Set the following parameters:

- Block ID (s): 1;
- Select from the list the previously created material: Material 1.

Click Apply.

4. Assign element type and order.

On the command panel, select the mode for setting material properties (Mode - **Blocks**, Entity - **Block**, Action - **Element type**). Set the following parameters:

- Block ID(s): 1;
- Category: Solid;
- Order: 2.

Click Apply.

Block ID(s)	1		
Available Materials			
Material 1		•	
<u>(i)</u>	Apply		

Block ID(s)	1	
Category	Solid	•
Order	2	* *
i		Apply

250

Block ID 1				
Entity List				
Volume	•			
Entity ID(s) all				
(\mathbf{i})	Apply			

Setting boundary conditions

1. Fix the model along the Y axis.

On the command panel, select Mode - **Boundary Conditions**, Entity - **Displacement**, Action - **Create**. Set the following parameters:

- System Assigned ID;
- Entity List: Surface;
- Entity ID(s): 3 5 9 11;
- Degrees of Freedom: Y-Translation Disp;
- DOF Value: 0.

Click **Apply**.

2. Fix the model along the X axis.

On the command panel, select Mode - **Boundary Conditions**, Entity - **Displacement**, Action - **Create**. Set the following parameters:

- System Assigned ID;
- Entity List: Surface;
- Entity ID(s): 6;
- Degrees of Freedom: X-Translation Disp;
- DOF Value: 0.

Click **Apply**.

3. Fix the model along the X axis.

On the command panel, select Mode - **Boundary Conditions**, Entity - **Displacement**, Action - **Create**. Set the following parameters:

- System Assigned ID;
- Entity List: Surface;
- Entity ID(s): 12;
- Degrees of Freedom: X-Translation Disp;
- DOF Value: 0.

Click **Apply**.

4. Fix the model along the Z axis.

On the command panel, select Mode - **Boundary Conditions**, Entity - **Displacement**, Action - **Create**. Set the following parameters:

- System Assigned ID;
- Entity List: Surface;

- Entity ID(s): 1 2 7 8;
- Degrees of Freedom: Z-Translation Disp;
- DOF Value: 0.

Click Apply.

5. Apply pressure 100 MPa to the left side.

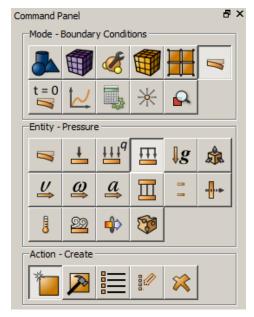
On the command panel, select Mode - **Boundary conditions**, Entity - **Pressure**, Action - **Create**. Set the following parameters:

- System Assigned ID;
- Pressure Entity List: Surface;
- Entity ID(s): 4;
- Magnitude Value: 100.

Click Apply.

Run calculation

1. Set the type of problem you want to solve.


On the command panel, select the calculation settings mode (Mode - **Calculation Settings**, Calculation Settings - **Static**, Static - **General**).

- Dimension: 3D;
- Model: Elasticity, Plasticity;
- Load steps count: 2.

Click **Apply**.

2. Go to the Settings window load steps.

Load steps count 2	
Set nonlinear solver options	
\bigcirc	Apply
	Start Calculation

Mode - Calculation Settings

Calculation settings - Static

Set step calculation – 1 for displacement 2. Boundary condition will be active in this step.

Туре	BC Narr ID	Step	Block BC
😽 Displacement	1	all	Set the active steps for the selected BC. For example "all", "1 3 5 to 10", "3 to 9".
nisplacement 😽	2	1	1
nisplacement 😽	3	all	
nisplacement 😽	4	all	
Pressure	1	all	

Click **Apply**.

3. In the setting load steps window, select block 2 and set at which calculation step this block will be active.

Settings of	loading ste	ps		? <mark>></mark>
Block Name	ID	Step	Block BC	
	1	all	Set the active steps for the selected block. For example "all", "1 3 5 to 10", "3 to 9	e
Block 2	2	2	2	
			2	
				Annel
				Apply

Click Start calculation.

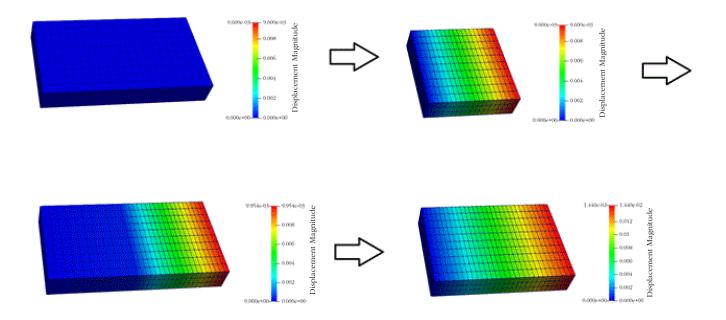
- 4. In the window that appears, select the directory in which the result will be saved, and enter the file name.
- 5. In the case of a successful calculation, the console displays the message: Calculation finished successfully at "date time".

Result Analysis

- 1. Open the file with the results. This can be done in three ways.
 - Press Ctrl + E.
 - From the main menu, select **Calculation** \rightarrow **Results.** Click **Open Last Result**.

For postprocessor analysis, go to the *Fidesys Viewer* window.

2. Connect the filter **Warp by Vector** (Menu - Filters – Alphabetical - Warp by Vector). Or use the corresponding button on the command bar:

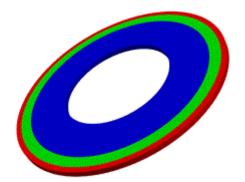


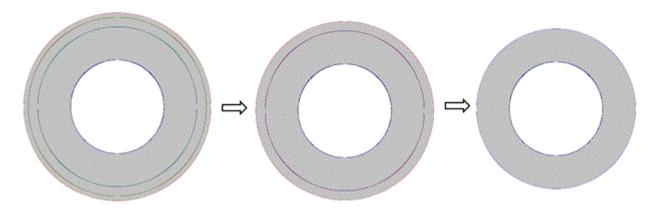
For this filter, on the Properties tab, set:

- Vector: Displacement;
- Scale factor: 100;
- Click Apply.
- 3. On the top bar, select the required result data to display. From the first drop-down list, select **Displacement**, from the second **Magnitude**, from the third **Surface with edges**.

Displacement Magnitude	Surface With Edges	•
----------------------------	--------------------	---

4. In the step view panel, set step 1. You should see the image in the initial state. Next, click on Play You should see the sequential compression of the model in accordance with the loading history.


Using the console interface


Geometry creating, meshing, setting boundary conditions and materials can be performed using the console interface. Below is the program code that allows you to perform the steps of the above manual. You need only to **specify the full path and name of the saved file**.

```
reset
#{width1 = 2}
\#{width2 = 1}
#{heightY = 1}
#{heigthZ = 0.3}
create brick x {width1} y {heightY} z {heigthZ}
create brick x {width2} y {heightY} z {heigthZ}
move volume 1 x {width1/2} y {heightY/2} z {heigthZ/2}
move volume 2 x {width1 + width2/2} y {heightY/2} z {heigthZ/2}
merge all
create material 1
modify material 1 set property 'POISSON' value 0.3
modify material 1 set property 'MODULUS' value 2.1e+04
modify material 1 set property 'MISES_YIELD_STRENGTH' value 24
block 1 volume 1
block 2 volume 2
block all material 1#присвойте материал блоку
block all element solid order 2
surface all size {heightY/10}
mesh volume all
create displacement 1 on surface 3 5 9 11 dof 2 fix
create displacement 2 on surface 6 dof 1 fix
create displacement 3 on surface 12 dof 1 fix
create displacement 4 on surface 1 2 7 8 dof 3 fix
create pressure on surface 4 magnitude 100
analysis type static elasticity plasticity dim3
static steps 2
bcdep displacement 2 step 1
block 2 step 2
calculation start path "d:\Fidesys\result.pvd"
```

Sequential deletion of volumes in the calculation process

The model is a cylindrical tube consisting of three layers. Material parameters for all three layers: $E = 2.1e4 \text{ N} / \text{mm}^2$, v = 0.3, yield strength $c = 24 \text{ N} / \text{m}^2$. A uniform pressure of $14 \text{ N} / \text{mm}^2$ is applied to the inner surface of the pipe. Fixation according with the symmetry condition. Three loading steps are specified: in the second step, the outer layer of the pipe is removed, in the third step, the next outer layer of the pipe is removed. In the process of solution, stresses are analyzed with the plastic flow and pipe thinning.

С

Geometry creating

1. Create a circular surface with a radius of 100.

On the command panel, select the mode for creating volume geometry (Mode - **Geometry**, Entity - **Surface**, Action - **Create**). From the list of geometric primitives, select Circle. Set the dimensions:

- Radius: 100;
- Location: Z-plane.

Click Apply.

2. Create a circular surface with a radius of 170.

Set the dimensions:

- Radius: 170;
- Location: Z-plane.

ommand Panel	8	×
Mode - Geometry $ \begin{array}{c} \hline		
Entity - Surface		
Action - Create		
Circle	•]
Specify Circle Using 		
Radius 100		
XPlane O YPlane O ZPlane		

3. Create a circular surface with a radius of 190.

Set the dimensions:

- Radius: 190;
- Location: Z-plane.

Click Apply.

4. Create a circular surface with a radius of 200.

Set the dimensions:

- • Radius: 190;
- • Location: Z-plane.

Click **Apply**.

5. Subtract surface 1 from the remaining surfaces 2 3 4.

On the command panel, select the mode for creating volume geometry (Mode - **Geometry**, Entity - **Surface**, Action - **Boolean**). From the list of operations, select **Subtract**. Set the following parameters:

- Surface ID (s): 2 3 4 (surfaces from which other surface will be subtracted);
- Surface ID (s): 1 (surfaces to be subtracted).

🔘 Subtract			•
A Surface ID(s)	234		
B Surface ID(s)	1		
🔲 Keep Originals			
Keep B			
🔘 Keep both (A a	ind B)		
Imprint			
(i) 🕗		Preview	Apply

Click **Apply**.

6. Subtract surface 5 from surface 6.

On the command panel, select the mode for creating volume geometry (Mode - **Geometry**, Entity - **Surface**, Action - **Boolean**). From the list of operations, select **Subtract**. Set the following parameters:

- Surface ID (s): 6 (surfaces from which other surface will be subtracted);
- Surface ID (s): 5 (amounts to be deducted);
- Check the Keep Originals box and select Keep both (A and B).

7. Subtract surface 6 from surface 7.

On the command panel, select the mode for creating volumetric geometry (Mode - **Geometry**, Entity - **Surface**, Action - **Boolean**). From the list of operations, select **Subtract**. Set the following parameters:

- Surface ID (s): 6 (surfaces from which other surface will be subtracted);
- Surface ID (s): 7 (surfaces to be subtracted).

Click **Apply**.

8. Cut the body.

On the command panel, select the mode for creating volumetric geometry (Mode - **Geometry**, Entity - **Surface**, Action - **Webcut**). From the list of possible types of cuts, select **Coordinate Plane**. Set the following parameters:

- Body ID(s): all (the surfaces to be cut);
- Cut: Plane YZ;
- Offcet value: 0.

Click **Apply**.

Coordinate Plane

Body ID(s) all

Image

Include Neighbors

Merge

Group Results

Image

Preview

Do the same, but in the ZX plane:

On the command panel, select the mode for creating volumetric geometry (Mode - **Geometry**, Entity - **Surface**, Action - **Webcut**). From the list of possible types of cuts, select **Coordinate Plane**. Set the following parameters:

- Body ID(s): all (the surfaces to be cut);
- Cut: Plane ZX;
- Offcet value: 0.

Click **Apply**.

9. Delete the surface.

On the command panel, select the mode for constructing volumetric geometry (Mode - **Geometry**, Entity - **Surface**, Action - **Delete**). In the Volume ID field, enter the numbers - 16 20 24 17 21 25 19 23 27.

Surface ID(s)		
Keep Lowe	r Geometry	
(i) 🧿		<u>A</u> pply

10. Draw a surface to create volume:

On the command panel (Mode - **Geometry**, Entity - **Volume**, Action - **Create**). From the list of geometric primitives, select **Sweep**. Set the following parameters:

- Surface ID (s): all;
- Perpendicular;
- Distance: 10.

Click Apply.

Sweep	•
Surface ID(s) all	
Perpendicular	Target Volume
Along Curve	Target Plane
Along Vector	About Axis
O Direction	Helix
Distance 10	
Reverse	
Include Mesh	
Merge Results	
Delete Source Surfaces	
Draft Angle	Rigid
Draft Type Extend	D Round
0	

Meshing

- On the command panel, select the mesh generation mode on curves (Mode - Mesh, Entity - Curve, Action - Mesh). Specify the degree of refining mesh:
 - Curve selection: 71 76 79 87 (through spaces);
 - Select the mesh generation method: Equal;
 - Select the partitioning options: Interval;
 - Interval: 50 (see picture).

Select Curves	
71 76 79 87	
Get Settings For Curve	Get Settings
Equal	•
Approximate Size Auto Size	Interval
Interval 5	
V Preview	
	Apply Size
Apply Size Before Meshing	
(i) 🕗	Mesh

- On the command panel, select the mesh generation module on curves (Mode - Mesh, Entity - Curve, Action - Mesh). Specify the degree of refining mesh:
 - Select Curves: 74 82 90 78 86 94 (through spaces);
 - Select the meshing method: Equal;
 - Select the partitioning options: Approximate size;
 - Approximate size: 2.

Click Apply.

Select Curves	
71 76 79 87	
Get Settings For Curve	Get Settings
Equal	▼]
Approximate Size O Auto Size	Interval
Approximate Size 2	
V Preview	Apply Size
Apply Size Before Meshing	Mesh

- 3. On the command panel, select the mesh generation module on curves (Mode Mesh, Entity Curve, Action Mesh). Specify the degree of refining mesh:
 - Select Curves: 75 72 80 88 77 73 81 89 (through spaces);
 - Select the meshing method: Evenly;
 - Select the partitioning options: Interval;
 - Interval: 1 (see picture).

Click **Apply**.

- On the command panel, select the mesh generation module on the planes (Mode Mesh, Entity Volume, Action Intervals). Specify the mesh spacing:
 - Select Volumes: all;
 - Select the meshing mode: Automatic Sizing.

Click Apply Size.

Click **Mesh**.

Ē	Auton	natic	Sizing								•
Sele	ect Vol	umes									
all											
Auto	Factor	r									
	T	I.	I.	I.	ф	I.	I.	I.	I.	Т	_
Fine	I	I.	I.	I.	Ļ	I.	I.	I.	I.	I	Coarse
P	ropaga	ate									
V P	review	1									
									Ap	oly Si	ze
V C	heck F	or O	/erlap	ping	Surfac	tes					
V A	pply Si	ize Be	fore	Mesh	ing						
í	9									M	esh

Set the Material

1. On the command panel, select the module for setting material properties (Mode - **Material**, Entity - **Materials Management**). Specify the name of the material material 1.

- 2. Drag the Hooke Material inscription from the left column, as well as, under the Mises inscription, in the Plasticity section, in the Material Properties column. Set the following parameters:
 - Young's modulus: 2.1e + 04;
 - Poisson's ratio: 0.3.

In the left window, go to Plasticity - According to Mises and drag the Yield Strength feature into the Material Properties window. Set:

• Yield strength: 24.

roperties	Material	ID	Imported material		
Elasticity	Material 1	1	Steel		
 Hook Material 	Enter the name of the	e material	Steel GOST 4543-71 (Russia)		
Young's modulus			Rubber Kevlar		
Poisson ratio					
Lame modulus			Titanium		
Shear modulus			Soil		
Mooney-Rivlin Material					
Blatz-Ko Material					
Murnaghan Material					
Orthotropic Material	=				
Transversely Isotropic Material	Material properties		Value		
General	Material 1		Value		
Strength	 Hook Material 				
Plasticity	Young's modu	lus	21000		
 Mises Criterion 	Poisson ratio	103	0		
Yield strength	 Mises Criterion 		0		
First Drucker-Prager Criterion	Yield strength		24		
Second Drucker-Prager Criterion	neid strengtri		24		
Hardening					
> Thermal					
Geomechanic	-				

CAE Fidesys – User Guide (version 2.0)

Setting boundary conditions

- On the command panel, select Mode Boundary Conditions, Entity - Displacemet, Action - Create. Set the following parameters:
 - System Assigned ID;
 - Entity List: Surface;
 - Entity ID(s): 29 34 39;
 - Degrees of Freedom: Y-Translation Disp;
 - DOF Value: 0.

Click Apply.

- On the command panel, select Mode Boundary Conditions, Entity - Displacemet, Action - Create. Set the following parameters:
 - System Assigned ID;
 - Entity List: Surface;
 - Entity ID(s): 31 26 41;
 - Degrees of Freedom: X-Translation Disp;
 - DOF Value: 0.

Click **Apply**.

- 3. On the command panel, select Mode **Boundary Conditions**, Entity **Displacemet**, Action **Create**. Set the following parameters:
 - System Assigned ID;
 - Entity List: Surface;
 - Entity ID(s): 32 37 42 18 22 26;
 - Degrees of Freedom: Z-Translation Disp;
 - DOF Value: 0.

4. Apply uniform pressure to the surface.

On the command panel, select Mode - **Boundary Conditions**, Entity - **Pressure**, Action - **Create**. Set the following parameters:

- System Assigned ID;
- Pressure Entity List: Surface;
- Entity ID(s): 30;
- Magnitude Value: 14.

Click Apply.

ID/Name				
🔘 New ID				
Name				
System Assig	ined ID			
Pressure Entity	List			
Surface	O Curve	Sideset		
🔘 Tri	Face/Quad	Edge		
Entity ID(s)	30			
Magnitude Value	14			
Interpret Val	ue As			
Ose Pure Pre	ssures			
Use Total Force				
Apply Pressure On				
Top				
Bottom				

Set the material and element type

1. Create block of one type of material.

On the command panel, select the module for setting material properties (Mode - **Blocks**, Entity - **Block**, Action – **Add**). Set the following parameters:

- Block ID: 1;
- Entity List: Volume;
- Entity ID(s): 6.

Click **Apply**.

Entity List		
Volume		•
Entity ID(s)	6	
(\mathbf{i})		Apply

2. Create a second block.

On the command panel, select the module for setting material properties (Mode - **Blocks**, Entity - **Block**, Action – **Add**). Set the following parameters:

Block ID 1

- Block ID: 2;
- Entity List: Surface;
- Entity ID (s): 7.

3. Create the third block.

On the command panel, select the module for setting material properties (Mode - **Blocks**, Entity - **Block**, Action – **Add**). Set the following parameters:

- Block ID: 3;
- Entity List: Surface;
- Entity ID (s): 8.

Click Apply.

4. Assign the material to the blocks.

On the command panel, select the module for setting material properties (Mode - **Blocks**, Entity - **Block**, Action - **Set Material**). Set the following parameters:

- Block ID (s): all;
- Select from the list the previously created material: Material 1.

Click Apply.

5. Assign an element type.

On the command panel, select the module for setting material properties (Mode - **Blocks**, Entity - Bl**o**ck, Action - **Element type**). Set the following parameters:

- Block ID(s): all;
- Category: Solid;
- Order: 2.

Block ID(s) all	
Category	Solid	•
Order	2	×
(i)		Apply

Block ID(s) 1	
Available Materials	
Material 1	▼]
\bigcirc	Apply

Run calculation

1. Set the type of problem you want to solve.

On the command panel, select the calculation settings module (Mode - **Calculation Settings**, Calculation Settings - **Static**, Static - **General**).

- Dimensions: 2D;
- Plane state: Plane strain;
- Model: Elasticity, Plasticity;
- Load steps count: 3.

Mode - Cal	culation Settin	ngs			
	3				
t = 0		[*]	Q		
Calculation	settings - Sta	itic			
	<u>^</u>))			
Static - Ger	neral				
	 2				
Dimensions:			2D		•
Plain state					
Plane strain					
Plane stress					
Use MPI					
Model					
Elasticity					
Plasticity					
Nonlinear					
Heat transfer	geomeo,				
—					
Set load steps co	ount				
Load steps count	3				
Set nonlinear sol	ver options				
\bigcirc				Ap	ply
			[Start Cal	culation

Click on the three dot icon in order to configure

the active calculation steps for block 2 - 1 2 (separated by spaces), and for block 3 - 1.

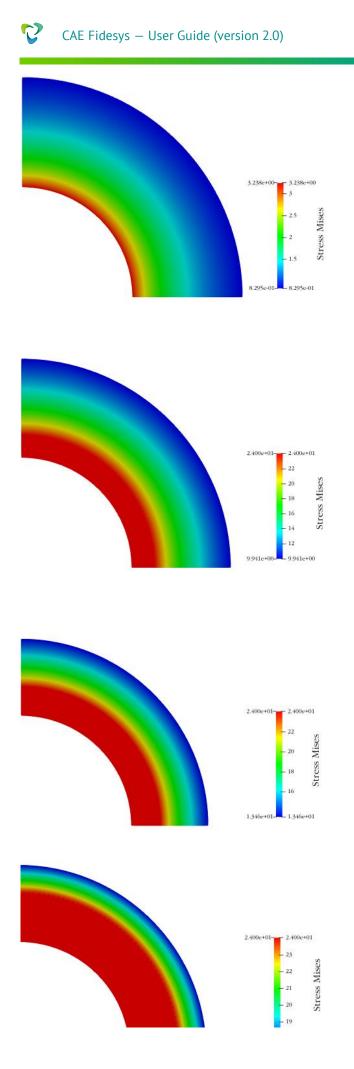
Settings of	loading s	teps	2 — ×
lock Name	ID	Step	Block BC
Block 1	1	all	Set the active steps for the selected block. For example "all", "1 3 5 to 10", "3 to 9".
Block 2		12	
Block 3	3	1	all
			Apply

Click on the Apply, Start Calculation command bar.

- 2. In the window that appears, select the directory in which the result will be saved, and enter the file name.
- 3. In the case of a successful calculation, the console displays the message: Calculation finished successfully at "date time".

Result Analysis

- 1. Open the file with the results. This can be done in three ways.
 - Press Ctrl + E.
 - From the main menu, select **Calculation** \rightarrow **Results**. Click **Open Last Result**.


For postprocessor analysis, go to the *Fidesys Viewer* window.

2. In the top pane, select the reqired result data to display. From the first drop-down list, select **Stress**, from the second - **Mises**, from the third - **Surface**.

◆ Stress ▼ Mises ▼	Surface 💌
--------------------	-----------

3. In the step view panel, set step 1. You should see the image in the initial state. Next, click on Play

You should see the sequential removal of layers on the model according to the loading history.

Using the console interface

Geometry generation, meshing, setting boundary conditions and materials can be performed using the console interface. Below is the program code that allows you to perform the steps of the above manual, you only need to **specify the full path and name of the saved file**.

```
#delete layers
#сравнение с Abaqus
#{rInner = 100}
\#\{rOuter1 = 170\}
#\{rOuter2 = 190\}
\#{rOuter3 = 200}
reset
create surface circle radius {rInner} zplane
create surface circle radius {rOuter1} zplane
create surface circle radius {rOuter2} zplane
create surface circle radius {rOuter3} zplane
subtract surface 1 from surface 2 3 4
subtract surface 5 from surface 6 keep
subtract surface 6 from surface 7
webcut surface all with plane yplane offset 0
webcut surface all with plane xplane offset 0
delete surface 16 20 24 17 21 25 19 23 27
sweep surface all perpendicular distance 10 merge
create material 1
modify material 1 set property 'POISSON' value 0.3
modify material 1 set property 'MODULUS' value 2.1e+04
modify material 1 set property 'MISES_YIELD_STRENGTH' value 24
create displacement on surface 29 34 39 dof 2 fix
create displacement on surface 31 36 41 dof 1 fix
create displacement on surface 32 37 42 18 22 26 dof 3 fix
create pressure on surface 30 magnitude 14 #10, 12, 14
block 1 volume 6 #inner - all steps
block 2 volume 7 #medium - steps 1,2
block 3 volume 8 #outer - step 1
block all material 1
block all element solid order 2
curve 71 76 79 87 interval 50
curve 74 82 90 78 86 94 size 2
curve 75 72 80 88 77 73 81 89 interval 1
mesh volume all
analysis type static elasticity plasticity dim3
nonlinearopts maxiters 100 minloadsteps 10 maxloadsteps 30 tolerance 1e-5
static steps 3
block 2 step 1, 2
block 3 step 1
#output iterresults on
calculation start path "d:\Fidesys\result.pvd"
```

Seismic wave propagation (SEG-Y results)

CAE Fidesys allows you to upload solution results in SEG-Y format. This example considers the propagation of seismic waves in the ground based on the Boussinesq problem for a 2D case. The procedures for setting receivers, saving and subsequent analysis of data in the SEG-Y format are demonstrated.

The model is a part of the plane (xy), a point force is applied to vertex. Non-reflective boundary conditions are applied.

Geometry creating

1. Create a square plate.

On the command panel, select the mode for creating volume geometry (Mode - **Geometry**, Entity - **Surface**, Action - **Create**). From the list of geometric primitives, select **Rectangle**. Set block sizes:

 Rectangle

 Width 10000

 Height (Optional)

 XPlane

 Image: Straight of the straigh

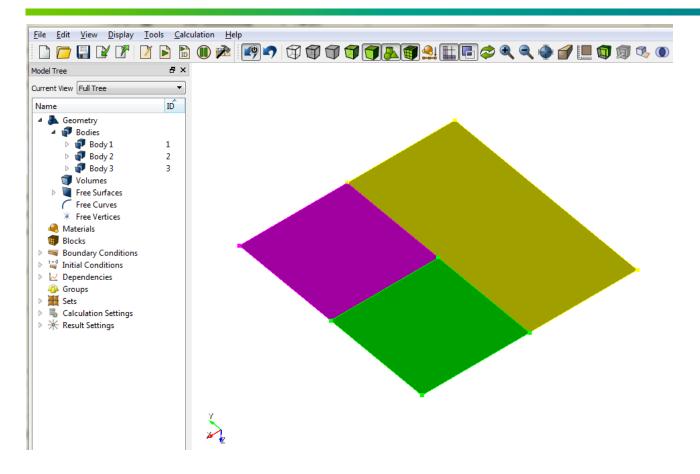
- Width: 10000;
- Location: ZPlane.

Click Apply.

2. Due to symmetry, we consider half of the model.

On the command panel, select the mode for creating volume geometry (Mode - **Geometry**, Entity - **Surface**, Action - **Webcut**). From the list of possible kind of webcuts, select **Coordinate Plane**. Set the following parameters:

- Body ID(s): 1 (the body to be cut);
- Cut: YZ;
- Offset Value: 0.

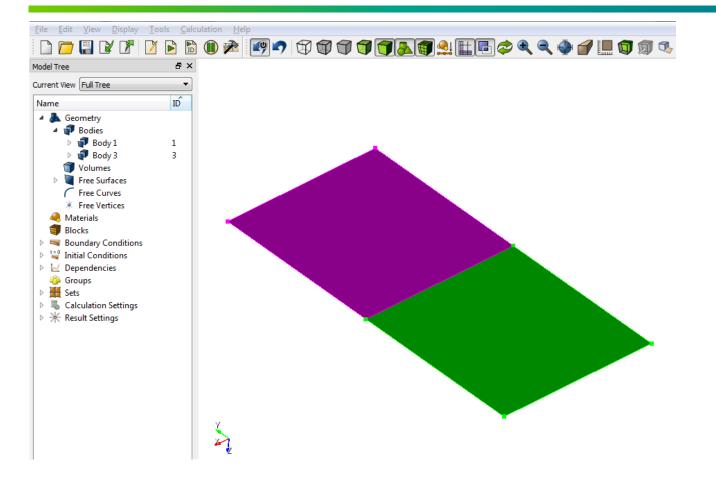

Click Apply.

Do the same, but in the ZX plane.

- Body ID(s): 1 (the body to be cut);
- Cut: ZX;
- Offset value: 0.

Coordinate Plane 🔹				
Body ID(s)				
YZ	⊚ zx	© XY		
Offset Value	0			
🔲 Rotate Pl	ane			
Imprint				
Include Neighbors				
Merge				
Group Results				
(j) Preview Apply				

As a result, the original Body 1 in the Model Tree will be divided into three bodies (Body 1, Body 2 and Body 3).


3. Delete Surface 3.

On the command panel, select the mode for creating volume geometry (Mode - **Geometry**, Entity - **Surface**, Action - **Delete**). Set the parameters:

• Surface ID (s): 3.

Surface ID(s)	3	
Keep Lowe	r Geometry	
(j) 🕗		Apply

4. Print and splice the surface.

On the command panel, select the module for constructing volumetric geometry (Mode - **Geometry**, Entity - **Surface**, Action - **Imprint / Merge**). Set the following parameters:

• Surface ID(s): all.

Tmprint/Merge	•
Surface ID(s) all	
Keep Originals	
Group Results	
(i) ?	Apply

5. Break curve 11 into two parts.

Split Method/Location: Distance;

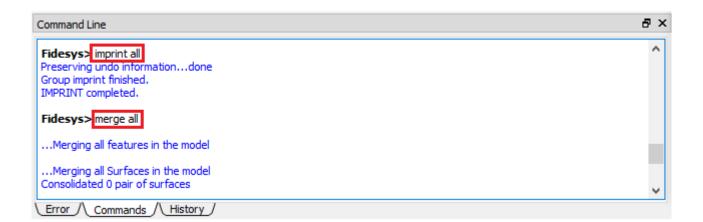
On the command panel, select the module for constructing volumetric geometry (Mode - **Geometry**, Entity - **Curve**, Action - **Modify**). Set the following parameters:

ting	Curve ID	11		
irve,	Split Method/Location			
	O Fractio	n	Oistance	
	O Vertex	ID	O Pick	
	O By Loca	ation		
	1000			
	Starting Fr	om		
	O Curve	Start	O Curve End	
	Vertex	10		
	Merge			
	(i) •		Preview	Apply
			eview	- Abbiy

•

✓ Split

6. Write the following commands on the command line:


• imprint all;

• merge all.

•Split;

• Curve ID: 11;

Value: 1000;Starting From: 10.

Meshing

 On the command panel, select the curve meshing mode (Mode - Mesh, Entity - Surface, Action - Intervals). Specify the degree of refining mesh: 	▼ Approximate Size ▼ Select Surfaces all
Approximate Size;	Approximate Size 250
Select Surfaces: all;	Preview Apply Size
• Approximate size: 250.	Check For Overlapping Surfaces
Click Apply Size .	Apply Size Before Meshing Image: Optimized and the second secon
Click Mesh.	

Specifying the material and type of item

1. On the command panel, select the mode for setting material properties (Mode - **Material**, Entity - **Materials Management**). From the Imported Material list, drag the Soil to the Material ID window.

Properties	Material	ID	Imported material	
> Elasticity	Soil	1	Steel	
General	Enter the name of the	material	Steel GOST 4543-71 (Russ	ia)
Strength			Rubber	
Plasticity			Kevlar	
Hardening			Titanium	
Thermal			Soil	
Geomechanic				
	Material properties		Value	^
	V Soil			
	 Hook Material 			
	Young's modul	us	2e+8	
	Poisson ratio		0.3	
	✓ General			
	Density		1900	
	 Second Drucker-P Cohesion 	rager Criterion	20000	
	Internal friction		29000 20	
			20	

2. Create a block of the one type of material.

On the command panel, select the mode for setting material properties (Mode - **Blocks**, Entity - **Block**, Action - **Add**). Set the following parameters:

- Block ID: all;
- Entity List: Surface;
- Entity ID(s): all.

Click Apply.

3. Assign the material to the block.

On the command panel, select the module for setting material properties (Mode - **Blocks**, Entity - **Block**, Action - **Set Material**). Set the following parameters:

- Block ID(s): 1;
- Select the previously created material from the list: Soil.

Click **Apply**.

4. Assign an item type.

On the command panel, select the module for setting material properties (Mode - **Blocks**, Entity - **Block**, Action - **Element types**). Set the follow ing parameters:

- Block ID (s): 1;
- Category: Plane;
- Order: 4.

Click Apply.

Entity List	
Surface	•
Entity ID(s) all	
(j)	Apply

Block ID(s)	1	
Category	Plane	•
Order	4	-
(\mathbf{i})		Apply

Setting boundary conditions

1. Fix curves 16 and 12 in the X direction.

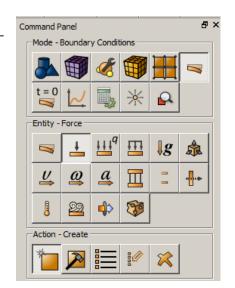
On the command panel, select Mode - **Boundary Conditions**, Entity - **Displacement**, Action - **Create**. Set the following parameters:

- System Assigned ID;
- Entity List: Curve;
- Entity ID(s): 16 12 (separated by spaces);
- Degrees of Freedom: X-Translation Disp;
- DOF Value: 0.
- Click Apply.
- 2. Set non-reflective boundary conditions.

On the command panel, select Mode - **Boundary conditions**, Entity – **Absorbing BC**, Action - **Create**. Set the following parameters:

- System Assigned ID;
- Entity List: Curve;
- Entity ID(s): 7 15 13 6 (separated by spaces).

Click Apply.


3. Set the force.

On the command panel, select Mode - **Boundary Conditions**, Entity - **Force**, Action - **Create**. Set the following parameters:

- System Assigned ID;
- Force Entity List: Vertex;
- Entity ID(s): 10;
- Direction: 0 -1 0 (space separated).

Set the BC dependency on time and / or coordinates

1. Create a formula 1 for strength 1.

On the command panel, select Mode – **BC Dependency.**

Click Forse 1 and choose Formula panel in the right. Then choose Berlage and set the following parameters:

 \times

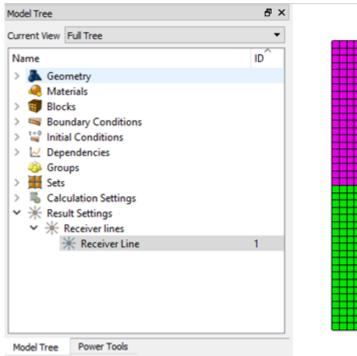
- Select the flag Formula: Berlage;
- Amplitude: 2e8;
- Frequency: 10.

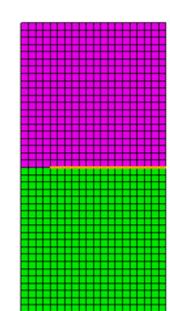
😯 BC Dependency

ВС Туре	BC Name ID	Formula Table Plot
Force	1	Berlage 🔻
isplacement - ∰ + Absorption	1	Amplitude (A) 2e8 Frequency (ω) 10
		(i) Apply

Receivers

1. Create receivers on curve 17 along all directions.


On the command panel, select Mode - **Receivers**, Operation - **Create**. From the drop-down list, select the fields whose data you want to save in SEG-Y format. Set the following parameters:


- System assigned ID;
- Entity List: Curve;
- Entity ID(s): 17;
- Velocity;
- Variables: All.

Click Apply.

Mo	de - Receiver	s			
t	= 0 t /	<i>«</i>			
		-	*	• ••	
Op	eration - Crea				
*	2			枀	
ID					
O New ID					
System A	ssigned ID				
Entity:					
Entity List					
Curve					•
Entity ID(s) 17	,				
Displacement					•
Variables					
🗹 Along X					
🗹 Along Y					
🗹 Along Z					
Save Result	s				
(\mathbf{i})					Apply

The receiver lines are highlighted on the model in yellow when clicked in the corresponding section of the Model Tree.

Run calculation

 Set the type of task you want to solve. On the command panel, select the calculation settings mode (Mode - Calculation Settings, Calculation Settings - Transient analysis, Transient -General).

Set the following calculation parameters:

- Dimension: 2D;
- Method: Complete solution;
- Scheme: Explicit;
- Max time: 10;
- Max steps count: 10000;
- Preloaded model: uncheck;

Click Apply.

Go to the settings section for Output Fields. Specify:

• Save Results: Every 100 Steps

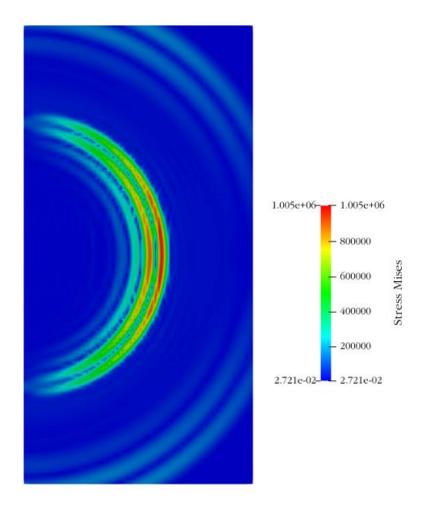
Click Apply. Click Start Calculation.

		Mode -	Calculati	on Settir	igs			
el, on				Ś				
: -		t = 0		Ţ,	✻	•		
		Calculat	ion setti	ngs - Tra	insient a	nalysis		
		<u>↓</u>	600)	8	Ŷ	
		Transier	nt - Gene	eral				
		ŝ	(d)	-	λ	Z		
								_
	Dimensior					2D		-
		ne strain						
	_	ne stress						
		IDT.						
	Use Method	PI				-ull solutio	-	-
	Scheme					-uii solutio Explicit	n	·
	Options					xplicit		•
	Max tin				10			
		eps count			10000			1
	Trans	sient - Ou	itput Fie	lds				
	Ş	$\left\{ \left(d \right) \right\}$)	λ		E		
	alculate no	dal and r	eaction	forces				
_	alculate hi				ernies			
_	D record				- greb			
_	utput Mate	erial Prop	erties					
	e Results							
۲	Every				100		steps	
0	Every tim	e interval			0.3			
	Output m				100		results	

Command Panel

In the window that appears, select the directory in which the result will be saved, and enter the file name.

In case of a successful calculation, a message will be displayed in the console: "Calculation finished successfully at" date "" time "".


Results analysis

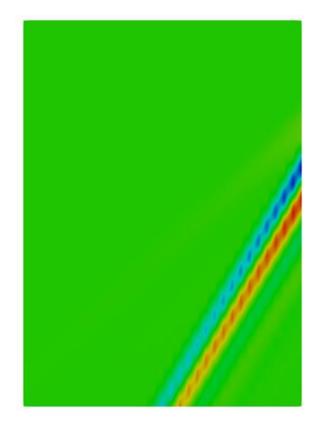
- 1. Open the file with the results. This can be done in three ways.
- Press Ctrl + E.
- From the main menu, select **Calculation** \rightarrow **Results**. Click **Open Last Result**.
- 2. To analyze the results, go to the *Fidesys Viewer* window.
- 3. On the top bar, select the required result data to display. From the first drop-down list, select **Stress**, from the second **Mises**.

		 4		
◆ Stress ▼	Mises 💌		Surface 💌	
		4		i

4. Set the step 1 in the step viewer panel. You should see the plate image in the initial state. Next, click on

Play . You should see the propagation of stress over time.

5. Open the saved data in SEG-Y format.


To do this, go to **Menu** - **File** - **Open**. In the drop-down list of file types, select SEG-Y Files (* .sgy, * .segy). Specify the file to view **test_Vy.sgs**

🙀 Open File: (open multiple files with <ctrl> key.)</ctrl>				?	×
Look in: C:/Users/Admin/CAE-Fidesys-2.0/test/			• • •	0	222
My Documents Desktop Favorites C:\ D:\ Z:\ Windows Network CAE-Fidesys-2.0		/v.sgy .Vy.sgy	Type sgy File sgy File		
	File name:		Navigate		ОК
	Files of type:	SEG-Y Files (*.sgy *.segy) FidesysViewer Data Files (*.	• (byg	<u>c</u>	ancel
Search (use Esc to dear text)		SEG-Y Files (*.sqy *.seqy) VTK UnstructuredGri*.vtu VTK UnstructuredGrvtu *.	*.vtu.series)		

Set the viewing direction along the Y axis

The calculation results for speeds Vy in the SEG-Y format are visualized in the field of visualization.

Using the console interface

Geometry creating, meshing, setting boundary conditions and materials can be performed using the console interface. Below is the program code that allows you to perform the steps of the above manual, you only need to **specify the full path and name of the saved file**.

reset create surface rectangle width 10000 zplane webcut body 1 with plane xplane offset 0 webcut body 1 with plane yplane offset 0 delete Surface 3 imprint all merge all split curve 11 distance 1000 from vertex 10 imprint all merge all surface all size 250 mesh surface all create material 1 from 'Soil' block all add surface all block 1 add surface all block 1 material 1 block 1 element plane order 4 create displacement on curve 16 12 dof 1 fix create absorption on curve 7 15 13 6 create force on vertex 10 force value 1 direction 0 -1 0 bcdep force 1 value 'berlage(2e+8, 10, time)' create receiver on curve 17 displacement 1 1 1 create receiver on curve 17 velocity 1 1 1 create receiver on curve 17 principalstress 1 1 1 create receiver on curve 17 pressure output nodalforce off energy off record3d on log on vtu on material off results everystep 100 analysis type dynamic elasticity dim2 planestrain preload off dynamic method full solution scheme explicit maxtime 10 maxsteps 10000 calculation start path 'D:\Fidesys\test.pvd'

Contacts

http://www.cae-fidesys.com support@cae-fidesys.com +7 (495) 177-36-18