

Version 5.1

Verification manual

Contents

S	1
luction t cases with analytical solutions	
Test Case No.1.1	6
Test Case No.1.2	11
Test Case No.1.3	
Test Case No.1.4	24
Test Case No.1.5	
Test case No.1.6	
Test case No.1.7	
Test case No.1.8	47
Test case No.1.9	
Test case No.1.10	54
Test case No.1.11	
Test case No.1.12	61
Test case No.1.13	
Test Case No1.14	71
Test Case No1.15	75
Test Case No1.16	
Test Case No1.17	
Test Case No1.18	
Test Case No1.19	
Test case No1.20	
Test case No1.21	96
Test case No1.22	
Test case No1.23	
Test case No1.24	
Test case No1.25	
Test case No1.26	
Test case No1.27	
Test case No 1.28	
Test case No 1.29	
Test case No 1.30	
Test case No 1.31	
Test case No 1.32	
Test case No 1.33	
	uction cases with analytical solutions. Test Case No.1.1. Test Case No.1.2. Test Case No.1.3. Test Case No.1.4. Test Case No.1.5. Test case No.1.6. Test case No.1.7. Test case No.1.8. Test case No.1.9. Test case No.1.10. Test case No.1.12. Test case No.1.12. Test case No.1.13. Test case No.1.14. Test case No.1.15. Test case No.1.16. Test case No.1.17. Test case No.1.18. Test Case No1.16. Test Case No1.17. Test Case No1.16. Test Case No1.17. Test Case No1.16. Test Case No1.17. Test Case No1.18. Test Case No1.19. Test case No1.20. Test case No1.21. Test case No1.22. Test case No1.23. Test case No1.24. Test case No1.25. Test case No1.26. Test case No1.27. Test case No1.28. Test case No

2. Test	st cases with numerically approximate analytical solutions	
2.1.	Test Case No2.1	
2.2.	Test Case No2.2	
2.3.	Test Case No.2.3	
2.4.	Test Case No.2.4	
2.5.	Test Case No.2.5	
2.6.	Test case No.2.6	
2.7.	Test case No.2.7	
2.8.	Test case No.2.8	
2.9.	Test case No.2.9	
2.10.	Test case No.2.10	
2.11.	Test Case No2.11	
2.12.	Test Case No2.12	
2.13.	Test case No2.13	
2.14.	Test case No2.14	
2.15.	Test case No2.15	
2.16.	Test case No2.16	
2.17.	Test case No2.17	
2.18.	Test case No2.18	
2.19.	Test case No2.19	
2.20.	Test caseNo2.20	
2.21.	Test case No2.23	
2.22.	Test case No2.24	
2.23.	Test case No2.23	
2.24.	Test case No2.24	
2.25.	Test case No2.27	
2.26.	Test case No2.26	
2.27.	Test case No2.29	
2.28.	Test case No 2.28	
2.29.	Test case No 2.29	
2.30.	Test case No 2.30	
2.31.	Test Case No 2.31	
3. Test	st Cases for cloud version	
3.1.	Test Case No.3.1	
3.2.	Test Case No3.2	
3.3.	Test Case No.3.3	
3.4.	Test Case No.3.4	
3.5.	Test Case No.3.5	

	3.6.	Test case No3.6	290
	3.7.	Test case No3.7	293
	3.8.	Test case No3.3	296
	3.9.	Test case No3.9	303
	3.10.	Test Case No 3.10	307
	3.11.	Test Case No3.11.	310
4.	Contacts		.313

Introduction

About the software

CAE Fidesys is a software package for strength analysis. The package comprises the following types of analysis:

- Static;
- Transient;
- Buckling;
- Mode Frequency;
- Spectrum;
- Effective Properties;
- Topological Optimization;
- External Integration MBD.

The package also includes a program *Fidesys Viewer* for visualization and analysis of the obtained results:

- Visualization of scalar and vector fields;
- SEG-Y files visualization;
- building graphs and charts;
- building frequency dependencies ;
- time dependency analysis.

General

CAE Fidesys is an innovative CAE-system that performs a full cycle of engineering calculations, from the construction of the computational grid to the visualization of the calculation results.

CAE Fidesys is is continuously being verified by the developers as new features are added. These verification are performed in accordance with procedures that are part of **CAE** Fidesys' overall quality assurance program. This **CAE** Fidesys 4.1 test verification manual presents a small subset of QA test cases that are used to test new features. Test cases are comparisons of **CAE** Fidesys solutions with analitical solutions and other independently calculated solutions.

The presented test cases are selected in such a way as to validate different problem areas, types of loads, boundary conditions corresponding to the new featches and the statements of work of *CAE Fidesys 4.1*.

Result Comparison

Each test case verifies a specific set of parameters. Also, for each test case, the expected result is given, which is considered as target. The test case is considered to be successful if the relative error of the calculation results compared to the reference does not exceed 5%. The relative error is calculated by the formula:

4

$$\Delta = \left| \frac{\mathbf{P} - \mathbf{P}_0}{\mathbf{P}_0} \right| \cdot 100\% ,$$

Where Δ is the value of the relative error of the parameter; P is the calculated in *CAE Fidesys* value of the parameter; P₀ is the expected value of the parameter.

System requirements

CAE Fidesys has low system requirements for the package. It can be run on an ordinary personal computer. If the computer has one or more multi-core processors, calculations are automatically parallelized on all cores. Starting with version 1.5, calculation parallelization to several nodes connected to a local network or a cluster is available in the 64-bit version of the program package.

CAE Fidesys software package has following minimal requirements for software and hardware:

Hardware requirements

CPU: Dual-core 1,7 GHz minimum RAM: 4GB minimum Free hard drive space: 5 GB Video card NVIDIA GeForce GTX 460 or faster Screen resolution: 1024x768 or higher

Operating system

Following operating systems are supported. (for the 64-bit versions)

Windows 11	Ubuntu 16.04, Ubuntu 18.04, Ubuntu 20.04, Ubuntu 22.04
Windows Server 2022	Alt Linux 9.2
Windows 10	Debian 9, Debian 10, Debian 11
Windows Server 2019	RHEL 7, RHEL 8, RHEL 9
Windows Server 2016	Astra Linux Special Edition РУСБ.10015-01
Windows 8.1	Astra Linux 1.6, Astra Linux 1.7
Windows 8	RedOS
Windows Server 2012	Centos 7, Centos 8, Centos 9
Windows Server 2012 R2	Oracle Linux Server 9
Windows 7 SP1	OpenSUSE 15.3, OpenSUSE 15.4
Windows Server 2008 R2 SP1	Rocky Linux 8.5
	Scientific Linux 7

Fedora 36

5

1. Test cases with analytical solutions

1.1.Test Case No.1.1

Problem Description

Determination of effective mechanical characteristics for a cube of homogeneous isotropic material.

Input Values

Material Properties:

- Isotropic;
- Young's modulus = 1 Pa;
- Poisson ratio XY = 0.25;
- Density = 1 kg/m^3 .

Geometric model:

- Solid cube with side 1m;
- Homogeneous material.

Boundary conditions:

• Non-periodic.

Mesh:

• Hexahedron (order 1, order 2), Tetrahedron (order 1, order 2);

Fig 1.1 – Mesh 3D – Hexahedron

Fig 1.2 - Mesh 3D - Tetrahedron

Output Values

No	Value	Description	Unit	Target
1	Effective elastic modulus	C_1111	Ра	1.2
2	Effective elastic modulus	C_1122	Ра	0.4
3	Effective elastic modulus	C_1133	Ра	0.4
4	Effective elastic modulus	C_1212	Ра	0.4
5	Effective elastic modulus	C_1313	Ра	0.4
6	Effective elastic modulus	C_2222	Ра	1.2
7	Effective elastic modulus	C_2233	Ра	0.4
8	Effective elastic modulus	C_2323	Ра	0.4
9	Effective elastic modulus	C_3333	Ра	1.2

Calculation method used for the reference solution

Six deformation types are applied to a representative volume, each of which has its own type of effective strain tensor E^{e} :

1. $E_e = \begin{pmatrix} q & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ – stretching/compression along the axis X;

2.
$$E_e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 - stretching/compression along the axis Y;

3.
$$E_e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & q \end{pmatrix}$$
 - stretching/compression along the axis Z;

4.
$$E_e = \begin{pmatrix} 0 & q & 0 \\ q & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 – in plane shear XY;

5.
$$E_e = \begin{pmatrix} 0 & 0 & q \\ 0 & 0 & 0 \\ q & 0 & 0 \end{pmatrix}$$
 - in plane shear XZ;

6.
$$E_e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & q \\ 0 & q & 0 \end{pmatrix}$$
 – in plane shear YZ.

So, for each of the six boundary value problems, an effective strain tensor E^e was given and the effective stress tensor σ^e is obtained.

The linear dependence of σ^e on q is presented by the formula:

$$a_{ij}^e = a_{ij}q$$

Since the magnitude of deformations q and the corresponding tensor σ^e are known, the tensor coefficient of the dependence a_{ij} can be calculated simply:

$$a_{ij} = \frac{\sigma_{ij}^e}{q}$$

Since the effective properties are estimated in the form of the generalized Hooke's law

$$\sigma_{ij} = Cijkle_{kl}$$

considering the form E^e in each problem, the formulas for *Cijkl* will look like this:

$$1) \quad E^{e} = \begin{pmatrix} q & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = \sigma_{ij11}q, \quad \sigma_{ij} = \alpha_{ij}^{(1)}q;$$

$$2) \quad E^{e} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = \sigma_{ij22}q, \quad \sigma_{ij} = \alpha_{ij}^{(2)}q;$$

$$3) \quad E^{e} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & q \end{pmatrix} \Rightarrow \sigma_{ij} = \sigma_{ij33}q, \quad \sigma_{ij} = \alpha_{ij}^{(3)}q;$$

$$4) \quad E^{e} = \begin{pmatrix} 0 & q & 0 \\ q & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = (\sigma_{ij12} + \sigma_{ij21})q, \quad \sigma_{ij} = \alpha_{ij}^{(4)}q;$$

$$5) \quad E^{e} = \begin{pmatrix} 0 & 0 & q \\ 0 & 0 & 0 \\ q & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = (\sigma_{ij13} + \sigma_{ij31})q, \quad \sigma_{ij} = \alpha_{ij}^{(5)}q;$$

$$6) \quad E^{e} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & q \\ 0 & q & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = (\sigma_{ij23} + \sigma_{ij32})q, \quad \sigma_{ij} = \alpha_{ij}^{(6)}q.$$

Hence, the coefficients *Cijkl* are calculated from the corresponding α_{ij} : 1) $C_{ij11} = \alpha_{ij}^{(1)}$;

- 2) $C_{ij22} = \alpha_{ij}^{(2)};$
- 3) $C_{ij33} = \alpha_{ij}^{(3)};$
- 4) $C_{ij12} = C_{ij21} = \frac{1}{2} \alpha_{ij}^{(4)};$

- 5) $C_{ij13} = C_{ij31} = \frac{1}{2} \alpha_{ij}^{(5)};$
- 6) $C_{ij23} = C_{ij32} = \frac{1}{2}\alpha_{ij}^{(6)}$.

Reference:

[1] Бидерман В.Л., Гуслицер Р.Л., Захаров С.П., Ненахов Б.В., Селезнев И.И., Цукерберг С.М. Автомобильные шины (конструкция, расчет, испытание, эксплуатация). – Под общей редакцией Бидермана В.Л. – М.: Государственное научно-техническое изд-во химической литературы, 1963. – 384 с.

[2] Кристенсен Р. Введение в механику композитов. – М.: «Мир», 1982. – 334 с.

[3] Победря Б.Е. Механика композиционных материалов. - М.: Издательство Московского университета, 1984. - 335 с.

[4] Mohammad Ali Bagheri, Antonin Settari Effects of fractures on reservoir deformation and flow modeling // Canadian Geotechnical Journal, Vol 43, 2006. - P. 574-586.

[5] Hashin, Z, and Shtrikman, S, 1963, A variational approach to the elastic behavior of multiphase minerals. Journal of the Mechanics and Physics of Solids, 11 (2), 127-140.

[6] Kachanov M., Tsukrov I., Shafiro B. Effective modulus of solids with cavities of various shapes // Applied Mechanics Reviews, Vol. 47, No. 1, Part 2, 1994 - P. 151-174.

Result comparison

Hexahedron (order 1, order 2)

No	Value	Description	Unit	Target	CAE Fidesys	Error,%
1	Effective elastic modulus	C_1111	Ра	1.2	1.2	0
2	Effective elastic modulus	C_1122	Ра	0.4	0.4	0
3	Effective elastic modulus	C_1133	Ра	0.4	0.4	0
4	Effective elastic modulus	C_1212	Ра	0.4	0.4	0
5	Effective elastic modulus	C_1313	Ра	0.4	0.4	0
6	Effective elastic modulus	C_2222	Ра	1.2	1.2	0
7	Effective elastic modulus	C_2233	Ра	0.4	0.4	0
8	Effective elastic modulus	C_2323	Ра	0.4	0.4	0
9	Effective elastic modulus	C_3333	Ра	1.2	1.2	0

Script CAE Fidesys:

reset brick x 1.0 volume 1 scheme Map volume 1 size 0.5 mesh volume 1 create material 1 modify material 1 set property 'MODULUS' value 1.0 modify material 1 set property 'POISSON' value 0.25 modify material 1 set property 'DENSITY' value 1.0 block 1 volume 1 block 1 material 1 block 1 element solid order 1 # update automatical from 1 to 2 analysis type effectiveprops elasticity dim3 periodicbc on

Tetrahedron mesh order 1, order 2

No	Value	Description	Unit	Target	CAE Fidesys	Error,%
1	Effective elastic modulus	C_1111	Ра	1.2	1.2	0
2	Effective elastic modulus	C_1122	Ра	0.4	0.4	0
3	Effective elastic modulus	C_1133	Ра	0.4	0.4	0
4	Effective elastic modulus	C_1212	Ра	0.4	0.4	0
5	Effective elastic modulus	C_1313	Ра	0.4	0.4	0
6	Effective elastic modulus	C_2222	Ра	1.2	1.2	0
7	Effective elastic modulus	C_2233	Ра	0.4	0.4	0
8	Effective elastic modulus	C_2323	Ра	0.4	0.4	0
9	Effective elastic modulus	C_3333	Ра	1.2	1.2	0

Script CAE Fidesys:

reset brick x 1.0 volume 1 scheme Tetmesh volume 1 size 0.1 mesh volume 1 create material 1 modify material 1 set property 'MODULUS' value 1.0 modify material 1 set property 'POISSON' value 0.25 modify material 1 set property 'DENSITY' value 1.0 block 1 volume 1 block 1 material 1 block 1 element solid order 1 # update automatical from 1 to 2 analysis type effectiveprops elasticity dim3 periodicbc on

1.2.Test Case No.1.2

Problem Description

Determination of effective mechanical characteristics for a cube of homogeneous orthotropic material.

Input Values

Material Properties:

- Orthotropic
- Young's modulus X = 12 Pa;
- Young's modulus Y = 8 Pa;
- Young's modulus Z = 4 Pa;
- Poisson ratio XY = 0.375;
- Poisson ratio XZ = 0.75;
- Poisson ratio YZ = 0.5;
- Density = 1 kg/m^3 .
- Shear modulus XY = 3 Pa;
- Shear modulus XZ = 2 Pa;
- Shear modulus YZ = 1 Pa;
- Thermal expansion coefficient X =1;
- Thermal expansion coefficient Y =1;
- Thermal expansion coefficient Z = 1.

Geometric model:

- Solid cube with side 1m;
- Homogeneous material.

Boundary conditions:

• Non-periodic.

Mesh:

• Hexahedron (order 1, order 2), Tetrahedron mesh order 1, order 2;

Fig 1.3 – Mesh 3D – Hexahedron

Fig 1.4 - Mesh 3D - Tetrahedron

Output Vo	ılues				
	No	Value	Description	Unit	Target
	1	Effective elastic modulus	C_1111	Ра	21
	2	Effective elastic modulus	C_1122	Ра	9
	3	Effective elastic modulus	C_1133	Ра	7.5
	4	Effective elastic modulus	C_1212	Ра	3
	5	Effective elastic modulus	C_1313	Ра	2
	6	Effective elastic modulus	C_2222	Ра	13
	7	Effective elastic modulus	C_2233	Ра	5.5
	8	Effective elastic modulus	C_2323	Ра	1
	9	Effective elastic modulus	C_3333	Ра	7.25
	10	Effective density	Density	kg/m ³	1.0

Calculation method used for the reference solution

Six deformation types are applied to a representative volume, each of which has its own type of effective strain tensor E^{e} :

- The tensor = $\begin{pmatrix} q & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ stretching/compression along the axis X;
- 8. $E_e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & 0 \end{pmatrix}$ stretching/compression along the axis Y;

9.
$$E_e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & q \end{pmatrix}$$
 - stretching/compression along the axis Z;

10.
$$E_e = \begin{pmatrix} 0 & q & 0 \\ q & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 - in plane shear XY;
11. $E_e = \begin{pmatrix} 0 & 0 & q \\ 0 & 0 & 0 \\ q & 0 & 0 \end{pmatrix}$ - in plane shear XZ;

12.
$$E_e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & q \\ 0 & q & 0 \end{pmatrix}$$
 – in plane shear YZ.

So, for each of the six boundary value problems, an effective strain tensor E^e was given and the effective stress tensor σ^e is obtained.

The linear dependence of σ^e on q is presented by the formula:

$$a_{ij}^e = a_{ij}q$$

Since the magnitude of deformations q and the corresponding tensor σ^e are known, the tensor coefficient of the dependence a_{ij} can be calculated simply:

$$a_{ij} = \frac{\sigma_{ij}^e}{q}$$

Since the effective properties are estimated in the form of the generalized Hooke's law

$$\sigma_{ij} = Cijkle_{kl}$$

considering the form E^e in each problem, the formulas for *Cijkl* will look like this:

$$1) \quad E^{e} = \begin{pmatrix} q & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = \sigma_{ij11}q, \ \sigma_{ij} = \alpha_{ij}^{(1)}q;$$

$$2) \quad E^{e} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = \sigma_{ij22}q, \ \sigma_{ij} = \alpha_{ij}^{(2)}q;$$

$$3) \quad E^{e} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & q \end{pmatrix} \Rightarrow \sigma_{ij} = \sigma_{ij33}q, \ \sigma_{ij} = \alpha_{ij}^{(3)}q;$$

$$4) \quad E^{e} = \begin{pmatrix} 0 & q & 0 \\ q & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = (\sigma_{ij12} + \sigma_{ij21})q, \ \sigma_{ij} = \alpha_{ij}^{(4)}q;$$

$$5) \quad E^{e} = \begin{pmatrix} 0 & 0 & q \\ 0 & 0 & 0 \\ q & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = (\sigma_{ij13} + \sigma_{ij31})q, \ \sigma_{ij} = \alpha_{ij}^{(5)}q;$$

$$6) \quad E^{e} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & q \\ 0 & q & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = (\sigma_{ij23} + \sigma_{ij32})q, \ \sigma_{ij} = \alpha_{ij}^{(6)}q.$$

Hence, the coefficients *Cijkl* are calculated from the corresponding α_{ij} :

13

- 1) $C_{ij11} = \alpha_{ij}^{(1)};$
- 2) $C_{ij22} = \alpha_{ij}^{(2)};$
- 3) $C_{ij33} = \alpha_{ij}^{(3)};$
- 4) $C_{ij12} = C_{ij21} = \frac{1}{2} \alpha_{ij}^{(4)};$
- 5) $C_{ij13} = C_{ij31} = \frac{1}{2}\alpha_{ij}^{(5)};$

6)
$$C_{ij23} = C_{ij32} = \frac{1}{2}\alpha_{ij}^{(6)}$$
.

Reference:

[1] Бидерман В.Л., Гуслицер Р.Л., Захаров С.П., Ненахов Б.В., Селезнев И.И., Цукерберг С.М. Автомобильные шины (конструкция, расчет, испытание, эксплуатация). – Под общей редакцией Бидермана В.Л. – М.: Государственное научно-техническое изд-во химической литературы, 1963. – 384 с.

[2] Кристенсен Р. Введение в механику композитов. – М.: «Мир», 1982. – 334 с.

[3] Победря Б.Е. Механика композиционных материалов. - М.: Издательство Московского университета, 1984. - 335 с.

[4] Mohammad Ali Bagheri, Antonin Settari Effects of fractures on reservoir deformation and flow modeling // Canadian Geotechnical Journal, Vol 43, 2006. - P. 574-586.

[5] Hashin, Z, and Shtrikman, S, 1963, A variational approach to the elastic behavior of multiphase minerals. Journal of the Mechanics and Physics of Solids, 11 (2), 127-140.

[6] Kachanov M., Tsukrov I., Shafiro B. Effective modulus of solids with cavities of various shapes // Applied Mechanics Reviews, Vol. 47, No. 1, Part 2, 1994 - P. 151-174.

Result comparison

Hexahedron (order 1, order 2)

No	Value	Description	Unit	Target	CAE Fidesys	Error,%
1	Effective elastic modulus	C_1111	Ра	21	21.0	0
2	Effective elastic modulus	C_1122	Ра	9	9.00	0
3	Effective elastic modulus	C_1133	Ра	7.5	7.5	0
4	Effective elastic modulus	C_1212	Ра	3	3.00	0
5	Effective elastic modulus	C_1313	Ра	2	2.0	0
6	Effective elastic modulus	C_2222	Ра	13	13.00	0
7	Effective elastic modulus	C_2233	Ра	5.5	5.50	0

No	Value	Description	Unit	Target	CAE Fidesys	Error,%
8	Effective elastic modulus	C_2323	Ра	1	1	0
9	Effective elastic modulus	C_3333	Ра	7.25	7.250	0
10	Effective density	Density	kg/m ³	1.0	1.00	0

Script CAE Fidesys:

reset brick x 1 volume 1 scheme Map volume 1 size 0.5 mesh volume 1 create material 1 modify material 1 name 'Material1' modify material 1 set property 'ORTHOTROPIC_E_X' value 12 modify material 1 set property 'ORTHOTROPIC_E_Y' value 8 modify material 1 set property 'ORTHOTROPIC_E_Z' value 4 modify material 1 set property 'ORTHOTROPIC_PR_XY' value 0.375 modify material 1 set property 'ORTHOTROPIC_PR_XZ' value 0.75 modify material 1 set property 'ORTHOTROPIC_PR_YZ' value 0.5modify material 1 set property 'ORTHOTROPIC_G_XY' value 3 modify material 1 set property 'ORTHOTROPIC_G_XZ' value 2 modify material 1 set property 'ORTHOTROPIC_G_YZ' value 1 modify material 1 set property 'ORTHO_THERMAL_EXPANSION_X' value 1 modify material 1 set property 'ORTHO_THERMAL_EXPANSION_Y' value 2 modify material 1 set property 'ORTHO_THERMAL_EXPANSION_Z' value 3 modify material 1 set property 'DENSITY' value 1 block 1 volume 1 block 1 material 'Material1' block 1 element solid order 1 # update automatical from 1 to 2 analysis type effectiveprops elasticity dim3 periodicbc off

Tetrahedron (order 1, order 2)

No	Value	Description	Unit	Target	CAE Fidesys	Error,%
1	Effective elastic modulus	C_1111	Ра	21	21.0	0
2	Effective elastic modulus	C_1122	Ра	9	9.00	0
3	Effective elastic modulus	C_1133	Ра	7.5	7.5	0
4	Effective elastic modulus	C_1212	Ра	3	3.00	0
5	Effective elastic modulus	C_1313	Ра	2	2.0	0
6	Effective elastic modulus	C_2222	Ра	13	13.00	0
7	Effective elastic modulus	C_2233	Ра	5.5	5.50	0
8	Effective elastic modulus	C_2323	Ра	1	1	0

No	Value	Description	Unit	Target	CAE Fidesys	Error,%
9	Effective elastic modulus	C_3333	Ра	7.25	7.250	0
10	Effective density	Density	kg/m ³	1.0	1.00	0

Script CAE Fidesys:

reset brick x 1 volume 1 scheme Tetmesh volume 1 size 0.1 mesh volume 1 create material 1 modify material 1 name 'Material1' modify material 1 set property 'ORTHOTROPIC_E_X' value 12 modify material 1 set property 'ORTHOTROPIC E Y' value 8 modify material 1 set property 'ORTHOTROPIC_E_Z' value 4 modify material 1 set property 'ORTHOTROPIC PR XY' value 0.375 modify material 1 set property 'ORTHOTROPIC_PR_XZ' value 0.75 modify material 1 set property 'ORTHOTROPIC_PR_YZ' value 0.5 modify material 1 set property 'ORTHOTROPIC_G_XY' value 3 modify material 1 set property 'ORTHOTROPIC_G_XZ' value 2 modify material 1 set property 'ORTHOTROPIC_G_YZ' value 1 modify material 1 set property 'ORTHO_THERMAL_EXPANSION_X' value 1 modify material 1 set property 'ORTHO_THERMAL_EXPANSION_Y' value 2 modify material 1 set property 'ORTHO_THERMAL_EXPANSION_Z' value 3 modify material 1 set property 'DENSITY' value 1 block 1 volume 1 block 1 material 'Material1' block 1 element solid order 1 # update automatical from 1 to 2 analysis type effectiveprops elasticity dim3 periodicbc off

Reference:

Бидерман В.Л., Гуслицер Р.Л., Захаров С.П., Ненахов Б.В., Селезнев И.И., Цукерберг С.М. Автомобильные шины (конструкция, расчет, испытание, эксплуатация). – Под общей редакцией Бидермана В.Л. – М.: Государственное научно-техническое изд-во химической литературы, 1963. – 384 с.

Кристенсен Р. Введение в механику композитов. - М.: «Мир», 1982. - 334 с.

Победря Б.Е. Механика композиционных материалов. - М.: Издательство Московского университета, 1984. - 335 с.

Mohammad Ali Bagheri, Antonin Settari Effects of fractures on reservoir deformation and flow modeling // Canadian Geotechnical Journal, Vol 43, 2006. - P. 574-586.

Hashin, Z, and Shtrikman, S, 1963, A variational approach to the elastic behavior of multiphase minerals. Journal of the Mechanics and Physics of Solids, 11 (2), 127-140.

Kachanov M., Tsukrov I., Shafiro B. Effective modulus of solids with cavities of various shapes // Applied Mechanics Reviews, Vol. 47, No. 1, Part 2, 1994 - P. 151-174.

1.3.Test Case No.1.3

Problem Description

Determination of effective mechanical characteristics for a cube of homogeneous transversely-isotropic material.

Input Values

Material Properties:

- Transversely-isotropic;
- Young's modulus T = 3 Pa;
- Young's modulus L = 4 Pa;
- Poisson ratio T = 0.25;
- Poisson ratio TL = 0.5;
- Density = 1 kg/m^3 .
- Shear modulus TL = 1 Pa.

Geometric model:

- Solid cube with side 1m;
- Homogeneous material.

Boundary conditions:

• Non-periodic.

Mesh:

• Hexahedron (order 1, order 2), Tetrahedron (order 1, order 2);

Fig 1.5 – Mesh 3D – Hexahedron

Fig 1.6 - Mesh 3D - Tetrahedron

Output Values

No	Value	Description	Unit	Target
1	Effective elastic modulus	C_1111	Ра	19.2
2	Effective elastic modulus	C_1122	Ра	16.8
3	Effective elastic modulus	C_1133	Ра	24
4	Effective elastic modulus	C_1212	Ра	1.2
5	Effective elastic modulus	C_1313	Ра	1
6	Effective elastic modulus	C_2222	Ра	19.2
7	Effective elastic modulus	C_2233	Ра	24
8	Effective elastic modulus	C_2323	Ра	1
9	Effective elastic modulus	C_3333	Ра	36
10	Effective Young's modulus	Ex	Ра	3.0
11	Effective Young's modulus	Ey	Ра	3.0
12	Effective Young's modulus	Ez	Ра	4.0
13	Effective Poisson ratio	v_{yx}	-	0.25
14	Effective Poisson ratio	v_{zx}	-	0.6667
15	Effective Poisson ratio	v_{zy}	-	0.6667
16	Effective shear modulus	Gxy	Ра	1.2
17	Effective shear modulus	Gxz	Ра	1.0
18	Effective shear modulus	Gyz	Gyz Pa	
19	Effective density	Density	kg/m ³	1.0

Calculation method used for the reference solution

Six deformation types are applied to a representative volume, each of which has its own type of effective strain tensor E^{e} :

13.
$$E_e = \begin{pmatrix} q & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 - stretching/compression along the axis X;
14.
$$E_e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 - stretching/compression along the axis Y;

15.
$$E_e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & q \end{pmatrix}$$
 - stretching/compression along the axis Z;

16.
$$E_e = \begin{pmatrix} 0 & q & 0 \\ q & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 – in plane shear XY;

17.
$$E_e = \begin{pmatrix} 0 & 0 & q \\ 0 & 0 & 0 \\ q & 0 & 0 \end{pmatrix}$$
 – in plane shear XZ;

18.
$$E_e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & q \\ 0 & q & 0 \end{pmatrix}$$
 – in plane shear YZ.

So, for each of the six boundary value problems, an effective strain tensor E^e was given and the effective stress tensor σ^e is obtained.

The linear dependence of σ^e on q is presented by the formula:

$$a_{ij}^e = a_{ij}q$$

Since the magnitude of deformations q and the corresponding tensor σ^e are known, the tensor coefficient of the dependence a_{ij} can be calculated simply:

$$a_{ij} = \frac{\sigma_{ij}^e}{q}$$

Since the effective properties are estimated in the form of the generalized Hooke's law

$$\sigma_{ij} = Cijkle_{kl}$$

considering the form E^e in each problem, the formulas for Cijkl will look like this:

$$1) \quad E^{e} = \begin{pmatrix} q & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = \sigma_{ij11}q, \quad \sigma_{ij} = \alpha_{ij}^{(1)}q;$$

$$2) \quad E^{e} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = \sigma_{ij22}q, \quad \sigma_{ij} = \alpha_{ij}^{(2)}q;$$

$$3) \quad E^{e} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & q \end{pmatrix} \Rightarrow \sigma_{ij} = \sigma_{ij33}q, \quad \sigma_{ij} = \alpha_{ij}^{(3)}q;$$

$$4) \quad E^{e} = \begin{pmatrix} 0 & q & 0 \\ q & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = (\sigma_{ij12} + \sigma_{ij21})q, \quad \sigma_{ij} = \alpha_{ij}^{(4)}q;$$

$$5) \quad E^{e} = \begin{pmatrix} 0 & 0 & q \\ 0 & 0 & 0 \\ q & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = (\sigma_{ij13} + \sigma_{ij31})q, \quad \sigma_{ij} = \alpha_{ij}^{(5)}q;$$

6)
$$E^e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & q \\ 0 & q & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = (\sigma_{ij23} + \sigma_{ij32})q, \ \sigma_{ij} = \alpha_{ij}^{(6)}q.$$

Hence, the coefficients *Cijkl* are calculated from the corresponding α_{ij} :

- 1) $C_{ij11} = \alpha_{ij}^{(1)};$ 2) $C_{ij22} = \alpha_{ij}^{(2)};$
- 3) $C_{ij33} = \alpha_{ij}^{(3)};$
- 4) $C_{ij12} = C_{ij21} = \frac{1}{2} \alpha_{ij}^{(4)};$
- 5) $C_{ij13} = C_{ij31} = \frac{1}{2} \alpha_{ij}^{(5)};$

6)
$$C_{ij23} = C_{ij32} = \frac{1}{2}\alpha_{ij}^{(6)}$$
.

Reference:

[1] Бидерман В.Л., Гуслицер Р.Л., Захаров С.П., Ненахов Б.В., Селезнев И.И., Цукерберг С.М. Автомобильные шины (конструкция, расчет, испытание, эксплуатация). – Под общей редакцией Бидермана В.Л. – М.: Государственное научно-техническое изд-во химической литературы, 1963. – 384 с.

[2] Кристенсен Р. Введение в механику композитов. – М.: «Мир», 1982. – 334 с.

[3] Победря Б.Е. Механика композиционных материалов. - М.: Издательство Московского университета, 1984. - 335 с.

[4] Mohammad Ali Bagheri, Antonin Settari Effects of fractures on reservoir deformation and flow modeling // Canadian Geotechnical Journal, Vol 43, 2006. - P. 574-586.

[5] Hashin, Z, and Shtrikman, S, 1963, A variational approach to the elastic behavior of multiphase minerals. Journal of the Mechanics and Physics of Solids, 11 (2), 127-140.

[6] Kachanov M., Tsukrov I., Shafiro B. Effective modulus of solids with cavities of various shapes // Applied Mechanics Reviews, Vol. 47, No. 1, Part 2, 1994 - P. 151-174.

Result comparison

Hexahedron (order 1, order 2)

No	Value	Description	Unit	Target	CAE Fidesys	Error,%
1	Effective elastic modulus	C_1111	Ра	19.2	19.20	0
2	Effective elastic modulus	C_1122	Ра	16.8	16.80	0
3	Effective elastic modulus	C_1133	Ра	24	24.00	0
4	Effective elastic modulus	C_1212	Ра	1.2	1.20	0

No	Value	Description	Unit	Target	CAE Fidesys	Error,%
5	Effective elastic modulus	C_1313	Ра	1	1.00	0
6	Effective elastic modulus	C_2222	Ра	19.2	19.20	0
7	Effective elastic modulus	C_2233	Ра	24	24.00	0
8	Effective elastic modulus	C_2323	Ра	1	1.00	0
9	Effective elastic modulus	C_3333	Ра	36	36.00	0
10	Effective Young's modulus	Ex	Ра	3.0	3.00	0
11	Effective Young's modulus	Еу	Ра	3.0	3.00	0
12	Effective Young's modulus	Ez	Ра	4.0	4.00	0
13	Effective Poisson ratio	v_{yx}	-	0.25	0.25	0
14	Effective Poisson ratio	v_{zx}	-	0.6667	0.6666	<<0.01
15	Effective Poisson ratio	v_{zy}	-	0.6667	0.66666	<<0.01
16	Effective shear modulus	Gxy	Ра	1.2	1.20	0
17	Effective shear modulus	Gxz	Pa	1.0	1.00	0
18	Effective shear modulus	Gyz	Ра	1.0	1.000	0
19	Effective density	Density	kg/m ³	1.0	1.00	0

Script CAE Fidesys:

reset set default element hex brick x 1 volume 1 size 0.5 mesh volume 1 block 1 volume 1 create material 1 modify material 1 set property 'TR_ISOT_E_T' value 3 modify material 1 set property 'TR_ISOT_E_L' value 4 modify material 1 set property 'TR_ISOT_G_TL' value 1 modify material 1 set property 'TR_ISOT_PR_T' value 0.25 modify material 1 set property 'TR_ISOT_PR_TL' value 0.5 modify material 1 set property 'DENSITY' value 1 block 1 material 1 block 1 element solid order 1 # update automatical from 1 to 2

analysis type effectiveprops elasticity dim3 periodicbc on

Tetrahedron (order 1, order 2)

No	Value	Description	Unit	Target	CAE Fidesys	Error,%
1	Effective elastic modulus	C_1111	Ра	19.2	19.20	0
2	Effective elastic modulus	C_1122	Pa	16.8	16.80	0
3	Effective elastic modulus	C_1133	Ра	24	24.00	0
4	Effective elastic modulus	C_1212	Ра	1.2	1.20	0
5	Effective elastic modulus	C_1313	Ра	1	1.00	0
6	Effective elastic modulus	C_2222	Ра	19.2	19.20	0
7	Effective elastic modulus	C_2233	Ра	24	24.00	0
8	Effective elastic modulus	C_2323	Ра	1	1.00	0
9	Effective elastic modulus	C_3333	Ра	36	36.00	0
110	Effective Young's modulus	Ex	Ра	3.0	3.00	0
111	Effective Young's modulus	Ey	Ра	3.0	3.00	0
112	Effective Young's modulus	Ez	Ра	4.0	4.00	0
113	Effective Poisson ratio	v_{yx}	-	0.25	0.25	0
114	Effective Poisson ratio	v_{zx}	-	0.6667	0.6666	0.0049
115	Effective Poisson ratio ν_{zy}		-	0.6667	0.66666	0.0049
116	Effective shear modulus	Gxy	Ра	1.2	1.20	0
117	Effective shear modulus	Gxz	Pa	1.0	1.00	0
118	Effective shear modulus	Gyz	Pa	1.0	1.000	0
119	Effective density	Density	kg/m ³	1.0	1.00	0

Script CAE Fidesys:

reset brick x 1 volume 1 scheme Tetmesh volume 1 size 0.1 mesh volume 1 block 1 volume 1 create material 1 modify material 1 set property 'TR_ISOT_E_T' value 3 modify material 1 set property 'TR_ISOT_E_L' value 4 modify material 1 set property 'TR_ISOT_G_TL' value 1 modify material 1 set property 'TR_ISOT_PR_T' value 0.25 modify material 1 set property 'TR_ISOT_PR_TL' value 0.5 modify material 1 set property 'DENSITY' value 1 block 1 material 1 block 1 element solid order 1 # update automatical from 1 to 2 analysis type effectiveprops elasticity dim3

1.4.Test Case No.1.4

Problem Description

Determination of effective mechanical characteristics for a cube of homogeneous Murnaghan material.

Input Values

Material Properties:

- Murnaghan material;
- Lame modul = 2;
- Density = 1 kg/m^3 .;
- Shear modulus = $1 \Pi a$;
- Coefficient C3 = -0.1;
- Coefficient C4 = -0.2;
- Coefficient C5 = -0.3.

Geometric model:

- Solid cube with side 1m;
- Homogeneous material.

Boundary conditions:

• Non-periodic.

Mesh:

Hexahedron mesh order 1, order 2;

Fig 1.7 - Mesh 3D - Hexahedron

Fig 1.8 - Mesh 3D - Tetrahedron

Output Values

No	Value	Description	Unit	Target
1	Effective elastic modulus	C_1111	Ра	4
2	Effective elastic modulus	C_1122	Ра	2
3	Effective elastic modulus	C_1133	Ра	2
4	Effective elastic modulus	C_1212	Pa	1
5	Effective elastic modulus	C_1313	Pa	1
6	Effective elastic modulus	C_2222	Ра	4
7	Effective elastic modulus	C_2233	Pa	2
8	Effective elastic modulus	C_2323	Pa	1
9	Effective elastic modulus	C_3333	Pa	4
10	Young's modulus	Е	Ра	2.6667
11	Poisson ratio	ν	-	0.3333
12	Density	Density	kg/m ³	1.0

Calculation method used for the reference solution

Six deformation types are applied to a representative volume, each of which has its own type of effective strain tensor E^{e} :

19. $E_e = \begin{pmatrix} q & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ – stretching/compression along the axis X;

20.
$$E_e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 - stretching/compression along the axis Y;

21.
$$E_e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & q \end{pmatrix}$$
 - stretching/compression along the axis Z;

22.
$$E_e = \begin{pmatrix} 0 & q & 0 \\ q & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 – in plane shear XY;

23.
$$E_e = \begin{pmatrix} 0 & 0 & q \\ 0 & 0 & 0 \\ q & 0 & 0 \end{pmatrix}$$
 – in plane shear XZ;

24.
$$E_e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & q \\ 0 & q & 0 \end{pmatrix}$$
 – in plane shear YZ

So, for each of the six boundary value problems, an effective strain tensor E^e was given and the effective stress tensor σ^e is obtained.

The linear dependence of σ^e on q is presented by the formula:

Since the magnitude of deformations q and the corresponding tensor σ^e are known, the tensor coefficient of the dependence a_{ij} can be calculated simply:

$$a_{ij} = \frac{\sigma_{ij}^e}{q}$$

Since the effective properties are estimated in the form of the generalized Hooke's law

$$\sigma_{ij} = Cijkle_{kl}$$

considering the form E^e in each problem, the formulas for *Cijkl* will look like this:

$$1) \quad E^{e} = \begin{pmatrix} q & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = \sigma_{ij11}q, \quad \sigma_{ij} = \alpha_{ij}^{(1)}q;$$

$$2) \quad E^{e} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = \sigma_{ij22}q, \quad \sigma_{ij} = \alpha_{ij}^{(2)}q;$$

$$3) \quad E^{e} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & q \end{pmatrix} \Rightarrow \sigma_{ij} = \sigma_{ij33}q, \quad \sigma_{ij} = \alpha_{ij}^{(3)}q;$$

$$4) \quad E^{e} = \begin{pmatrix} 0 & q & 0 \\ q & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = (\sigma_{ij12} + \sigma_{ij21})q, \quad \sigma_{ij} = \alpha_{ij}^{(4)}q;$$

$$5) \quad E^{e} = \begin{pmatrix} 0 & 0 & q \\ 0 & 0 & 0 \\ q & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = (\sigma_{ij13} + \sigma_{ij31})q, \quad \sigma_{ij} = \alpha_{ij}^{(5)}q;$$

$$6) \quad E^{e} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & q \\ 0 & q & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = (\sigma_{ij23} + \sigma_{ij32})q, \quad \sigma_{ij} = \alpha_{ij}^{(6)}q.$$

Hence, the coefficients *Cijkl* are calculated from the corresponding α_{ij} : 1) $C_{ij11} = \alpha_{ij}^{(1)}$;

- 2) $C_{ij22} = \alpha_{ij}^{(2)};$
- 3) $C_{ij33} = \alpha_{ij}^{(3)};$

- 4) $C_{ij12} = C_{ij21} = \frac{1}{2}\alpha_{ij}^{(4)};$
- 5) $C_{ij13} = C_{ij31} = \frac{1}{2} \alpha_{ij}^{(5)};$
- 6) $C_{ij23} = C_{ij32} = \frac{1}{2} \alpha_{ij}^{(6)}$.

Reference:

[1] Бидерман В.Л., Гуслицер Р.Л., Захаров С.П., Ненахов Б.В., Селезнев И.И., Цукерберг С.М. Автомобильные шины (конструкция, расчет, испытание, эксплуатация). – Под общей редакцией Бидермана В.Л. – М.: Государственное научно-техническое изд-во химической литературы, 1963. – 384 с.

[2] Кристенсен Р. Введение в механику композитов. – М.: «Мир», 1982. – 334 с.

[3] Победря Б.Е. Механика композиционных материалов. - М.: Издательство Московского университета, 1984. - 335 с.

[4] Mohammad Ali Bagheri, Antonin Settari Effects of fractures on reservoir deformation and flow modeling // Canadian Geotechnical Journal, Vol 43, 2006. - P. 574-586.

[5] Hashin, Z, and Shtrikman, S, 1963, A variational approach to the elastic behavior of multiphase minerals. Journal of the Mechanics and Physics of Solids, 11 (2), 127-140.

[6] Kachanov M., Tsukrov I., Shafiro B. Effective modulus of solids with cavities of various shapes // Applied Mechanics Reviews, Vol. 47, No. 1, Part 2, 1994 - P. 151-174.

Hexah	Hexahedron mesh order 1, order 2								
No	Value	Description	Unit	Target	CAE Fidesys	Error,%			
1	Effective elastic modulus	C_1111	Ра	4	4.00	0			
2	Effective elastic modulus	C_1122	Ра	2	2.00	0			
3	Effective elastic modulus	C_1133	Ра	2	2.00	0			
4	Effective elastic modulus	C_1212	Ра	1	1.00	0			
5	Effective elastic modulus	C_1313	Ра	1	1.00	0			
6	Effective elastic modulus	C_2222	Ра	4	4.00	0			
7	Effective elastic modulus	C_2233	Ра	2	2.00	0			
8	Effective elastic modulus	C_2323	Ра	1	1.00	0			
9	Effective elastic modulus	C_3333	Ра	4	4.00	0			

Result comparison

No	Value	Description	Unit	Target	CAE Fidesys	Error,%
10	Young's modulus	Е	Ра	2.6667	2.66666	<<0.01
11	Poisson ratio	ν	-	0.3333	0.33333	<<0.01
12	Density	Density	кг/м ³	1.0	1.0	0

Script CAE Fidesys:

reset set default element hex brick x 1 volume 1 size 0.5 mesh volume 1 block 1 volume 1 create material modify material 1 set property 'MUR_LAME' value 2 modify material 1 set property 'MUR_SHEAR' value 1 modify material 1 set property 'MUR_C3' value -0.1 modify material 1 set property 'MUR_C4' value -0.2 modify material 1 set property 'MUR_C5' value -0.3 modify material 1 set property 'DENSITY' value 1 block 1 material 1 block 1 element solid order 1 # update automatical from 1 to 2 analysis type effectiveprops elasticity dim3 periodicbc on

No	Value	Description	Unit	Target	CAE Fidesys	Error,%
1	Effective elastic modulus	C_1111	Ра	4	4.00	0
2	Effective elastic modulus	C_1122	Ра	2	2.00	0
3	Effective elastic modulus	C_1133	Ра	2	2.00	0
4	Effective elastic modulus	C_1212	Ра	1	1.00	0
5	Effective elastic modulus	C_1313	Ра	1	1.00	0
6	Effective elastic modulus	C_2222	Ра	4	4.00	0
7	Effective elastic modulus	C_2233	Ра	2	2.00	0
8	Effective elastic modulus	C_2323	Ра	1	1.00	0
9	Effective elastic modulus	C_3333	Ра	4	4.00	0
10	Young's modulus	Е	Ра	2.6667	2.66666	<<0.01
11	Poisson ratio	ν	-	0.3333	0.33333	<<0.01

Tetrahedron mesh order 1, order 2.

No	Value	Description	Unit	Target	CAE Fidesys	Error,%
12	Density	Density	kg/m ³	1.0	1.0	0

Script CAE Fidesys:

reset

brick x 1

volume 1 scheme Tetmesh

volume 1 size 0.1

mesh volume 1

block 1 volume 1

create material

modify material 1 set property 'MUR_LAME' value 2

modify material 1 set property 'MUR_SHEAR' value 1

modify material 1 set property 'MUR_C3' value -0.1

modify material 1 set property 'MUR_C4' value -0.2

modify material 1 set property 'MUR_C5' value -0.3

modify material 1 set property 'DENSITY' value 1

block 1 material 1

block 1 element solid order 1 # update automatical from 1 to 2

analysis type effectiveprops elasticity dim3

periodicbc on

1.5.Test Case No.1.5

Problem Description

Determination of effective mechanical characteristics for a single layer fiber composite.

Input Values

Material Properties:

Matrix

- Young's modulus E = 200 GPa;
- Poisson ratio v = 0.3.
- Density = 1000 kg/m^3 .

Thread:

- Young's modulus E = 2000 Pa;
- Poisson ratio =0.2;
- Density = 2000 kg/m^3

Geometric model:

- Rectangular parallelepiped 25 x 16 x 16;
- In the center along the X runs a thread with a length of 25 and a radius 2.85459861019.

Boundary conditions:

• Periodic.

Mesh:

• Hexahedron (order 1, order 2);

Fig 1.9 – Mesh 3D – Hexahedron

Fig 1.10 - Mesh 3D- Tetrahedron

Output Values

No	Value	Description	Unit	Target
1	Effective elastic modulus	C_1111	Ра	202.48
2	Effective elastic modulus	C_1122	Ра	1.22711
3	Effective elastic modulus	C_1133	Ра	1.22711
4	Effective elastic modulus	C_1212	Ра	0.938421
5	Effective elastic modulus	C_1313	Ра	0.938421
6	Effective elastic modulus	C_2222	Ра	3.11029
7	Effective elastic modulus	C_2233	Ра	1.33286
8	Effective elastic modulus	C_2323	Ра	0.888717
9	Effective elastic modulus	C_3333 Pa		3.11029
10	Effective Young's modulus	E1 Pa		201.803
11	Effective Young's modulus	E2	Ра	2.53669
12	Effective Young's modulus	E2	Ра	2.53669
13	Effective Poisson ratio	v ₁₂₌₁₃	-	0.27618
14	Effective shear modulus	G12=G13	Ра	0.938421
15	Effective shear modulus	G23	Ра	0.888717
16	Density	Density	кг/м ³	1100

Calculation method used for the reference solution

Six deformation types are applied to a representative volume, each of which has its own type of effective strain tensor E^{e} :

25.
$$E_e = \begin{pmatrix} q & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 – stretching/compression along the axis X;
26. $E_e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & 0 \end{pmatrix}$ – stretching/compression along the axis Y;
27. $E_e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & q \end{pmatrix}$ - stretching/compression along the axis Z;

28.
$$E_e = \begin{pmatrix} 0 & q & 0 \\ q & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 – in plane shear XY;
29. $E_e = \begin{pmatrix} 0 & 0 & q \\ 0 & 0 & 0 \\ q & 0 & 0 \end{pmatrix}$ – in plane shear XZ;
30. $E_e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & q \\ 0 & 0 & q \end{pmatrix}$ – in plane shear YZ.

D.
$$E_e = \begin{pmatrix} 0 & 0 & q \\ 0 & q & 0 \end{pmatrix}$$
 – in plane shea

So, for each of the six boundary value problems, an effective strain tensor E^e was given and the effective stress tensor σ^e is obtained.

The linear dependence of σ^e on q is presented by the formula:

$$a_{ij}^e = a_{ij}q$$

Since the magnitude of deformations q and the corresponding tensor σ^e are known, the tensor coefficient of the dependence a_{ij} can be calculated simply:

$$a_{ij} = \frac{\sigma_{ij}^e}{q}$$

Since the effective properties are estimated in the form of the generalized Hooke's law

$$\sigma_{ij} = Cijkle_{kl}$$

considering the form E^e in each problem, the formulas for *Cijkl* will look like this:

$$1) \quad E^{e} = \begin{pmatrix} q & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = \sigma_{ij11}q, \quad \sigma_{ij} = \alpha_{ij}^{(1)}q;$$

$$2) \quad E^{e} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = \sigma_{ij22}q, \quad \sigma_{ij} = \alpha_{ij}^{(2)}q;$$

$$3) \quad E^{e} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & q \end{pmatrix} \Rightarrow \sigma_{ij} = \sigma_{ij33}q, \quad \sigma_{ij} = \alpha_{ij}^{(3)}q;$$

$$4) \quad E^{e} = \begin{pmatrix} 0 & q & 0 \\ q & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = (\sigma_{ij12} + \sigma_{ij21})q, \quad \sigma_{ij} = \alpha_{ij}^{(4)}q;$$

$$5) \quad E^{e} = \begin{pmatrix} 0 & 0 & q \\ 0 & 0 & 0 \\ q & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = (\sigma_{ij13} + \sigma_{ij31})q, \quad \sigma_{ij} = \alpha_{ij}^{(5)}q;$$

$$6) \quad E^{e} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & q \\ 0 & q & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = (\sigma_{ij23} + \sigma_{ij32})q, \quad \sigma_{ij} = \alpha_{ij}^{(6)}q.$$

Hence, the coefficients *Cijkl* are calculated from the corresponding α_{ij} :

1) $C_{ij11} = \alpha_{ij}^{(1)};$ 2) $C_{ij22} = \alpha_{ij}^{(2)};$ 3) $C_{ij33} = \alpha_{ij}^{(3)};$ 4) $C_{ij12} = C_{ij21} = \frac{1}{2}\alpha_{ij}^{(4)};$ 5) $C_{ij12} = C_{ij21} = \frac{1}{2}\alpha_{ij}^{(5)};$

$$2^{-1}$$

6)
$$C_{ij23} = C_{ij32} = \frac{1}{2}\alpha_{ij}^{(6)}$$
.

Reference:

[1] Бидерман В.Л., Гуслицер Р.Л., Захаров С.П., Ненахов Б.В., Селезнев И.И., Цукерберг С.М. Автомобильные шины (конструкция, расчет, испытание, эксплуатация). – Под общей редакцией Бидермана В.Л. – М.: Государственное научно-техническое изд-во химической литературы, 1963. – 384 с.

[2] Кристенсен Р. Введение в механику композитов. – М.: «Мир», 1982. – 334 с.

[3] Победря Б.Е. Механика композиционных материалов. - М.: Издательство Московского университета, 1984. - 335 с.

[4] Mohammad Ali Bagheri, Antonin Settari Effects of fractures on reservoir deformation and flow modeling // Canadian Geotechnical Journal, Vol 43, 2006. - P. 574-586.

[5] Hashin, Z, and Shtrikman, S, 1963, A variational approach to the elastic behavior of multiphase minerals. Journal of the Mechanics and Physics of Solids, 11 (2), 127-140.

[6] Kachanov M., Tsukrov I., Shafiro B. Effective modulus of solids with cavities of various shapes // Applied Mechanics Reviews, Vol. 47, No. 1, Part 2, 1994 - P. 151-174.

Result comparison

Hexahedron mesh order 1

No	Value		Description	Unit	Target	CAE Fidesys	Error,%
1	Effective modulus	elastic	C_1111	Ра	202.48	200.91644	0.77
2	Effective modulus	elastic	C_1122	Ра	1.22711	1.2725948	3.71
3	Effective modulus	elastic	C_1133	Ра	1.22711	1.2725917	3.71
4	Effective modulus	elastic	C_1212	Ра	0.938421	0.93935018	0.1

No	Value		Description	Unit	Target	CAE Fidesys	Error,%
5	Effective modulus	elastic	C_1313	Ра	0.938421	0.93929083	0.9
6	Effective modulus	elastic	C_2222	Ра	3.11029	3.135307	0.8
7	Effective modulus	elastic	C_2233	Ра	1.33286	1.3047198	2.11
8	Effective modulus	elastic	C_2323	Ра	0.888717	0.89198678	0.37
9	Effective modulus	elastic	C_3333	Ра	3.11029	3.1352915	0.8
10	Effective modulus	Young's	E1	Ра	201.803	200.18694	0.8
11	Effective modulus	Young's	E2	Ра	2.53669	2.5896062	2.09
12	Effective modulus	Young's	E2	Ра	2.53669	2.5895934	2.09
13	Effective Po	isson ratio	v ₁₂₌₁₃	-	0.27618	0.28661851	3.78
14	Effective modulus	shear	G12=G13	Ра	0.938421	0.93935018	0.10
15	Effective modulus	shear	G23	Ра	0.888717	0.89198677	0.37
16	Density		Density	кг/м ³	1100	1099.2705	0.07

Hexahedron mesh order 2

No	Value	Description	Unit	Target	CAE Fidesys	Error,%
1	Effective elastic modulus	C_1111	Ра	202.48	202.37216	0.05
2	Effective elastic modulus	C_1122	Ра	1.22711	1.2731799	3.75
3	Effective elastic modulus	C_1133	Ра	1.22711	1.2731803	3.75
4	Effective elastic modulus	C_1212	Ра	0.938421	0.93983167	0.15
5	Effective elastic modulus	C_1313	Ра	0.938421	0.9398312	0.15
6	Effective elastic modulus	C_2222	Ра	3.11029	3.1359977	0.83
7	Effective elastic modulus	C_2233	Ра	1.33286	1.3069533	1.94

No	Value	Description	Unit	Target	CAE Fidesys	Error,%
8	Effective elastic modulus	C_2323	Ра	0.888717	0.89142408	0.3
9	Effective elastic modulus	C_3333	Ра	3.11029	3.1359996	0.83
10	Effective Young's modulus	E1	Ра	201.803	201.64247	0.08
11	Effective Young's modulus	E2	Ра	2.53669	2.5885826	2.05
12	Effective Young's modulus	E2	Ра	2.53669	2.5885842	2.05
13	Effective Poisson ratio	ν 12 =13	-	0.27618	0.2865618	3.76
14	Effective shear modulus	G12=G13	Ра	0.938421	0.93983167	0.15
15	Effective shear modulus	G23	Ра	0.888717	0.89142408	0.3
16	Density	Density	кг/м3	1100	1099.9996	<<0.001

Script CAE Fidesys:

reset set default element hex $#\{\text{length} = 25.0\}$ $#{pitch = 16.0}$ $#{$ thick = 16.0 $}$ # thickness $\#\{\text{conc} = 10\} \# \text{ cord concentration, percents}$ #{rad = sqrt(0.01*pitch*thick*conc/3.1415926)} $#{size = 0.6}$ # geometry create brick width {length} depth {pitch} height {thick} create cylinder height {length} radius {rad} volume 2 rotate 90.0 about y subtract volume 2 from volume 1 keep delete volume 1 imprint volume all merge volume all # meshing volume all size {size} curve 18 20 22 24 interval 10 mesh volume all # materials create material 1 name 'fiber' modify material 1 set property 'MODULUS' value 2000 modify material 1 set property 'POISSON' value 0.2 modify material 1 set property 'DENSITY' value 2000 create material 2 name 'matrix' modify material 2 set property 'MODULUS' value 2 modify material 2 set property 'POISSON' value 0.3 modify material 2 set property 'DENSITY' value 1000 # blocks block 1 volume 2 block 2 volume 3 block 1 material 'fiber'
block 2 material 'matrix' block 1 element solid order 1 # update automatical from 1 to 2 analysis type effectiveprops elasticity dim3 periodicbc on

Tetrahedron mesh order 2.

N o	Value	Description	Unit	Target	CAE Fidesys	Error,%
1	Effective elastic modulus	C_1111	Ра	202.48	202.35716	0.06
2	Effective elastic modulus	C_1122	Ра	1.22711	1.2758773	3.97
3	Effective elastic modulus	C_1133	Ра	1.22711	1.2727573	3.72
4	Effective elastic modulus	C_1212	Ра	0.938421	0.94320854	0.51
5	Effective elastic modulus	C_1313	Ра	0.938421	0.94085293	0.26
6	Effective elastic modulus	C_2222	Ра	3.11029	3.1516379	1.33
7	Effective elastic modulus	C_2233	Ра	1.33286	1.306944	1.94
8	Effective elastic modulus	C_2323	Ра	0.888717	0.90263071	1.57
9	Effective elastic modulus	C_3333	Ра	3.11029	3.1464708	1.16
10	Effective Young's modulus	E1	Ра	201.803	201.6283	0.09
11	Effective Young's modulus	E2	Ра	2.53669	2.6059074	2.73
12	Effective Young's modulus	E2	Ра	2.53669	2.6016836	2.56
13	Effective Poisson ratio	v 12 = 13	-	0.27618	0.28642531	3.71
14	Effective shear modulus	G12=G13	Ра	0.938421	0.94317109	0.51
15	Effective shear modulus	G23	Ра	0.888717	0.90261837	1.56
16	Density	Density	кг/м ³	1100	1099.9915	<< 0.001

Script CAE Fidesys:

reset
#{length = 25.0}
#{pitch = 16.0}
#{thick = 16.0} # thickness
#{conc = 10} # cord concentration, percents
#{rad = sqrt(0.01*pitch*thick*conc/3.1415926)}
#{size = 4}
geometry
create brick width {length} depth {pitch} height {thick}
create cylinder height {length} radius {rad}
volume 2 rotate 90.0 about y
subtract volume 2 from volume 1 keep
delete volume 1

imprint volume all merge volume all # meshing volume all scheme Tetmesh volume all size {size} mesh volume all # materials create material 1 name 'fiber' modify material 1 set property 'MODULUS' value 2000 modify material 1 set property 'POISSON' value 0.2 modify material 1 set property 'DENSITY' value 2000 create material 2 name 'matrix' modify material 2 set property 'MODULUS' value 2 modify material 2 set property 'POISSON' value 0.3 modify material 2 set property 'DENSITY' value 1000 # blocks block 1 volume 2 block 2 volume 3 block 1 material 'fiber' block 2 material 'matrix' block 1 2 element solid order 2 analysis type effectiveprops elasticity dim3 periodicbc on

1.6.Test case No.1.6

Problem Description

The Lamb problem is considered, which is a dynamic action model of a concentrated load on the elastic halfplane boundary. Applied load depends on time according to Berlage's law.

Input Values

Geometric model:

- Length a=1000 m;
- Width b=500 m.

Fig. 1.11 - Geometric model of the Lamb problem

Border conditions:

• Point force is given using the Berlage formula:

$$f(t) = A \frac{\omega_1^2 e^{-\omega_1 t}}{4} \cdot \left(\sin(\omega_0 t) \left(-\frac{t^2}{\omega_1} + \frac{t}{\omega_1^2} + \frac{1}{\omega_1^3} \right) - \cos(\omega_0 t) \sqrt{3} \left(\frac{t^2}{\omega_1} + \frac{t}{\omega_1^2} \right) \right),$$
$$\omega_1 = \frac{\omega_0}{\sqrt{3}}, \quad \omega_0 = 2\pi\omega,$$

where A - amplitude, ω - frequency, t - time.

Non-reflective conditions applied to the bottom and side faces.

Material parameters:

- Young's modulus E = 2e + 08 Pa;
- Poisson ratio v = 0.3;
- Density $\rho = 1900 \ kg \ / m^3$;
- Cohesion K = 29000;
- Angle of internal friction $\alpha = 20$;

• Angle of dilatancy $\beta = 10$.

Mesh:

• Spectral elements of the 3rd order.

Fig. 1.12 - Spectral elements of the 3rd order for Lamb's problem

The mesh should be of plane quadrangles, the height of the element is calculated according to the wavelength. The wave propagation speed is calculated by the formula [1]:

$$v = \sqrt{\frac{\lambda + 2G}{\rho}}$$

where $_{h}$ - geometry height, $_{t} = \frac{h}{v}$ - time, $\lambda = \frac{Ev}{(1+v)(1-2v)}$ - Lame module, $G = \frac{E}{2+2v}$ - shear modulus.

Calculation settings:

- Dynamic calculation;
- Maximum time 3 s;
- Maximum number of steps 2025;
- Output of every 135 steps to .vtu file.

Calculation method used for the reference solution

Equations for the movement of the Rayleigh wave on the surface [1]

$$u_{R} \sim \frac{1}{2\pi} \int_{-\infty}^{\infty} -2iQe^{\frac{i\pi}{4}} \left[\frac{2}{c_{R}} \left(\frac{1}{c_{R}^{2}} - \frac{1}{\beta^{2}} \right)^{\frac{1}{2}} \right] \exp\left[i\omega \left(\frac{r}{c_{R}} - t \right) \right] \exp\left[-\omega \left(\frac{1}{c_{R}^{2}} - \frac{1}{\alpha^{2}} \right)^{\frac{1}{2}} h \right] \exp(i\omega t) d\omega,$$
$$w_{R} \sim \frac{1}{2\pi} \int_{-\infty}^{\infty} -2iQe^{\frac{i\pi}{4}} \left[\frac{2}{c_{R}^{2}} - \frac{1}{\beta^{2}} \right] \exp\left[i\omega \left(\frac{r}{c_{R}} - t \right) \right] \exp\left[-\omega \left(\frac{1}{c_{R}^{2}} - \frac{1}{\alpha^{2}} \right)^{\frac{1}{2}} h \right] \exp(i\omega t) d\omega.$$

where
$$Q = A \left(\frac{2\pi\omega}{rc_R}\right)^{1/2} \frac{\omega}{\beta^2 R'(\frac{1}{c_R})}$$
. [1]

The physical parameters values of the propagation velocity of longitudinal and transverse waves, as well as the velocity of the Rayleigh wave, are found by the following formulas [1]

$$\alpha = \sqrt{\frac{K + \frac{4}{3}\mu}{\rho}}, \ \beta = \sqrt{\frac{\mu}{\rho}}, \ c = \frac{0.87 + 1.12\nu}{1 + \nu}\beta,$$

where $\mu = \frac{E}{2(1+\nu)}$ - shear modulus, $K = \frac{E}{3(1-2\nu)}$ - compression module.

When changing ν from 0 to 0.5, the phase velocity of the Rayleigh wave monotonically changes from 0.87 to 0.96 β . Reference:

[1] Aki. K., Richards P. Quantitative seismology: Theory and methods. T. 1. Per. from English - M .: Mir, 1983 .- 520 p.

Result comparison

The displacement values are checked at the point (70.4225, 4.31214e-15, 0.0).

No.	Value	Description	Unit	Target	CAE Fidesys	Error,%
1	Displacement vector components at mesh nodes at step 6	Displacement X	m	-0.00110025	-0.0011002537	<<0.01
2	Displacement vector components at mesh nodes at step 6	Displacement Y	m	0.000517095	0.00051707876	<<0.01
3	Displacement vector components at mesh nodes at step 8	Displacement X	m	-4.78016e-05	-4.7799808 e-05	<<0.01
4	Displacement vector components at mesh nodes at step 8	Displacement Y	m	0.000445372	0.00044537138	<<0.01

Script CAE Fidesys:

reset set default element hex create surface rectangle width 1000 zplane webcut body 1 with plane xplane offset 0 webcut body 1 with plane yplane offset 0 delete Surface 3 rotate Surface 4 5 angle -90 about Z include_merged webcut body 3 1 with plane yplane offset -250 surface all size 7 mesh surface all imprint all merge all create material 1 modify material 1 name 'material' modify material 1 set property 'MODULUS' value 2e+08 modify material 1 set property 'POISSON' value 0.3 modify material 1 set property 'DENSITY' value 1900 modify material 1 set property 'COHESION' value 29000 modify material 1 set property 'INT_FRICTION_ANGLE' value 20 modify material 1 set property 'DILATANCY_ANGLE' value 10 set duplicate block elements off block 1 add surface all block 1 material 1 block 1 element plane order 3 create absorption on curve 28 24 13 15 19 21 create force on vertex 10 force value 1 direction 0 -1 0 bcdep force 1 value 'berlage(1e+8, 10, time)' create receiver on curve 16 displacement 1 1 1 #create receiver on curve 16 velocity 1 1 1 #create receiver on curve 16 principalstress 1 1 1 #create receiver on curve 16 pressure analysis type dynamic elasticity dim2 planestrain preload off dynamic method full solution scheme explicit maxtime 3 maxsteps 2025

output nodalforce off energy off record3d on log on vtu on material off results everystep 135

1.7.Test case No.1.7

Problem Description

In this problem, an infinite space is modeled, filled with a homogeneous isotropic elastic medium, in which a concentrated force acts, applied to a point and acting according to the Berlage law (Stokes problem [1]). It is considered that the source is point, that is, it is small in comparison with the distances to the receiver and just as small in comparison with the characteristic Units of space. The problem has an analytical solution.

Input Values

Fig. 1.13 - Geometric model Stokes problems

Geometric model:

- Cube 100×100×100 m;
- Geometry moved to coordinates (0, 50, 50), that M = (0, 0, 0).

Material parameters:

- Isotropic;
- Elastic modulus E = 2e8 Pa;
- Poisson ratio v = 0.3;
- Density $\rho = 1900 \text{ kg/m}^3$.

Border conditions:

- Symmetry condition: surface ABCD displacement $u_y = 0$;
- Symmetry condition: surface BB`C`C displacement u_z = 0;
- Symmetry Conditions: edge A`D` displacement u_x = 0;
- At the point M = (0, 0, 0), a force of 100 kN is applied, directed along the X axis;
- Dependence of force on time according to the Berlage formula with an amplitude of 25e6 m and a cyclic frequency of 10 Hz. Note: since a quarter of the real model is considered in CAE Fidesys, the amplitude used to implement the analytical solution in the mathematical package should be divided by 4;

- Non-reflective HA in planes AA`D`D, A`B`C`D`, DCC`D`, ABB`A`;
- Along the line of action of the force, receivers are assigned to the nodes in all directions for each field from the drop-down list (displacement, speed, principal stresses, pressure).

Mesh:

- Element height h = 10 m;
- Spectral elements of the third order.

Fig. 1.14 - Spectral elements of the third order for Stokes problems

Element height was calculated using the formula:

$$h = \frac{L(n+1)}{10}$$

where $L = \frac{\upsilon}{\omega}$ - wavelength, υ - wave speed, ω - cyclic wave frequency, n - item order.

Calculation settings:

- Dynamic calculation;
- Maximum time 0.4 s;
- Maximum number of steps 50 000;
- Output of every tenth step to .vtu file.

The maximum calculation time was chosen based on the analysis of the analytical solution in order to largely show the attenuation of the emerging waves.

Calculation method used for the reference solution

Let a concentrated force applied at a point (x_0, y_0, z_0) and directed along a certain axis x_j act on an infinite space filled with a homogeneous isotropic elastic medium. Let this force be equal to zero in magnitude at t < 0 and $X_0(t)$ at t > 0. The vector of elastic displacements $u_i(x, t)$ corresponding to such a force is determined by the following Stokes formulas [1]:

$$u_i(x,t) = \frac{1}{4\pi\rho} \left(3\gamma_i \gamma_j - \delta_{ij} \right) \frac{1}{r^3} \int_{\frac{r}{\alpha}}^{\frac{r}{\beta}} \tau X_0(t-\tau) d\tau + \frac{1}{4\pi\rho\alpha^2} \gamma_i \gamma_j \frac{1}{r} X_0(t-\frac{r}{\alpha}) - \frac{1}{r^3} \sum_{i=1}^{r} \frac{1}{r^3} \left(\frac{1}{r} \right) \frac{1}{r^3} \left(\frac{1}{r^3} \right) \frac{1}{r^3} \left(\frac{1}{r} \right) \frac{1}{r^3} \left(\frac{1}{r} \right) \frac{1}{r^3} \left(\frac{1}{r^3} \frac{1}{r^3} \left(\frac{1}{r^3} \left(\frac{1}{r^3} \right) \frac{1}{r^3} \left($$

$$-\frac{1}{4\pi\rho\beta^2}\left(\gamma_i\gamma_j-\delta_{ij}\right)\frac{1}{r}X_0(t-\frac{r}{\beta}),$$

where $r = \sqrt{(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2}$, $\gamma_i = \frac{x_i}{r}$ - direction cosines, $\alpha = \sqrt{\frac{\lambda + 2\mu}{\rho}}$ - longitudinal

wave velocity, $\beta = \sqrt{\frac{\mu}{\rho}}$ - shear wave velocity, $\mu = \frac{E}{2(1+\nu)}$, $\lambda = \frac{\nu E}{(1+\nu)(1-2\nu)}$ - Lamé constants, ρ -

Density of the environment in which waves propagate.

Kronecker symbol δ_{ii} is interpreted as follows:

$$\begin{split} &\delta_{ij} = 0 \ npu \ i \neq j, \\ &\delta_{ij} = 1 \ npu \ i = j. \end{split}$$

The force is applied along the axis and propagates according to the Berlage law. It was found experimentally that the propagation of elastic waves in the earth's crust is qualitatively described when the load is set by the Berlage law [2]:

$$\begin{aligned} X_0(t) &= A \cdot \omega_1^2 e^{-\omega_1 t} \cdot \left(\sin(\omega_0 t) \left(\frac{-t^2}{\omega_1} + \frac{t}{\omega_1^2} + \frac{1}{\omega_1^3} \right) - \cos(\omega_0 t) \sqrt{3} \left(\frac{t^2}{\omega_1} + \frac{t}{\omega_1^2} \right) \right), \\ \omega_0 &= 2\pi\omega \quad , \quad \omega_1 = \frac{\omega_0}{\sqrt{3}} \quad , \end{aligned}$$

here A – vibration amplitude, ω – cyclic oscillation frequency.

Having analyzed all the coefficients in the Stokes formula, we will rewrite it more specifically for our setting:

$$\begin{split} u_{x}(x,t) &= \frac{1}{4\pi\rho} \left(3\gamma_{x}\gamma_{x} - 1 \right) \frac{1}{r^{3}} \int_{\frac{r}{\alpha}}^{\frac{r}{\beta}} \tau X_{0}(t-\tau) d\tau + \frac{1}{4\pi\rho\alpha^{2}} \gamma_{x}\gamma_{x} \frac{1}{r} X_{0}(t-\frac{r}{\alpha}) - \\ &- \frac{1}{4\pi\rho\beta^{2}} \left(\gamma_{x}\gamma_{x} - 1 \right) \frac{1}{r} X_{0}(t-\frac{r}{\beta}), \\ u_{y}(x,t) &= \frac{1}{4\pi\rho} \left(3\gamma_{y}\gamma_{x} - 0 \right) \frac{1}{r^{3}} \int_{\frac{r}{\alpha}}^{\frac{r}{\beta}} \tau X_{0}(t-\tau) d\tau + \frac{1}{4\pi\rho\alpha^{2}} \gamma_{y}\gamma_{x} \frac{1}{r} X_{0}(t-\frac{r}{\alpha}) - \end{split}$$

$$-\frac{1}{4\pi\rho\beta^2} (\gamma_y\gamma_x - 0) \frac{1}{r} X_0(t - \frac{r}{\beta}),$$
$$u_z(x, t) = \frac{1}{4\pi\rho} (3\gamma_z\gamma_x - 0) \frac{1}{r^3} \int_{\frac{r}{\alpha}}^{\frac{r}{\beta}} \tau X_0(t - \tau) d\tau + \frac{1}{4\pi\rho\alpha^2} \gamma_z\gamma_x \frac{1}{r} X_0(t - \frac{r}{\alpha}) - \frac{1}{4\pi\rho\beta^2} (\gamma_z\gamma_x - 0) \frac{1}{r} X_0(t - \frac{r}{\beta}).$$

Thus, the input data for the implementation of the analytical solution Stokes problems in mathematical packages are A, ω, E, ν, ρ .

Reference:

[1] Aki K. Quantitative seismology / Richards P. - M .: Mir, t. 1, 1983. - 880 p.

[2] Geophysics, vol. 55, no. 11, november 1990. — P. 1508-1511, 2 figs.

Result comparison

The displacement values are checked at the point (20, 10, 20).

No.	Value	Description	Unit	Target	CAE Fidesys	Error,%
1	Component X of the displacement vector at the mesh nodes at timestep 0.136	Displacement X	m	5.384e-06	5.389e-06	1.13
2	Component Y of the displacement vector at the mesh nodes at timestep 0.144	Displacement Y	m	4.785e-06	4.799 e-06	0.19
3	Component Z of the displacement vector at the mesh nodes at timestep 0.144	Displacement Z	m	9.571e-06	9.424e-06	1.63
4	Component X of the displacement vector at the mesh nodes at timestep 0.2	Displacement X	m	1.842e-05	1.827e-05	0.79
5	Component Y of the displacement vector at the mesh nodes at timestep 0.2	Displacement Y	m	-7.33e-06	-7.339e-06	0.12
6	Component Z of the displacement vector at the mesh nodes at timestep 0.2	Displacement Z	m	-1.466e-05	-1.431e-05	2.37
7	Component X of the displacement vector at the mesh nodes at timestep 0.248	Displacement X	m	-1.024e-05	-1.006e-05	1/9

No.	Value	Description	Unit	Target	CAE Fidesys	Error,%
8	Component Y of the displacement vector at the mesh nodes at timestep 0.256	Displacement Y	m	3.258e-06	3.437e-06	2.09
9	Component Z of the displacement vector at the mesh nodes at timestep 0.256	Displacement Z	m	6.953e-06	6.899e-06	1.74

CAE Fidesys script:

reset set default element hex brick x 100 y 100 z 100 move Volume 1 location 0 50 50 include_merged partition create curve 6 position 0 0 0 volume all size 10 mesh volume all create material 1 modify material 1 set property 'MODULUS' value 2e8 modify material 1 set property 'POISSON' value 0.3 modify material 1 set property 'DENSITY' value 1900 set duplicate block elements off block 1 add volume 1 block 1 material 1 cs 1 element solid order 3 create displacement on surface 3 dof 2 fix 0 create displacement on surface 2 dof 3 fix 0 create displacement on curve 2 dof 1 fix 0 create force on vertex 9 force value 1 direction 1 0 0 bcdep force 1 value 'berlage(25e6, 10, time)' create absorption on surface 1564 create receiver on node 1566 137 1565 136 1564 135 1563 134 1562 123 displacement 1 1 1 create receiver on node 1566 137 1565 136 1564 135 1563 134 1562 123 velocity 1 1 1 create receiver on node 1566 137 1565 136 1564 135 1563 134 1562 123 principalstress 1 1 1 create receiver on node 1566 137 1565 136 1564 135 1563 134 1562 123 pressure analysis type dynamic elasticity dim3 preload off dynamic method full_solution scheme explicit maxtime 0.4 maxsteps 50000 output nodalforce off energy off record3d on log on vtu on material off results everystep 10

1.8. Test case No.1.8

Problem Description

Explosive pressure in a spherical cavity. The problem considers the behavior of an elastic infinite medium with a spherical cavity after applying pressure to the surface of the cavity. The solution was carried out for an explicit scheme.

Input Values

Geometric model:

- Presented at Fig 14;
- The considered area of the medium is limited by the volume of a sphere with a radius of 1.5 m;
- The cavity is located in the center of the sphere and has a radius of 0.5 m;
- Due to the symmetry of the problem, 1/8 of the original volume is considered.

Fig. 1.15 - Spherical cavity

Border conditions:

- Symmetry condition: surface ABFE displacement $u_x = 0$;
- Symmetry condition: surface BCGF displacement $u_y = 0$;
- Symmetry Conditions: surface ACGE displacement $u_z = 0$;
- Pressure is applied to the surface of the spherical cavity ABC, which varies with time according to the formula

$p(t) = 10^{\circ} \sin(40000t)$

Material parameters:

- Isotropic;
- Elastic modulusE = 200 GPa;
- Poisson ratio $\nu = 0.3$;

• Density $\rho = 7900 \text{ kg/m}^3$.

Mesh:

• Spectral third-order hexahedra.

Fig. 1.16 - Spectral third order hexahedra for a spherical cavity

Calculation settings:

- Dynamic calculation;
- Maximum time $-1.35 \cdot 10-4$ s;
- Maximum number of steps 50 000;
- Output of every tenth step to .vtu file.

Calculation method used for the reference solution

The displacement and stress values are calculated according to the following formulas [1]:

$$\begin{split} \tau &= t - \frac{r - a}{c}, \\ f(\tau) &= \frac{a}{(\beta - \alpha)\rho} \int_0^{\tau} p(\xi) \left[e^{\alpha(\tau - \xi)} - e^{\beta(\tau - \xi)} \right] d\xi, \\ u_R &= -\frac{-f'(\tau)}{c \cdot r} - \frac{f(\tau)}{r^2}, \\ \sigma_R &= \frac{\rho}{r} f''(\tau) + 2 \frac{\rho c}{r^2} \frac{1 - 2\nu}{1 - \nu} [f'(\tau) + \frac{c}{r} f(\tau)], \\ \sigma_\Theta &= \frac{\rho}{r} \frac{\nu}{1 - \nu} f''(\tau) - \frac{\rho c}{r^2} \frac{1 - 2\nu}{1 - \nu} [f'(\tau) + \frac{c}{r} f(\tau)] \end{split}$$

Reference:

[1] Timoshenko SP, Goodyer J. Theory of elasticity, transl. from English - M .: Nauka, 1975 - 576 p.

Result comparison

Below are the values for the components of the displacement vector and the stress tensor at the point (0.75, 0, 0) at the last moment in time.

No.	Value	Description	Unit	Target	CAE Fidesys	Error,%
1	Displacement vector components at mesh points in spherical coordinates	Displacement X	m	4.08106e-05	4.089e-05	0.19
2	Stress tensor components at mesh nodes in spherical coordinates	Stress RR	MPa	48.75	48.04	1.45
3	Stress tensor components at mesh nodes in spherical coordinates	Stress TT	MPa	36.44	35.57	2.39

CAE Fidesys script:

reset set default element hex create sphere radius 1.5 webcut volume 1 with plane xplane offset 0 webcut volume 1 2 with plane yplane offset 0 webcut volume 1 2 3 4 with plane zplane offset 0 delete volume 1 2 4 5 6 7 8 create sphere radius 0.5 subtract volume 9 from volume 3 create material 1 modify material 1 name 'material 1' modify material 1 set property 'MODULUS' value 2e+11 modify material 1 set property 'POISSON' value 0.3 modify material 1 set property 'DENSITY' value 7900 volume all size auto factor 4 mesh volume all set duplicate block elements off block 1 add volume 3 block 1 material 1 cs 1 element solid order 3 create displacement on surface 54 dof 1 fix 0 create displacement on surface 52 dof 2 fix 0 create displacement on surface 53 dof 3 fix 0 create pressure on surface 51 magnitude 1 bcdep pressure 1 value "1e8*sin(40000*t)" analysis type dynamic elasticity dim3 preload off dynamic method full_solution scheme explicit maxtime 1.35e-04 maxsteps 50000 output nodalforce off energy off record3d on log on vtu on material off results everystep 10

1.9. Test case No.1.9

Problem Description

Checking the correctness of the solution based on the spectral element method for solving the Stokes problems, given in Section 1.6, on a non-conformal grid. The simulation results on a non-conformal mesh should match the results from Section 1.6.

Input Values

Geometric model:

- Cube 100×100×100 m;
- Geometry moved to coordinates(0, 50, 50), that M = (0, 0, 0).

Material parameters:

- Isotropic;
- Elastic modulus E = 2e8 Pa;
- Poisson ratio v = 0,3;
- Density $\rho = 1900 \text{ kg/m}^3$.

Border conditions:

- Symmetry condition: surface ABCD displacement $u_y = 0$;
- Symmetry condition: surface BB`C`C displacement u_z = 0;
- Symmetry Conditions: edge A^D displacement $u_x = 0$;
- Dependence of force on time according to the Berlage formula with an amplitude of 25e6 m and a cyclic frequency of 10 Hz. Note: since a quarter of the real model is considered in CAE Fidesys, the amplitude used to implement the analytical solution in the mathematical package should be divided by 4;
- Dependence of force on time according to the Berlage formula with an amplitude of 25e6 m and a cyclic frequency of 10 Hz. Note: since a quarter of the real model is considered in CAE Fidesys, the amplitude used to implement the analytical solution in the mathematical package should be divided by 4;
- Non-reflective HA in planes AA`D`D, A`B`C`D`, DCC`D`, ABB`A`;
- Along the line of action of the force, receivers are assigned in all directions for each field from the drop-down list (displacement, speed, principal stresses, pressure).

Mesh:

- Element height first block h = 10 m;
- Spectral third order hexahedra for the first block;
- Element height second block h = 9 m;

• Spectral fourth order hexahedra for the first block.

Fig. 1.17 - Non-conformal finite element mesh for Stokes problems

Element height was calculated using the formula

$$h = \frac{L(n+1)}{10}$$

where $L = \frac{\upsilon}{\omega}$ - wavelength, υ - wave speed, ω - cyclic wave frequency, n - item order.

Contact settings:

- Type: knitted;
- Accuracy: 0.11;
- Method: MPC.

Calculation settings:

- Dynamic calculation;
- Maximum time 0.4 s;
- Maximum number of steps 50 000;
- Output of every tenth step to .vtu file.

Calculation method used for the reference solution

The analytical solution is presented in the section 1.7.

Result comparison

The displacement values are checked at the point (20, 10, 20).

No.	Value	Description	Unit	Target	CAE Fidesys	Error,%
1	Component X of the displacement vector at the mesh nodes at timestep 0.136	Displacement X	m	5.384e-06	5.333e-06	0.09
2	ComponentYofthedisplacementvectoratthemesh nodes at timestep0.144	Displacement Y	m	4.785e-06	4.764 e-06	0.56
3	Component Z of the displacement vector at the mesh nodes at timestep 0.144	Displacement Z	m	9.571e-06	9.416e-06	1.72
4	Component X of the displacement vector at the mesh nodes at timestep 0.2	Displacement X	m	1.842e-05	1.845e-05	0.15
5	ComponentYofthedisplacementvectoratthemesh nodes at timestep 0.2	Displacement Y	m	-7.33e-06	-7.347e-06	0.24
6	ComponentZofthedisplacementvectoratthemesh nodes at timestep 0.2	Displacement Z	m	-1.466e-05	-1.4441e-05	1.7
7	Component X of the displacement vector at the mesh nodes at timestep 0.248	Displacement X	m	-1.024e-05	-1.001e-05	2.33
8	Component Y of the displacement vector at the mesh nodes at timestep 0.256	Displacement Y	m	3.258e-06	3.385e-06	3.59
9	Component Z of the displacement vector at the mesh nodes at timestep 0.256	Displacement Z	m	6.953e-06	6.887e-06	1.92

CAE Fidesys script: reset set default element hex brick x 100 y 100 z 100 move Volume 1 x 0 y 50 z 50 include_merged webcut volume 1 with plane zplane offset 10 move Volume 2 x 0 y 0 z -0.1 include_merged partition create curve 6 position 0 0 0 volume 1 size 10 mesh volume 1 volume 2 size 9 mesh volume 2 create material 1 modify material 1 set property 'MODULUS' value 2e8 modify material 1 set property 'POISSON' value 0.3 modify material 1 set property 'DENSITY' value 1900 set duplicate block elements off block 1 add volume 1 block 1 material 1 cs 1 element solid order 3 #fixed block 2 add volume 2 block 2 material 1 cs 1 element solid order 4 #fixed create displacement on curve 2 dof 1 fix 0 create displacement on surface 10 14 dof 2 fix 0 create displacement on surface 2 dof 3 fix 0 create absorption on surface 1 8 9 11 13 15 16 create force on vertex 17 force value 1 direction 1 0 0 bcdep force 1 value 'berlage(25e6, 10, time)' create contact master surface 7 slave surface 12 tolerance 0.11 type tied method auto create receiver on curve 6 displacement 1 1 1 create receiver on curve 6 velocity 1 1 1 create receiver on curve 6 principalstress 1 1 1 create receiver on curve 6 pressure analysis type dynamic elasticity dim3 preload off dynamic method full_solution scheme explicit maxtime 0.4 maxsteps 50000 output nodalforce off energy off record3d on log on vtu on material off results everystep 10

1.10. Test case No.1.10

Problem Description

Checking the correctness of the solution based on the spectral element method for solving the Lamb problem presented in Section 1.7 on a non-conformal mesh. The simulation results on a non-conformal mesh should match the results from section 1.7.

Input Values

Geometric model:

- Length a = 1000 m;
- Width b = 500 m;
- The model is divided into two layers of equal height.

Border conditions:

• The point force is specified using the Berlage formula:

$$f(t) = A \frac{\omega_1^2 e^{-\omega_1 t}}{4} \cdot \left(\sin(\omega_0 t) \left(-\frac{t^2}{\omega_1} + \frac{t}{\omega_1^2} + \frac{1}{\omega_1^2} \right) - \cos(\omega_0 t) \sqrt{3} \left(\frac{t^2}{\omega_1} + \frac{t}{\omega_1^2} \right) \right)$$
$$\omega_1 = \frac{\omega_0}{\sqrt{3}}, \quad \omega_0 = 2\pi\omega$$

where A - amplitude (A=1e8), ω - frequency (ω =10), t - time.

• Non-reflective conditions applied to bottom and side faces.

Material parameters:

- Young's modulus E = 2e + 08;
- Poisson ratio v = 0.3;
- Density $\rho = 1900$:
- Cohesion K = 29000:
- Angle of internal friction $\alpha = 20$;
- Angle of dilatancy $\beta = 10$.

Mesh:

- Spectral elements of the 3rd order;
- Mesh size for the top layer =7;

• Mesh size for the bottom layer=8.

The mesh should be of flat quadrangles, the height h = 500 of the element is calculated according to the wavelength (see paragraph 2.1).

Calculation settings:

- Dynamic calculation;
- Maximum time 3 s;
- Maximum number of steps 2025;
- Output of every 135 steps to .vtu file.

Calculation method used for the reference solution

The analytical solution is given in the section 1.6.

Result comparison

The displacement values are checked at the point $(70.4223, 4.512146-15, 0)$.	The	displacement	values are	checked	at the	point	(70.4225,	4.31214e	-15, 0).
--	-----	--------------	------------	---------	--------	-------	-----------	----------	----------

No.	Value	Description	Unit	Target	CAE Fidesys	Error,%
1	Displacement vector components at mesh nodes at timestep 0.416	Displacement X	m	-0.00110025	-0.001100	<<0.01
2	Displacement vector components at mesh nodes at timestep 0.416	Displacement Y	m	0.000517095	0.0005171	<<0.01

No.	Value	Description	Unit	Target	CAE Fidesys	Error,%
3	Displacement vector components at mesh nodes at timestep 0.555	Displacement X	m	-4.78016e-05	-4.780 e-05	0.01
4	Displacement vector components at mesh nodes at timestep 0.555	Displacement Y	m	-0.000445372	-0.000454	<<0.01

CAE Fidesys script:

reset set default element hex create surface rectangle width 1000 zplane webcut body 1 with plane xplane offset 0 webcut body 1 with plane yplane offset 0 delete Surface 3 rotate Surface 4 5 angle -90 about Z include merged webcut body 3 1 with plane yplane offset -250 merge curve 18 25 merge curve 22 27 surface 97 size 7 mesh surface 97 surface 8 6 size 8 mesh surface 8 6 create material 1 modify material 1 name 'Material1' modify material 1 set property 'MODULUS' value 2e+08 modify material 1 set property 'POISSON' value 0.3 modify material 1 set property 'DENSITY' value 1900 modify material 1 set property 'COHESION' value 29000 modify material 1 set property 'INT_FRICTION_ANGLE' value 20 modify material 1 set property 'DILATANCY_ANGLE' value 10 create material 2 modify material 2 name 'Material2' modify material 2 set property 'MODULUS' value 2e+08 modify material 2 set property 'POISSON' value 0.3 modify material 2 set property 'DENSITY' value 1900 modify material 2 set property 'COHESION' value 29000 modify material 2 set property 'INT_FRICTION_ANGLE' value 20 modify material 2 set property 'DILATANCY_ANGLE' value 10 set duplicate block elements off block 1 add surface 97 set duplicate block elements off block 2 add surface 8 6 block 1 material 1 block 2 material 2 block 1 2 element plane order 3 create absorption on curve 28 24 13 15 19 21 create force on vertex 10 force value 1 direction 0 -1 0 bcdep force 1 value 'berlage(1e+8, 10, time)' create receiver on curve 16 displacement 1 1 1 create receiver on curve 16 velocity 1 1 1 create receiver on curve 16 principalstress 1 1 1 create receiver on curve 16 pressure create contact master curve 17 23 slave curve 20 26 tolerance 0.0005 type tied method auto analysis type dynamic elasticity dim2 planestrain preload off dynamic method full_solution scheme explicit maxtime 5 maxsteps 2025 output nodalforce off energy off record3d on log on vtu on material off results everystep 135

1.11. Test case No.1.11

Problem Description

A two-dimensional problem of the all-round tension of a flat unbounded plate with a circular cut is considered. The problem has an analytical solution. For the case of staged loading, it is taken into account that in the linear case the result does not depend on the loading path. Thus, the load is divided into 4 loading steps. In the problem, the correctness of the boundary pressure condition setting for stage-by-stage loading is checked.

Fig. 1.19 - Geometric model for a plate with full tension

Input Values

Geometric model:

- Because of the problem symmetry, 1/4 of the plate is considered;
- BC = 5 m;
- Hole diameter 0.5 m;
- Polar coordinates are used.

Border conditions:

- Symmetry condition: curve AB displacement $u_x = 0$;
- Symmetry condition: curve ED displacement $u_y = 0$;
- $P_0 = 0.25$ MPa, 0.5 MPa, 0.75 MPa, 1 MPa.

Material parameters:

- Isotropic;
- Elastic modulus E = 200 GPa;
- Poisson ratio v = 0.3.

Mesh:

• 2D-quadrangular third-order spectral elements;

• 2D triangular spectral elements of the third order.

Fig. 1.20 - Spectral elements

Calculation method used for the reference solution

The values are calculated using the formula [1]:

$$\sigma_{\theta} = 2P_0$$

Reference:

[1] Sedov L.I. "Continuum Mechanics, Volume 2". M .: Science, 1970.

Result comparison

Below is the stress σ_{θ} at the boundary of the cut circle at the last loading step at the point (0.25,0,0).

Quadrangular third order spectral elements

No.	Value	Description	Unit	Target	CAE Fidesys	Error,%
1	Stress tensor components at grid nodes in polar coordinates	Stress FF	MPa	2	2.0022149	0.11
2	Step number	step	-	4	4	-

CAE Fidesys script: reset set default element hex set node constraint on create surface rectangle width 5 height 5 zplane move surface 1 x 2.5 y 2.5 create surface circle radius 0.25 zplane subtract body 2 from body 1 surface 3 size auto factor 2 surface 3 scheme auto mesh surface 3 create material 1 modify material 1 name 'material 1' modify material 1 set property 'MODULUS' value 2e+11 modify material 1 set property 'POISSON' value 0.3 set duplicate block elements off block 1 add surface 3 block 1 material 1 cs 1 element plane order 3 create displacement on curve 7 dof 2 fix 0 create displacement on curve 8 dof 1 fix 0 create pressure on curve 1 4 magnitude 0 create table 1 modify table 1 dependency time modify table 1 insert row 1 modify table 1 cell 1 1 value 1 modify table 1 cell 2 1 value 2 modify table 1 cell 3 1 value 3 modify table 1 cell 4 1 value 4 modify table 1 cell 1 2 value -250000 modify table 1 cell 2 2 value -500000 modify table 1 cell 3 2 value -750000 modify table 1 cell 4 2 value -1e+06 bcdep pressure 1 table 1 analysis type static elasticity dim2 planestrain static steps 4 nonlinearopts maxiters 100 minloadsteps 10 maxloadsteps 1000 tolerance 0.01 targetiter 5 static steps 4

Triangular third order spectral elements

No.	Value	Description	Unit	Target	CAE Fidesys	Error,%
1	Stress tensor components at grid nodes in polar coordinates	Stress FF	MPa	2	1.9993749	0.03
2	Step number	step	-	4	4	-

CAE Fidesys script:

reset set node constraint on create surface rectangle width 5 height 5 zplane move surface 1 x 2.5 y 2.5 create surface circle radius 0.25 zplane subtract body 2 from body 1 surface 3 size auto factor 2 surface 3 scheme trimesh geometry approximation angle 15 Trimesher surface gradation 1.3 Trimesher geometry sizing on mesh surface 3 create material 1 modify material 1 name 'material 1' modify material 1 set property 'MODULUS' value 2e+11 modify material 1 set property 'POISSON' value 0.3 set duplicate block elements off block 1 add surface 3 block 1 material 1 cs 1 element plane order 3 create displacement on curve 7 dof 2 fix 0 create displacement on curve 8 dof 1 fix 0 create pressure on curve 1 4 magnitude 0 create table 1 modify table 1 dependency time modify table 1 insert row 1 modify table 1 cell 1 1 value 1 modify table 1 cell 2 1 value 2 modify table 1 cell 3 1 value 3 modify table 1 cell 4 1 value 4 modify table 1 cell 1 2 value -250000 modify table 1 cell 2 2 value -500000 modify table 1 cell 3 2 value -750000 modify table 1 cell 4 2 value -1e+06 bcdep pressure 1 table 1 analysis type static elasticity dim2 planestrain static steps 4 nonlinearopts maxiters 100 minloadsteps 10 maxloadsteps 1000 tolerance 0.01 targetiter 5

1.12. Test case No.1.12

Problem Description

The problem of an infinite cylindrical tube under the influence of internal and external pressures is considered. For the case of staged loading, it is taken into account that in the linear case the result does not depend on the loading path. Thus, the load is divided into 2 loading steps. In the problem, the correctness of setting several boundary conditions for stage-by-stage loading is checked.

Fig. 1.21 - Geometric model of the problem of an infinite cylindrical pipe

Input Values

Geometric model:

- Due to the symmetry of the problem, a quarter of the wide section of the pipe is considered;
- Cut thickness 0.5 m;
- A cylindrical coordinate system is used.

Border conditions:

- Symmetry condition: surface ABB'A'displacement $u_x = 0$;
- Symmetry condition: surface CDD'C'displacement u_y = 0;
- Symmetry Conditions: surfaces ABCD and A'B'C'D' displacement $u_z = 0$;
- A pressure p=0.5 MPa, 1 MPa is applied to the surface AA'D'D.
- A pressure p=0. 25 MPa, 0.5 MPa is applied to the surface B'B'C'C.

Material parameters:

• Isotropic;

61

- Elastic modulusE = 200 GPa;
- Poisson ratio v = 0.3.

Mesh:

- Spectral third order hexahedra;
- Third-order spectral tetrahedra.

Fig. 1.22 - Spectral elements *Calculation method used for the reference solution*

The values are calculated using the following formulas [1]:

$$\begin{split} \sigma_{rr} &= \sigma_{11} = \frac{a^2 p_a}{b^2 - a^2} \left(1 - \frac{b^2}{r^2} \right) - \frac{b^2 p_b}{b^2 - a^2} \left(1 - \frac{a^2}{r^2} \right) \\ \sigma_{\theta\theta} &= r^2 \sigma_{22} = \frac{a^2 p_a}{b^2 - a^2} \left(1 + \frac{b^2}{r^2} \right) - \frac{b^2 p_b}{b^2 - a^2} \left(1 + \frac{a^2}{r^2} \right) \qquad \sigma_{zz} = \sigma_{33} = \frac{\lambda}{\lambda + \mu} \frac{a^2 p_a - b^2 p_b}{b^2 - a^2} \end{split}$$

Reference

[1] Sedov L.I. "Continuum Mechanics, Volume 2". M .: Science, 1970., 568 crp.

Result comparison

Below are the stresses σrr , $\sigma \theta \theta$, σzz at the point N (1,0,0) at the last loading step. Spectral third order hexahedra

No.	Value	Description	Unit	Target	CAE Fidesys	Error,%
1	Stress tensor components at grid nodes in cylindrical coordinates	Stress RR	MPa	-1	-0.999807812	0.02

No.	Value	Description	Unit	Target	CAE Fidesys	Error,%
2	Stress tensor components at grid nodes in cylindrical coordinates	Stress FF	MPa	0.33	0.333412094	1.03
3	Stress tensor components at grid nodes in cylindrical coordinates	Stress ZZ	MPa	-0.2	-0.199918719	0.04
4	Step number	step	-	2	2	-

CAE Fidesys script:

reset set default element hex create Cylinder height 0.5 radius 2 create Cylinder height 0.5 radius 1 subtract volume 2 from volume 1 webcut volume 1 with plane xplane offset 0 webcut volume 1 3 with plane yplane offset 0 webcut volume 1 3 with plane yplane offset 0 delete volume 1 3 5 volume 4 size auto factor 5 volume 4 scheme auto mesh volume 4 create material 1 modify material 1 name 'material 1' modify material 1 set property 'MODULUS' value 2e+11 modify material 1 set property 'POISSON' value 0.3 set duplicate block elements off block 1 add volume 4 block 1 material 1 cs 1 element solid order 3 create displacement on surface 11 dof 1 fix 0 create displacement on surface 27 dof 2 fix 0 create displacement on surface 31 29 dof 3 fix 0 create pressure on surface 30 magnitude 0 create pressure on surface 28 magnitude 0 create table 1 modify table 1 dependency time modify table 1 insert row 1 modify table 1 insert row 1 modify table 1 cell 1 1 value 1 modify table 1 cell 2 1 value 2 modify table 1 cell 1 2 value 500000 modify table 1 cell 2 2 value 1e+06 bcdep pressure 1 table 1 create table 2 modify table 2 dependency time modify table 2 insert row 1 modify table 2 insert row 1 modify table 2 cell 1 1 value 1 modify table 2 cell 2 1 value 2 modify table 2 cell 1 2 value 250000 modify table 2 cell 2 2 value 500000 bcdep pressure 2 table 2 analysis type static elasticity dim3

static steps 2

nonlinearopts maxiters 100 minloadsteps 10 maxloadsteps 1000 tolerance 0.01 targetiter 5

Third-order spectral tetrahedra

No.	Value	Description	Unit	Target	CAE Fidesys	Error,%
1	Stress tensor components at grid nodes in cylindrical coordinates	Stress RR	MPa	-1	-0.99999975	<<0.01
2	Stress tensor components at grid nodes in cylindrical coordinates	Stress FF	MPa	0.33	0.3333	1.01
3	Stress tensor components at grid nodes in cylindrical coordinates	Stress ZZ	MPa	-0.2	-0.2	0.01
4	Step number	step	-	2	2	-

CAE Fidesys script:

reset create Cylinder height 0.5 radius 2 create Cylinder height 0.5 radius 1 subtract volume 2 from volume 1 webcut volume 1 with plane xplane offset 0 webcut volume 1 3 with plane vplane offset 0 webcut volume 1 3 with plane yplane offset 0 delete volume 1 3 5 volume 4 size auto factor 5 volume 4 scheme tetmesh proximity layers off geometry approximation angle 15 volume 4 tetmesh growth_factor 1 Trimesher surface gradation 1.3 Trimesher volume gradation 1.3 Trimesher geometry sizing on mesh volume 4 create material 1 modify material 1 name 'material 1' modify material 1 set property 'MODULUS' value 2e+11 modify material 1 set property 'POISSON' value 0.3 set duplicate block elements off block 1 add volume 4 block 1 material 1 cs 1 element solid order 3 create displacement on surface 11 dof 1 fix 0 create displacement on surface 27 dof 2 fix 0 create displacement on surface 31 29 dof 3 fix 0 create pressure on surface 30 magnitude 0 create pressure on surface 28 magnitude 0 create table 1 modify table 1 dependency time

modify table 1 insert row 1 modify table 1 insert row 1 modify table 1 cell 1 1 value 1 modify table 1 cell 2 1 value 2 modify table 1 cell 1 2 value 500000 modify table 1 cell 2 2 value 1e+06 bcdep pressure 1 table 1 create table 2 modify table 2 dependency time modify table 2 insert row 1 modify table 2 insert row 1 modify table 2 cell 1 1 value 1 modify table 2 cell 2 1 value 2 modify table 2 cell 1 2 value 250000 modify table 2 cell 2 2 value 500000 bcdep pressure 2 table 2 analysis type static elasticity dim3 static steps 2

nonlinearopts maxiters 100 minloadsteps 10 maxloadsteps 1000 tolerance 0.01 targetiter 5

1.13. Test case No.1.13

Problem Description

Uniform compression of a cube under the action of displacement is considered. For the case of staged loading, it is taken into account that in the linear case the result does not depend on the loading path. Thus, the load is divided into 2 loading steps. In the task, the correctness of setting the displacement boundary condition for stage-by-stage loading is checked.

Fig. 1.23 - Geometric model of the problem of a cube uniform compression

Input Values

Geometric model:

• Cube with sides $0 \le x \le 10$ m, $0 \le y \le 10$ m, -10 m $\le z \le 0$.

Border conditions:

- Symmetry condition: surface AMKD displacement $u_x = 0$;
- Symmetry condition: surface ADCB displacement $u_y = 0$;
- Symmetry Conditions: surface DKPC displacement $u_z = 0$;
- Surface AMNB: $u_z = -0.5 \text{ M}, -1 \text{ M}.$

Material parameters:

- Isotropic;
- Elastic modulusE = $200 \Gamma \Pi a$;
- Poisson ratio v = 0.3.

Mesh:

- Spectral third order hexahedra;
- Third-order spectral tetrahedra.

Fig. 1.24 - Spectral elements

Calculation settings:

- Statics;
- Elasticity;
- Number of loading steps: 2.

Calculation method used for the reference solution

The values are calculated using the following formulas [1]:

$$\begin{split} \varepsilon_{zz} &= \frac{u_z}{L}; \, \varepsilon_{xx} = \varepsilon_{yy} = -v \frac{\sigma_{zz}}{E}; \\ \sigma_{zz} &= \varepsilon_{zz} E; \, \sigma_{xx} = \sigma_{yy} = 0; \\ u_z &= -1 \text{ m}; \, u_x = \frac{\varepsilon_{xx}}{L}; \, u_y = \frac{\varepsilon_{yy}}{L} \end{split}$$

Where σ – stress tensor, ϵ – strain tensor, u – вектор перемещений, E – Young's modulus, v - Poisson ratio, L – side of the cube.

Reference

[1] Sedov L.I. "Continuum Mechanics, Volume 2". M .: Science, 1970., 568 crp.

Result comparison

Below are the values for displacements, deformations and stresses at a point with coordinates (10,10,0) at the last loading step.

Spectral third order hexahedra

No.	Value	Description	Unit	Target	CAE Fidesys	Error,%
1	Displacement vector components at grid nodes	Displacement Z	m	-1	-1	0
2	Displacement vector components at grid nodes	Displacement X	m	0.3	0.3	0
3	Displacement vector components at grid nodes	Displacement Y	m	0.3	0.3	0
4	Deformation tensor components at mesh nodes	Strain ZZ	-	-0.1	-0.1	0
5	Deformation tensor components at mesh nodes	Strain XX	-	0.03	0.03	0
6	Deformation tensor components at mesh nodes	Strain YY	-	0.03	0.03	0
7	Stress tensor components at mesh nodes	Stress ZZ	Ра	-2e10	-2e10	0
8	Step number	step	-	2	2	-

CAE Fidesys script:

reset set default element hex brick x 10 y 10 z 10 move Volume 1 location 5 5 5 include_merged rotate Volume 1 angle 180 about Y include_merged rotate Volume 1 angle -90 about Y include_merged volume 1 size auto factor 5 volume 1 scheme auto mesh volume 1 create material 1 modify material 1 name 'material 1' modify material 1 set property 'MODULUS' value 2e+11 modify material 1 set property 'POISSON' value 0.3 set duplicate block elements off block 1 add volume 1 block 1 material 1 cs 1 element solid order 3 create displacement on surface 2 dof 1 fix 0 create displacement on surface 3 dof 2 fix 0 create displacement on surface 6 dof 3 fix 0 create displacement on surface 4 dof 3 fix 1 create table 1 modify table 1 dependency time modify table 1 insert row 1 modify table 1 insert row 1 modify table 1 cell 1 1 value 1 modify table 1 cell 2 1 value 2 modify table 1 cell 1 2 value -0.5

modify table 1 cell 2 2 value -1 bcdep displacement 4 table 1 analysis type static elasticity dim3 static steps 2 nonlinearopts maxiters 100 minloadsteps 10 maxloadsteps 1000 tolerance 0.01 targetiter 5

Third-order spectral tetrahedra

No.	Value	Description	Unit	Target	CAE Fidesys	Error,%
1	Displacement vector components at grid nodes	Displacement Z	m	-1	-1	0
2	Displacement vector components at grid nodes	Displacement X	m	0.3	0.3	0
3	Displacement vector components at grid nodes	Displacement Y	m	0.3	0.3	0
4	Deformation tensor components at mesh nodes	Strain ZZ	-	-0.1	-0.1	0
5	Deformation tensor components at mesh nodes	Strain XX	-	0.03	0.03	0
6	Deformation tensor components at mesh nodes	Strain YY	-	0.03	0.03	0
7	Stress tensor components at mesh nodes	Stress ZZ	Па	-2e10	-2e10	0
8	Step number	step	-	2	2	-

CAE Fidesys script:

reset brick x 10 y 10 z 10 move Volume 1 location 5 5 5 include_merged rotate Volume 1 angle 180 about Y include_merged rotate Volume 1 angle -90 about Y include_merged volume 1 size auto factor 5 volume 1 scheme tetmesh proximity layers off geometry approximation angle 15 volume 1 tetmesh growth_factor 1 Trimesher surface gradation 1.3 Trimesher volume gradation 1.3 Trimesher geometry sizing on mesh volume 1 create material 1 modify material 1 name 'material 1' modify material 1 set property 'MODULUS' value 2e+11 modify material 1 set property 'POISSON' value 0.3 set duplicate block elements off block 1 add volume 1 block 1 material 1 cs 1 element solid order 3 create displacement on surface 2 dof 1 fix 0

create displacement on surface 3 dof 2 fix 0 create displacement on surface 6 dof 3 fix 0 create displacement on surface 4 dof 3 fix 1 create table 1 modify table 1 dependency time modify table 1 insert row 1 modify table 1 insert row 1 modify table 1 insert row 1 modify table 1 cell 2 1 value 1 modify table 1 cell 3 1 value 2 modify table 1 cell 2 2 value -0.5 modify table 1 cell 3 2 value -1 bcdep displacement 4 table 1 analysis type static elasticity dim3 static steps 2 nonlinearopts maxiters 100 minloadsteps 10 maxloadsteps 1000 tolerance 0.01 targetiter 5

1.14. Test Case No1.14

Problem Description

Uniform cube compression. The cube is divided into 13 parts, between which the conditions of tied contact with different values of the gaps are set. The test case checks the absence of point concentrators for the stress field value.

Input values

Geometric model:

• Cube with sides $0 \le x \le 10$ m, $0 \le y \le 10$ m, -10 m $\le z \le 0$.

Boundary conditions:

- Symmetry conditions;
- Pressure acts on the top of the cube 1e6 Pa;
- Contact surfaces: Autoselect;
- Tolerance: 0.0005;
- Type: Tied.

Material P

roperties:

- Isotropic;
- Young's modulus $E = 200 \Gamma \Pi a$;
- Poisson ratio v = 0.3

Mesh:

- Spectral elements (order 3);
- Non-conformal meshes;

The geometry and finite element mesh for this test case is created using the CAE Fidesys script below.

Fig. 1.25 - Finite-element mesh for a 13-part cube model

71
Calculation Settings:

- Static;
- Elasticity.

Output Values

No	Value	Description	Unit	Target
1	Component $\sigma_{_{yy}}$ of stress tensor	Stress YY	Pa	From -1000000.0 To -1000000.0

Calculation method used for the reference solution

Analytical solutions are calculated by the following formulas [1]:

$$\sigma_{yy} = P; \ \sigma_{xx} = \sigma_{zz} = \sigma_{xy} = 0.$$

Reference:

[1] Седов Л.И. "Механика сплошной среды, том 2". М.: Наука, 1970г., 568 стр.

Results comparison

No	Value	Description	Unit	Target	CAE Fidesys	Error,%
1	Component σ_{yy} of stress	Stress VV	Da	From -1000000.0	From -1000000	<-0.01
1	tensor			To -1000000.0	To 1000000	<<0.01

The distribution of the von Mises stress is shown in Figure 1.26.

Fig. 1.26 - Von Mises Stress

CAE Fidesys Script: reset brick x 10 webcut body 1 with plane xplane offset 0 webcut body all with plane yplane offset 0 webcut volume all with plane zplane offset 0 webcut volume 4 with plane xplane offset 1 rotate 45 about z center 0 0 0 webcut volume 3 with plane xplane offset 4 rotate 30 about z center 0 0 0 webcut volume 1 with plane xplane offset 1 rotate 45 about z center 0 0 0 webcut volume 7 with plane xplane offset 2.5 rotate 45 about z center 0 0 0 webcut volume 6 with plane xplane offset -4 rotate 45 about z center 0 0 0 move Volume 3 10 1 11 7 5 12 x 0.01 include_merged move Volume 7 5 z -0.01 include_merged move Volume 10 3 1 11 z 0.01 include_merged move Volume 8 6 13 4 9 2 x -0.01 include_merged move Volume 8 6 13 z -0.01 include merged move Volume 4 9 2 z 0.01 include_merged move Volume 4 3 10 9 7 8 y 0.01 include_merged move Volume 2 11 1 13 6 5 y -0.01 include_merged move Volume 4 3 y 0.01 include_merged move Volume 11 y -0.01 include_merged move Volume 13 y -0.01 include_merged move Volume 7 y 0.02 include_merged move Volume 3 4 y -0.01 move Volume 12 z -0.01 webcut volume all with plane from surface 48 webcut volume all with plane from surface 91 delete Volume 14 15 16 surface 95 89 42 21 84 85 75 scheme polyhedron surface 95 89 42 21 84 85 75 size 0.95 #order, quality: 1,0.4 ; 2,0.95 ; 3,1.5 mesh surface 95 89 42 21 84 85 75 surface 76 scheme trimesh geometry approximation angle 15 surface 76 size 0.95 #order, quality: 1,0.6 ; 2,0.9; 3,1.35 Trimesher surface gradation 1.3 mesh surface 76 volume 4 6 12 1 11 scheme polyhedron volume 1 12 size 0.9 #order, quality: 1,0.65 ; 2,0.9; 3,1.4 volume 6 11 size 0.95 #order,quality: 1,0.6 ; 2,0.9; 3,1.35 mesh volume 4 6 12 1 11 #cube2 tetra volume 2 3 10 5 9 7 13 scheme tetmesh proximity layers off volume 2 3 5 7 13 10 size 0.9 #order, quality: 1,0.6 ; 2,0.9; 3,1.3 volume 9 size 0.95 #order, quality: 1,0.65 ; 2,0.9; 3,1.45 Trimesher geometry sizing on mesh volume 2 3 10 5 9 7 13 volume 8 redistribute nodes off volume 8 scheme Sweep source surface 76 target surface 73 sweep transform least squares volume 8 autosmooth target on fixed imprints off smart smooth off volume 8 size 0.9 #order,quality: 1,0.5 ; 2,0.9; 3,1.25 mesh volume 8 create material 1 name "LinearMat" modify material 1 set property 'POISSON' value 0.3

modify material 1 set property 'MODULUS' value 2e+11 block 1 add volume all block 1 material 1 block 1 element solid order 2 create displacement on surface 76 69 51 138 119 dof 1 fix create displacement on surface 137 48 121 46 127 dof 2 fix 0 create displacement on surface 150 115 35 21 118 141 dof 3 fix 0 create pressure on surface 83 81 93 91 147 75 magnitude 1e6 create contact master surface 101 103 slave surface 95 89 tolerance 0.1 type tied method auto create contact master surface 50 slave surface 70 tolerance 0.1 type tied method auto create contact master surface 74 slave surface 54 tolerance 0.1 type tied method auto create contact master surface 113 111 slave surface 44 tolerance 0.1 type tied method auto create contact master surface 131 slave surface 49 tolerance 0.1 type tied method auto create contact master surface 47 slave surface 139 120 tolerance 0.1 type tied method auto create contact master surface 55 slave surface 43 tolerance 0.1 type tied method auto create contact master surface 42 slave surface 100 130 tolerance 0.1 type tied method auto create contact master surface 59 slave surface 79 86 tolerance 0.1 type tied method auto create contact master surface 84 80 slave surface 72 tolerance 0.1 type tied method auto create contact master surface 73 slave surface 116 149 tolerance 0.1 type tied method auto create contact master surface 148 114 slave surface 90 94 tolerance 0.1 type tied method auto create contact master surface 102 slave surface 97 tolerance 0.1 type tied method auto #vol 11 (hex) & vol 1 (hex) create contact master surface 92 slave surface 87 tolerance 0.1 type tied method auto create contact master surface 82 slave surface 77 tolerance 0.1 type tied method auto create contact master surface 140 slave surface 117 tolerance 0.1 type tied method auto create contact master surface 112 slave surface 107 tolerance 0.1 type tied method auto

analysis type static elasticity dim3

1.15. Test Case No1.15

Problem Description

The problem of integration of CAE Fidesys with the Euler software package on the stand model is considered. *Input Values*

Geometric model is shown in Figure. 1.27:

- Volume 1 a rectangular parallelepiped with dimensions of $0.01 \times 0.01 \times 0.005$ m along the axes O_X , O_Y , O_z respectively (surfaces bounding volume 1 are parallel to the coordinate planes);
- Surface 3 simulates a plate 0.005 m thick, the median surface of which is a square 0.01x0.01 m. Surface 3 is parallel to the plane ρ_{XY} . The plate is similar to volume 1, but is modeled by shell elements;
- Lines 2 beams element 0.0275 m long with a square section of 0.001x0.001 m, connect volume 1 and surface 3 and are orthogonal to them.

Figure. 1.27 - Geometrical model

Boundary conditions:

• since the problem of auto mechanics is considered, a series of calculations is performed. In this case, displacement restrictions are imposed on the vertices of the lower surface along the axis of volume 1.

Material Properties (Volume 1):

- Young's modulus $E_1 = 72000$ Pa;
- Poisson ratio $v_1 = 0.3$;
- Density $\rho_1 = 2800 \text{ kg/m}^3$.

Material Properties (for Plate 3 and Beams):

- Young's modulus $E_2 = 200$ GPa;
- Poisson ratio $v_2 = 0.3$;
- Density $\rho_2 = 8000 \text{ kg/m}^3$.

Mesh:

• Mesh including hexahedral, quadrangular shell and beam elements.

Calculation settings:

• Auto mechanic.

Output Values

As follows from the analytical representations [1], as a result of the calculation of the auto mechanics, matrices of stiffness, masses, as well as the eigenmodes of the model, which are the input parameters for the Euler software package, should be obtained. In this case, the correctness of these matrices follows from the fulfillment of the following conditions: - diagonal matrix, - unit matrix. Hence, the reference results for the problem are the parameters indicated in the table:

No	Value	Description	Unit	Target
1	Multiplication $E^T \cdot K \cdot E$	-	-	Diagonal matrix
2	Multiplication $E^T \cdot M \cdot E$	-	-	Unit matrix

Reference:

[1] В. Г. Бойков, И. В. Гаганов, Ф. Р. Файзуллин, А. А. Юдаков, «Моделирование движения механической системы, состоящей из деформируемых упругих тел, путём интеграции двух пакетов: EULER и Fidesys», Чебышевский сб., 18:3 (2017), 131–153.

Result comparison

No	Value	Description	Unit	Target	Error,%
1	Multiplication $E^T \cdot K \cdot E$	-	Diagonal matrix	diagonal	0
2	Multiplication $E^T \cdot M \cdot E$	-	Unit matrix	identity (E)	0

CAE Fidesys Script: #{h=0.01} reset set default element hex brick x {h} y {h} z {h/2} #move volume 1 x $\{h/2\}$ y $\{h/2\}$ z $\{h/2\}$ create surface rectangle width {h} zplane move body 2 z $\{3^{h}\}$ create curve vertex 1 12 create curve vertex 4 11 create curve vertex 3 10 create curve vertex 29 merge all curve all size {h} mesh curve all mesh surface all mesh volume 1 create material 1 modify material 1 name 'mat_bottom' modify material 1 set property 'MODULUS' value 7.2e+4 modify material 1 set property 'POISSON' value 0.3 modify material 1 set property 'DENSITY' value 2800 create material 2 modify material 2 name 'mat' modify material 2 set property 'MODULUS' value 2e+11 modify material 2 set property 'POISSON' value 0.3 modify material 2 set property 'DENSITY' value 8000 block 1 add volume 1 block 1 material 1 block 1 element solid order 2 block 2 add surface 7 block 2 element shell order 2 block 2 material 2 create shell properties 2 modify shell properties 2 thickness {h/2} modify shell properties 2 eccentricity 0.5 block 2 shell properties 2 block 3 add curve 17 to 20 block 3 material 2 block 3 element beam order 2 create beam properties 3 modify beam properties 3 type 'Rectangle' modify beam properties 3 ey 0.0 modify beam properties 3 ez 0.0 modify beam properties 3 angle 0.0 modify beam properties 3 mesh_quality 6 modify beam properties 3 warping dof off modify beam properties 3 geom_H {h/10} modify beam properties 3 geom_B {h/10} block 3 beam properties 3 nodeset 1 add vertex 5 6 7 8 analysis type automechanics dim3 preload off eigenvalue find 10 smallest

1.16. Test Case No1.16

Problem Description

Determination of effective mechanical characteristics for an orthogonally reinforced composite.

Input Values

Material Properties:

Matrix material

- Isotropic;
- Young's modulus = 1 Pa;
- Poisson ratio = 0.25;
- Thermal conductivity coefficient = $2 \frac{W}{m_*\kappa}$.

Thread material:

- Isotropic;
- Young's modulus = 1 Pa;
- Poisson ratio = 0.25;
- Thermal conductivity coefficient = $10 \frac{W}{m * K}$.

Geometric model:

- Two cubes 16 x 16 x 16, adjacent to each other along the Z axis;
- Thread of length 16 and radius of 2.85459861019 (selected so the thread volume concentration in composite is equal to 10%) runs through center line parallel to the X axis for the first cube and through center line parallel to the Y axis for the second cube;
- Thread: $\lambda = 10$;
- Matrix: $\lambda = 2$.

Boundary conditions:

• Periodic.

Mesh:

• First order tetrahedrons.

Fig 1.28 – Tetrahedral mesh

Target results

No	Value	Description	Unit	Target
1	Effective thermal conductivity coefficients	λ_11	$\frac{W}{m * K}$.	2.54285
2	Effective thermal conductivity coefficients	λ_22	$\frac{W}{m * K}$.	2.54285
3	Effective thermal conductivity coefficients	λ_33	$\frac{W}{m * K}$	2.17647

Analytical solution description

Orthogonally reinforced composite is a composite that for one fiber along Y axis has k fibers along X axis. Analytical solution taken from 1.6.2 paragraph of Karpinos's "Composite materials". Thermal conductivity coefficient along X axis for such composites determined by following formula:

$$\lambda_x^{ort} = \lambda_x \frac{k}{k+1} + \frac{\lambda_y}{k+1} = \frac{1}{k+1} (\lambda_x k + \lambda_y)$$

along Y axis - by formula

$$\lambda_{y}^{ort} = \frac{\lambda_{x}}{k+1} + \lambda_{y} \frac{k}{k+1} = \frac{1}{k+1} (\lambda_{x} + \lambda_{y} k)$$

Here λ_x , λ_y determined by formulas for fibrous material.

Taking same fiber count along X and Y axis

$$\lambda_x^{ort} = \lambda_y^{ort} = \frac{\lambda_x + \lambda_y}{2}$$

Boundary conditions - only periodic.

Results

No	Value	Description	Unit	Target	CAE Fidesys result	Error, %
1	Effective thermal conductivity coefficients	λ_11	$\frac{W}{m*K}$.	2.54285	2.534	-0.34%
2	Effective thermal conductivity coefficients	λ_22	$\frac{W}{m*K}$.	2.54285	2.531	-0.47%
3	Effective thermal conductivity coefficients	λ_33	$\frac{W}{m*K}$	2.17647	2.292	0.26%

CAE Fidesys script:

reset $#\{\text{length} = 16.0\}$ $#{pitch = 16.0}$ $#{$ thick = 16.0 $} #$ thickness $\#\{\text{conc} = 10\} \# \text{cord concentration, percents}$ #{rad = sqrt(0.01 * pitch * thick * conc / 3.1415926)} $\#\{\text{size} = 3.0\}$ create brick width {length} depth {pitch} height {thick} create cylinder height {length} radius {rad} volume 2 rotate 90.0 about y subtract volume 2 from volume 1 keep delete volume 1 move volume all z {-thick/2.0} include_merged volume all move z {thick} copy rotate volume 2 3 angle 90 about z include_merged imprint volume all merge volume all volume all scheme Tetmesh volume all size {size} mesh volume all create material 1 name 'fiber' modify material 1 set property 'MODULUS' value 1 modify material 1 set property 'POISSON' value 0.25 modify material 1 set property 'ISO_CONDUCTIVITY' value 10 create material 2 name 'matrix' modify material 2 set property 'MODULUS' value 1 modify material 2 set property 'POISSON' value 0.25 modify material 2 set property 'ISO_CONDUCTIVITY' value 2 block 1 volume 2 4 block 2 volume 3 5 block 1 material 'fiber' block 2 material 'matrix' block 1 2 element solid order 1 analysis type effectiveprops heattrans dim3 periodicbc on

Reference:

[1] Вишняков Л.Р., Грудина Т.В., Кадыров В.Х., Карпинос Д.М., Олейник В.И., Сапожникова А.Б., Тучинский Л.И. Композиционные материалы. Справочник. – Киев: Наукова думка, 1985. – 592 с.

[2] Кристенсен Р. Введение в механику композитов. – М.: «Мир», 1982. – 334 с.

[3] Победря Б.Е. Механика композиционных материалов. - М.: Издательство Московского университета, 1984. - 335 с.

1.17. Test Case No1.17

Problem Description

Determination of effective mechanical characteristics for a single layer fibrous composite.

Input Values

Material Properties:

Matrix material

- Isotropic;
- Young's modulus = 1 Pa;
- Poisson ratio = 0.25;
- Thermal conductivity coefficient = $2 \frac{W}{m_*\kappa}$.

Thread material:

- Isotropic;
- Young's modulus = 1 Pa;
- Poisson ratio = 0.25;
- Thermal conductivity coefficient = $10 \frac{W}{m_*\kappa}$.

Geometric model:

- Parallelepiped 4 x 16 x 16;
- Thread of length 25 and radius of 2.85459861019 (selected so the thread volume concentration in composite is equal to 10%) runs through center line parallel to the X axis;
- Thread: $\lambda = 10$;
- Matrix: $\lambda = 2$.

Boundary conditions:

• Periodic.

Mesh:

• First order tetrahedrons.

Fig 1.29 – Tetrahedral mesh

Target results

No	Value	Description	Unit	Target
1	Effective thermal conductivity coefficients	λ_11	$\frac{W}{m * K}$	2.8
2	Effective thermal conductivity coefficients	λ_22	$\frac{W}{m * K}$.	2.28571
3	Effective thermal conductivity coefficients	λ_33	$\frac{W}{m * K}$	2.28571

Analytical solution description

Analytical solution taken from 1.6.2 paragraph of Karpinos's "Composite materials". Effective thermal conductivity coefficients determined by following formula:

$$\lambda_x = \gamma_f \lambda_f + \gamma_m \lambda_m$$
$$\lambda_y = \lambda_z \approx \lambda_m \frac{1 + \gamma_f + \gamma_m \frac{\lambda_m}{\lambda_f}}{\gamma_m + (1 + \gamma_f) \frac{\lambda_m}{\lambda_f}}$$

Fibers here directed along X axis, λ_f , λ_m - thermal conductivity coefficients of thread and matrix, γ_f , γ_m - volume concentration of thread and matrix (in total they are equal to 1).

Boundary conditions - only periodic.

Results

First order tetrahedral mesh

No	Value	Description	Unit	Target	CAE Fidesys result	Error, %
1	Effective thermal conductivity coefficients	λ_11	$\frac{W}{m*K}$	2.8	2.773	0.95
2	Effective thermal conductivity coefficients	λ_22	$\frac{W}{m*K}$.	2.28571	2.2283	0.12
3	Effective thermal conductivity coefficients	λ_33	$\frac{W}{m*K}$	2.28571	2.292	0.26

CAE Fidesys script:

reset $#\{\text{length} = 25.0\}$ $#{pitch = 16.0}$ $#{$ thick = 16.0 $} #$ thickness $\#\{\text{conc} = 10\} \# \text{ cord concentration, percents}$ #{rad = sqrt(0.01 * pitch * thick * conc / 3.1415926)} $#{size = 3.0}$ create brick width {length} depth {pitch} height {thick} create cylinder height {length} radius {rad} volume 2 rotate 90.0 about y subtract volume 2 from volume 1 keep delete volume 1 imprint volume all merge volume all volume all scheme Tetmesh volume all size {size} mesh volume all create material 1 name 'fiber' modify material 1 set property 'MODULUS' value 1 modify material 1 set property 'POISSON' value 0.25 modify material 1 set property 'ISO_CONDUCTIVITY' value 10 create material 2 name 'matrix' modify material 2 set property 'MODULUS' value 1 modify material 2 set property 'POISSON' value 0.25 modify material 2 set property 'ISO_CONDUCTIVITY' value 2 block 1 volume 2 block 2 volume 3 block 1 material 'fiber' block 2 material 'matrix' block 1 2 element solid order 1 analysis type effectiveprops heattrans dim3 periodicbc on

Reference:

[1] Вишняков Л.Р., Грудина Т.В., Кадыров В.Х., Карпинос Д.М., Олейник В.И., Сапожникова А.Б., Тучинский Л.И. Композиционные материалы. Справочник. – Киев: Наукова думка, 1985. – 592 с.

[2] Кристенсен Р. Введение в механику композитов. – М.: «Мир», 1982. – 334 с.

[3] Победря Б.Е. Механика композиционных материалов. - М.: Издательство Московского университета, 1984. - 335 с.

1.18. Test Case No1.18

Problem Description

Determination of effective mechanical characteristics for a single layer fibrous composite.

Input Values

Material Properties:

Matrix material

- Isotropic;
- Young's modulus = 2 Pa;
- Poisson ratio = 0.3;
- Thermal conductivity coefficient = $7.7 * 10^{-5} \frac{W}{m^* K}$.

Thread material:

- Isotropic;
- Young's modulus = 2000 Pa;
- Poisson ratio = 0.2;
- Thermal conductivity coefficient = $1.3 * 10^{-5} \frac{W}{m * K}$.

Geometric model:

- Parallelepiped 25 x 16 x 16;
- Thread of length 25 and radius of 2.85459861019 (selected so the thread volume concentration in composite is equal to 10%) runs through center line parallel to the X axis;
- Thread: $\lambda = 10$;
- Matrix: $\lambda = 2$.

Boundary conditions:

• Periodic.

Mesh:

• Second order hexahedrons.

Fig 1.30 - Hexahedral mesh

Target results

No	Value	Description	Unit	Target
1	Effective thermal conductivity coefficients	λ_11	$\frac{W}{m * K}$.	$1.35709 * 10^{-5}$
2	Effective thermal conductivity coefficients	λ_22	$\frac{W}{m * K}.$	$8.58878 * 10^{-5}$
3	Effective thermal conductivity coefficients	λ_33	$\frac{W}{m * K}$	$8.58878 * 10^{-5}$

Analytical solution description

Analytical solution taken from 1.6.2 paragraph of Karpinos's "Composite materials". Effective thermal conductivity coefficients determined by following formula:

$$\lambda_x = \gamma_f \lambda_f + \gamma_m \lambda_m$$
$$\lambda_y = \lambda_z \approx \lambda_m \frac{1 + \gamma_f + \gamma_m \frac{\lambda_m}{\lambda_f}}{\gamma_m + (1 + \gamma_f) \frac{\lambda_m}{\lambda_f}}$$

Fibers here directed along X axis, λ_f , λ_m - thermal conductivity coefficients of thread and matrix, γ_f , γ_m - volume concentration of thread and matrix (in total they are equal to 1).

Boundary conditions - only periodic.

Results

Second order hexahedral mesh

N o	Value	Description	Unit	Target	CAE Fidesys result	Error, %
1	Effective thermal conductivity coefficients	λ_11	$\frac{W}{m * K}$	1.35709 * 10 ⁻⁵	$1.358 * 10^{-5}$	0.08%
2	Effective thermal conductivity coefficients	λ_22	$\frac{W}{m * K}.$	8.58878 * 10 ⁻⁵	$8.484 * 10^{-5}$	1.22%
3	Effective thermal conductivity coefficients	λ_33	$\frac{W}{m * K}$	8.58878 * 10 ⁻⁵	$8.484 * 10^{-5}$	1.22%

CAE Fidesys script:

reset set default element hex $#\{\text{length} = 25.0\}$ $#{pitch = 16.0}$ $#{$ thick = 16.0 $} #$ thickness $\#\{\text{conc} = 10\} \# \text{cord concentration, percents}$ #{rad = sqrt(0.01*pitch*thick*conc/3.1415926)} $\#\{\text{size} = 1.0\}$ create brick width {length} depth {pitch} height {thick} create cylinder height {length} radius {rad} volume 2 rotate 90.0 about y subtract volume 2 from volume 1 keep delete volume 1 imprint volume all merge volume all volume all size {size} curve 18 20 22 24 interval 10 mesh volume all create material 1 name 'fiber' modify material 1 set property 'MODULUS' value 2000 modify material 1 set property 'POISSON' value 0.2 modify material 1 set property 'ISO_THERMAL_EXPANSION' value 1.3e-5 create material 2 name 'matrix' modify material 2 set property 'MODULUS' value 2 modify material 2 set property 'POISSON' value 0.3 modify material 2 set property 'ISO_THERMAL_EXPANSION' value 7.7e-5 block 1 volume 2 block 2 volume 3 block 1 material 'fiber' block 2 material 'matrix' block all element solid order 2 analysis type effectiveprops heatexpansion dim3 periodicbc on

Reference:

[1] Вишняков Л.Р., Грудина Т.В., Кадыров В.Х., Карпинос Д.М., Олейник В.И., Сапожникова А.Б., Тучинский Л.И. Композиционные материалы. Справочник. – Киев: Наукова думка, 1985. – 592 с.

[2] Кристенсен Р. Введение в механику композитов. – М.: «Мир», 1982. – 334 с.

[3] Победря Б.Е. Механика композиционных материалов. - М.: Издательство Московского университета, 1984. - 335 с.

1.19. Test Case No1.19

Problem Description

Infinite space filled with homogeneous isotropic elastic medium affected by concentrated force applied to point and acted according to Berlage law is considered as a problem (Stokes problem [1]). It is considered that source is point, i.e. it is small compared to characteristic dimensions of space. The problem has an analytical solution.

Input Values

Fig 1.31 - Geometric model for Stokes problem

Material Properties:

- Isotropic
- Young's modulus E = 2e8 Pa;
- Poisson ratio v = 0.3.
- Density = 1900 kg/m^3 .

Geometric model:

- Cube 100 x 100 x 100 m;
- Cube moved to coordinates (0, 50, 50) so M = (0, 0, 0)

Boundary conditions:

- Displacement along Y axis for ABCD face equals 0.
- Displacement along Z axis for BB`C`C face equals 0.
- Displacement along X axis for A`D` edge equals 0.
- At point M = (0, 0, 0) applied 100 kN force acted along X axis
- Dependence of force on time according to the Berlage formula with an amplitude of 25e6 m and a cyclic frequency of 10 Hz. Note: in CAE Fidesys considered a quarter of the real model, so the amplitude used to implement the analytical solution in the mathematical package should be divided by 4;
- Non-reflective BC in planes AA`D`D, A`B`C`D`, DCC`D`, ABB`A`;

• Along the line of action of the force, receivers are assigned to the nodes in all directions for each field from the drop-down list (displacement, speed, principal stresses, pressure).Mesh:

Mesh:

- Hexahedron (order 1, order 2);
- Element height of the first block h = 10 m;
- Element height of the second block h = 9 m;
- Spectral seventh order hexahedrals.

Fig 1.32 - Non-conformal finite element mesh for the Stokes problem

Target results

The displacement values are checked at point (20, 10, 20).

No	Value	Description	Unit	Target
1	X component of displacement vector for mesh nodes at step 0.13	Displacement X	m	5.308e-06
2	Y component of displacement vector for mesh nodes at step 0.144	Displacement Y	m	4.79e-06
3	Z component of displacement vector for mesh nodes at step 0.144	Displacement Z	m	9.581e-06
4	X component of displacement vector for mesh nodes at step 0.199	Displacement X	m	1.843e-05
5	Y component of displacement vector for mesh nodes at step 0.206	Displacement Y	m	-7.416e-06

No	Value	Description	Unit	Target
6	Z component of displacement vector for mesh nodes at step 0.2033	Displacement Z	m	-1.5e-05
7	X component of displacement vector for mesh nodes at step 0.249	Displacement X	m	-1.027e-05
8	Y component of displacement vector for mesh nodes at step 0.2532	Displacement Y	m	3.563e-06
9	Z component of displacement vector for mesh nodes at step 0.2532	Displacement Z	m	7.125e-06
10	X component of displacement vector for mesh nodes at step 0.299	Displacement X	m	3.536e-06
11	Y component of displacement vector for mesh nodes at step 0.3	Displacement Y	m	-1.1e-06
12	Z component of displacement vector for mesh nodes at step 0.303	Displacement Z	m	-2.328e-06

Analytical solution description

Let a concentrated force applied at a point (x_0, y_0, z_0) and directed along a certain x_j axis act on an infinite space filled with a homogeneous isotropic elastic. Let this force be equal to zero in magnitude at t < 0 and $X_0(t)$ at t > 0. The vector of elastic displacements $u_i(x, t)$ corresponding to such a force is determined by the following Stokes formulas [1]:

$$u_i(x,t) = \frac{1}{4\pi\rho} \left(3\gamma_i\gamma_j - \delta_{ij}\right) \frac{1}{r^3} \int_{\frac{r}{\alpha}}^{\frac{r}{\beta}} \tau X_0(t-\tau) d\tau + \frac{1}{4\pi\rho\alpha^2} \gamma_i\gamma_j \frac{1}{r} X_0(t-\frac{r}{\alpha}) - \frac{1}{r^3} \left(\frac{1}{r} + \frac{1}{r^3} + \frac{1$$

$$-\frac{1}{4\pi\rho\beta^2}\left(\gamma_i\gamma_j-\delta_{ij}\right)\frac{1}{r}X_0(t-\frac{r}{\beta}),$$

where $r = \sqrt{(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2}$, $\gamma_i = \frac{x_i}{r}$ - direction cosines, $\alpha = \sqrt{\frac{\lambda + 2\mu}{\rho}}$ - longitudinal

wave velocity, $\beta = \sqrt{\frac{\mu}{\rho}}$ - shear wave velocity, $\mu = \frac{E}{2(1+\nu)}$, $\lambda = \frac{\nu E}{(1+\nu)(1-2\nu)}$ - Lame constants, ρ -

density of the medium in which the waves propagate.

The Kronecker symbol δ_{ij} is interpreted as follows:

$$\delta_{ij} = 0 \quad \text{with } i \neq j,$$

$$\delta_{ij} = 1 \quad \text{with } i = j.$$

The force is applied along the x axis and propagates according to the Berlage law. It has been experimentally established that the propagation of elastic waves in the earth's crust is qualitatively described when the load is specified by the Berlage law [2]:

$$X_0(t) = A \cdot \omega_1^2 e^{-\omega_1 t} \cdot \left(\sin(\omega_0 t) \left(\frac{-t^2}{\omega_1} + \frac{t}{\omega_1^2} + \frac{1}{\omega_1^3} \right) - \cos(\omega_0 t) \sqrt{3} \left(\frac{t^2}{\omega_1} + \frac{t}{\omega_1^2} \right) \right),$$
$$\omega_0 = 2\pi\omega \quad , \quad \omega_1 = \frac{\omega_0}{\sqrt{3}} \quad ,$$

where A – vibration amplitude, ω – cyclic vibration frequency.

After analyzing all the coefficients in the Stokes formula, we will rewrite it more specifically for our setting:

$$\begin{split} u_{x}(x,t) &= \frac{1}{4\pi\rho} \left(3\gamma_{x}\gamma_{x} - 1 \right) \frac{1}{r^{3}} \int_{\frac{r}{\alpha}}^{\frac{r}{\beta}} \tau X_{0}(t-\tau) d\tau + \frac{1}{4\pi\rho\alpha^{2}} \gamma_{x}\gamma_{x} \frac{1}{r} X_{0}(t-\frac{r}{\alpha}) - \\ &- \frac{1}{4\pi\rho\beta^{2}} \left(\gamma_{x}\gamma_{x} - 1 \right) \frac{1}{r} X_{0}(t-\frac{r}{\beta}), \\ u_{y}(x,t) &= \frac{1}{4\pi\rho} \left(3\gamma_{y}\gamma_{x} - 0 \right) \frac{1}{r^{3}} \int_{\frac{r}{\alpha}}^{\frac{r}{\beta}} \tau X_{0}(t-\tau) d\tau + \frac{1}{4\pi\rho\alpha^{2}} \gamma_{y}\gamma_{x} \frac{1}{r} X_{0}(t-\frac{r}{\alpha}) - \\ &- \frac{1}{4\pi\rho\beta^{2}} \left(\gamma_{y}\gamma_{x} - 0 \right) \frac{1}{r} X_{0}(t-\frac{r}{\beta}), \\ u_{z}(x,t) &= \frac{1}{4\pi\rho} \left(3\gamma_{z}\gamma_{x} - 0 \right) \frac{1}{r^{3}} \int_{\frac{r}{\alpha}}^{\frac{r}{\beta}} \tau X_{0}(t-\tau) d\tau + \frac{1}{4\pi\rho\alpha^{2}} \gamma_{z}\gamma_{x} \frac{1}{r} X_{0}(t-\frac{r}{\alpha}) - \\ &- \frac{1}{4\pi\rho\beta^{2}} \left(\gamma_{z}\gamma_{x} - 0 \right) \frac{1}{r} X_{0}(t-\tau) d\tau + \frac{1}{4\pi\rho\alpha^{2}} \gamma_{z}\gamma_{x} \frac{1}{r} X_{0}(t-\frac{r}{\alpha}) - \\ &- \frac{1}{4\pi\rho\beta^{2}} \left(\gamma_{z}\gamma_{x} - 0 \right) \frac{1}{r} X_{0}(t-\frac{r}{\beta}). \end{split}$$

Thus, the input data for the implementation of the analytical solution of the Stokes problem in mathematical packages are: A, ω , E, v, ρ

Results

No	Value	Description	Unit	Target	CAE Fidesys result	Error, %
1	X component of displacement vector for mesh nodes at step 0.136	Displacement X	m	5.328e-06	5.54992e-06	3.08

90

No	Value	Description	Unit	Target	CAE Fidesys result	Error, %	
	Y component of						
2	displacement vector for mesh	Displacement Y	m	4.79e-06	4.85984e-06	1.56	
	nodes at step 0.144						
	Z component of						
3	displacement vector for mesh	Displacement Z	m	9.58e-06	9.43758e-06	1.39	
	nodes at step 0.144						
	X component of						
4	displacement vector for mesh	Displacement X	m	1.841e-05	1.87276e-05	1.67	
	nodes at step 0.2						
	Y component of						
5	displacement vector for mesh	Displacement Y	m	-7.33e-06	-7.20336e-06	1.73	
	nodes at step 0.2						
	Z component of						
6	displacement vector for mesh	Displacement Z	m	-1.466e-05	-1.52926e-05	4.32	
	nodes at step 0.2						
	X component of						
7	displacement vector for mesh	Displacement X	m	-1.025e-05	-1.05004e-05	2.54	
	nodes at step 0.248						
	Y component of						
8	displacement vector for mesh	Displacement Y	m	3.51e-06	3.28308e-06	0.77	
	nodes at step 0.256						
	Z component of						
9	displacement vector for mesh	Displacement Z	m	7.021e-06	6.99676e-06	0.63	
	nodes at step 0.256						

CAE Fidesys script:

reset

set default element hex brick x 100 y 100 z 100 move Volume 1 x 0 y 50 z 50 include_merged webcut volume 1 with plane zplane offset 10 move Volume 2 x 0 y 0 z -0.1 include_merged partition create curve 6 position 0 0 0 volume 1 size 10 mesh volume 1 volume 2 size 9 mesh volume 2 create material 1 modify material 1 set property 'MODULUS' value 2e8 modify material 1 set property 'POISSON' value 0.3 modify material 1 set property 'DENSITY' value 1900 set duplicate block elements off block 1 add volume 1 block 1 material 1 cs 1 element solid order 4 #fixed block 2 add volume 2 block 2 material 1 cs 1 element solid order 4 #fixed create displacement on curve 2 dof 1 fix 0 create displacement on surface 10 14 dof 2 fix 0 create displacement on surface 2 dof 3 fix 0

create absorption on surface 1 8 9 11 13 15 16 create force on vertex 17 force value 1 direction 1 0 0 bcdep force 1 value 'berlage(25e6, 10, time)' create contact master surface 7 slave surface 12 tolerance 0.11 type tied method auto analysis type dynamic elasticity dim3 preload off dynamic method full_solution scheme explicit maxtime 0.4 maxsteps 50000 output nodalforce off energy off record3d on log on vtu on material off results everystep 10

Reference:

[1] Аки К. Количественная сейсмология/ Ричардс П. — М.: Мир, т. 1, 1983. — 880 с.

[2] Geophysics, vol. 55, no. 11, november 1990. — P. 1508-1511, 2 figs.

1.20. Test case No1.20

Problem Description

A two-dimensional problem of the all-round tension of a flat unbounded plate with a circular cut is considered. The problem has an analytical solution. For the case of staged loading, it is taken into account that in the linear case the result does not depend on the loading path. Thus, the load is divided into 6 loading steps. In the case, the correctness of setting the boundary pressure condition for stage-by-stage loading is checked.

Input Values

Figure 1.33 – Geometric model for a plate with ful all-round tension

Material prorerties:

- Young's modulus E = 200 GPa;
- Poisson ratio v = 0.3;

Geometric model:

- Due to the symmetry of the problem, 1/4 of the plate is considered;
- Side of the plate 10 m;
- Hole diameter 0.5 m;
- Polar coordinates are used.

Bordery conditions:

- Zero displacements along the X axis on the line AB;
- Zero displacements along the Y axis on the line ED;
- P₀ = 0.1 MPa, 0.25 MPa, 0.5 MPa, 0.75 MPa, 0.9 MPa, 1 MPa.

Mesh:

• 2D third order quadrangular spectral elements

Fig 1.34 – 2D third order quadrangular spectral elements mesh

Target results

No	Value	Description	Unit	Target
1	Stress tensor components at mesh nodes in polar coordinates	Stress FF	MPa	2
2	Step number	step	-	6

Analitical solution

The values are calculated using the formula [1]:

$$\sigma_{\theta} = 2P_0.$$

Results

Quadrangular spectral elements

No	Value	Description	Unit	Target	CAE Fidesys result	Error, %
1	Stress tensor components at mesh nodes in polar coordinates	Stress FF	MPa	2	2	0.00
2	Step number	step	-	6	6	-

CAE Fidesys Script:

reset set default element hex set node constraint on create surface rectangle width 5 height 5 zplane move surface 1 x 2.5 y 2.5 create surface circle radius 0.25 zplane subtract body 2 from body 1 surface 3 size auto factor 2 surface 3 scheme auto mesh surface 3 create material 1 modify material 1 name 'material 1' modify material 1 set property 'MODULUS' value 2e+11 modify material 1 set property 'POISSON' value 0.3 set duplicate block elements off block 1 add surface 3 block 1 material 1 cs 1 element plane order 3 create displacement on curve 7 dof 2 fix 0 create displacement on curve 8 dof 1 fix 0 create pressure on curve 1 4 magnitude 0 create table 1 modify table 1 dependency time modify table 1 insert row 1 modify table 1 cell 1 1 value 1 modify table 1 cell 2 1 value 2 modify table 1 cell 3 1 value 3 modify table 1 cell 4 1 value 4 modify table 1 cell 5 1 value 5 modify table 1 cell 6 1 value 6 modify table 1 cell 1 2 value -100000 modify table 1 cell 2 2 value -250000 modify table 1 cell 3 2 value -500000 modify table 1 cell 4 2 value -750000 modify table 1 cell 5 2 value -950000 modify table 1 cell 6 2 value -1e+06 bcdep pressure 1 table 1 analysis type static elasticity dim2 planestrain static steps 6

Reference:

[1] Седов Л.И. "Механика сплошной среды, том 2". М.: Наука, 1970г.

1.21. Test case No1.21

Problem Description

The problem of stress distribution in the vicinity of a vertical well of radius R_w drilled to depth *h* is considered. The reservoir is considered to be isotropic and homogeneous. The problem has an analytical solution [1]. The test task is designed to check the correctness:

- calculation of the pore pressure of the medium;
- taking into account the plastic properties of the material when calculating the stress-strain state of the medium;
- Drucker-Prager plasticity criterion with symmetric hardening;
- nonlinear model for calculating mechanical strength;

output fields of Displacements, Stresses, Elastic deformations, Plastic deformations taking into account the occurrence of plasticity.

Input values

Fig 1.35 – Geometrical model

Geometrical model:

- Due to the symmetry of the problem, we consider 1/4 of the plate;
- $R_1 = 10, R_2 = 1;$
- Analytical solution uses polar coordinates

Bordery conditions:

- Well pressure p = 4e7;
- Pressure at a distance p = 8e7;
- Fastening based on symmetry conditions;
- Pore pressure p = 4e7.

Material parameters:

• Young's modulus E = 1e9 Pa;

96

- Poisson's ratio v = 0.25;
- Cohesion K = 5.43712e + 6;
- Internal friction angle $\alpha = 21.43$;
- Dilatancy angle $\beta = 21.43$;
- Porosity = 0.25;
- Permeability = 1e-12;
- Liquid viscosity = 0.005;
- Biot coefficient = 1;
- The liquid modulus of elasticity = 1e9.

Mesh:

• Second order hexahedrons.

Fig 1.36 – 3rd order spectral elements for the Lamb problem

Calculation settings:

- Dynamic calculation;
- Maximum time 3 s;
- Maximum number of steps 2025;
- Output every 135 step to a .vtu file.

Target results

Target results are obtained from the analytical solution below and are presented with the calculated results. *Analytical solution*

Verification of the numerical poroelastoplastic CAE Fidesys model is based on the analytical solution considered in part 1 of work [1].

The distribution of stresses in the vicinity of a vertical well of radius R_w drilled to depth *h* is studied. The reservoir is considered to be isotropic and homogeneous.

The problem is solved in a cylindrical coordinate system.

The initial stress state of the formation is considered as a state of all-round compression by rock pressure $Q = -\gamma h$, where γ is the average specific weight of the overlying rocks.

The paper assumes that the Biot coefficient is equal to 1, p_0 is the initial reservoir pressure of the filtering fluid. Then the initial effective stresses are determined by the expressions

$$S_r^0 = S_{\theta}^0 = S_z^0 = Q + p_0$$

and full stresses

$$\sigma_r = S_r - p_0, \, \sigma_\theta = S_\theta - p_0, \, \sigma_z = S_z - p_0$$

In the statement of part 1 [1], it is considered that there is no fluid filtration, therefore, the pore pressure p_w in the well coincides with p_0 .

In [1], it is assumed that the Coulomb-Mohr criterion is used as a yield criterion with parameters τ_s -adhesion coefficient, ρ - angle of internal friction of the rock. CAE Fidesys uses the Drucker-Prager criterion. The Drucker-Prager surface is a smoothed Coulomb-Mohr surface (in CAE Fidesys, the Drucker-Prager surface is inscribed in the Coulomb-Mohr hex cone). Based on the study [2], we assume that the differences in the results for the Drucker-Prager and Coulomb-Mohr criteria should be insignificant.

Results

The displacement values are checked at the point (70.4225, 4.31214e-15, 0.0).

No	Value	Point coordinates	Description	Unit	Target	CAE Fidesys result	Error, %
1	Stress component σ_{yy}	(1,0,0)	Stress_YY	Ра	- 6.81E+07	-6.771E+07	-0.58
2	Stress component σ_{yy}	(1.1102, 0,0)	Stress_YY	Ра	- 7.75E+07	-7.758E+07	-0.10
3	Stress component σ_{yy}	(1.2063, 0,0)	Stress_YY	Ра	- 8.57E+07	-8.643E+07	-0.88
4	Stress component σ_{yy}	(1.30623, 0,0)	Stress_YY	Ра	- 9.31E+07	-9.400E+07	-0.98
5	Stress component σ_{yy}	(1.38922, 0,0)	Stress_YY	Ра	- 9.68E+07	-9.757E+07	-0.78

No	Value	Point coordinates	Description	Unit	Target	CAE Fidesys result	Error, %
6	Stress component σ_{yy}	(1.49691, 0,0)	Stress_YY	Ра	- 9.92E+07	-9.969E+07	-0.51
7	Stress component σ_{yy}	(1.655, 0,0)	Stress_YY	Ра	- 1.00E+08	-1.003E+08	-0.02
8	Stress component σ_{yy}	(1.74951, 0,0)	Stress_YY	Ра	- 9.92E+07	-9.901E+07	-0.14
9	Stress component σ_{yy}	(1.99968, 0,0)	Stress_YY	Ра	- 9.48E+07	-9.469E+07	-0.11
10	Stress component σ_{yy}	(2.50458, 0,0)	Stress_YY	Ра	- 8.96E+07	-8.956E+07	-0.08
11	Stress component σ_{yy}	(3.01979, 0,0)	Stress_YY	Ра	- 8.68E+07	-8.676E+07	-0.06
12	Stress component σ_{yy}	(3.4908, 0,0)	Stress_YY	Ра	- 8.52E+07	-8.520E+07	-0.05
13	Stress component σ_{yy}	(4.01398, 0,0)	Stress_YY	Ра	- 8.41E+07	-8.407E+07	-0.04
14	Stress component σ_{yy}	(6.01916, 0,0)	Stress_YY	Ра	- 8.21E+07	-8.212E+07	-0.02
15	Stress component σ_{yy}	(8.01412, 0,0)	Stress_YY	Ра	- 8.15E+07	-8.144E+07	-0.01
16	Stress component σ_{yy}	(10, 0,0)	Stress_YY	Ра	- 8.11E+07	-8.113E+07	-0.02
17	Stress component σ_{xx}	(1, 0,0)	Stress_XX	Ра	- 4.00E+07	-4.000E+07	-0.01
18	Stress component σ_{xx}	(1.1102, 0,0)	Stress_XX	Ра	- 4.32E+07	-4.329E+07	-0.17
19	Stress component σ_{xx}	(1.2063, 0,0)	Stress_XX	Ра	- 4.63E+07	-4.634E+07	-0.07
20	Stress component σ_{xx}	(1.30623, 0,0)	Stress_XX	Ра	- 4.98E+07	-4.971E+07	-0.15
21	Stress component σ_{xx}	(1.38922, 0,0)	Stress_XX	Ра	- 5.29E+07	-5.245E+07	-0.82
22	Stress component σ_{xx}	(1.49691, 0,0)	Stress_XX	Ра	- 5.67E+07	-5.578E+07	-1.53
23	Stress component σ_{xx}	(1.655, 0,0)	Stress_XX	Ра	- 6.09E+07	-6.001E+07	-1.45
24	Stress component σ_{xx}	(1.74951, 0,0)	Stress_XX	Pa	- 6.29E+07	-6.216E+07	-1.18
25	Stress component σ_{xx}	(1.99968, 0,0)	Stress_XX	Ра	- 6.69E+07	-6.648E+07	-0.64
26	Stress component σ_{xx}	(2.50458, 0,0)	Stress_XX	Ра	- 7.17E+07	-7.158E+07	-0.11

No	Value	Point coordinates	Description	Unit	Target	CAE Fidesys result	Error, %
27	Stress component σ_{xx}	(3.01979, 0,0)	Stress_XX	Ра	74260000	-7.439E+07	-0.17
28	Stress component σ_{xx}	(3.4908, 0,0)	Stress_XX	Ра	- 7.57E+07	-7.594E+07	-0.31
29	Stress component σ_{xx}	(4.01398, 0,0)	Stress_XX	Ра	- 7.68E+07	-7.707E+07	-0.42
30	Stress component σ_{xx}	(6.01916, 0,0)	Stress_XX	Ра	- 7.86E+07	-7.901E+07	-0.57
31	Stress component σ_{xx}	(8.01412, 0,0)	Stress_XX	Ра	- 7.92E+07	-7.969E+07	-0.63
32	Stress component σ_{xx}	(10, 0,0)	Stress_XX	Ра	- 7.95E+07	-8.000E+07	-0.66
33	Elastic strain component _{Exx}	(1, 0,0)	Elastic_Strain_ X	-	0.012107	0.0122	0.10
34	Elastic strain component _{Exx}	(1.12917, 0,0)	Elastic_Strain_ X	-	0.01336	0.01341	0.36
35	Elastic strain component _{Exx}	(1.30623, 0,0)	Elastic_Strain_ X	-	0.011978	0.01205	0.61
36	Elastic strain component _{\$xx}	(1.97385, 0,0)	Elastic_Strain_ X	-	-0.00726	-7.271E-03	-0.16
37	Elastic strain component _{\$xx}	(2.69, 0,0)	Elastic_Strain_ X	-	-0.01554	-1.562E-02	-0.52
38	Elastic strain component _{\$xx}	(3.685, 0,0)	Elastic_Strain_ X	-	-0.02012	-2.017E-02	-0.20
39	Elastic strain component _{\$xx}	(6.137, 0,0)	Elastic_Strain_ X	-	-0.02347	-2.348E-02	-0.05
40	Elastic strain component _{Exx}	(10, 0,0)	Elastic_Strain_ X	-	-0.02465	-2.465E-02	-0.00
41	Elastic strain component _{\$yy}	(1, 0,0)	Elastic_Strain_ Y	-	-0.02285	-0.02251	-1.49
42	Elastic strain component _{\$yy}	(1.497, 0,0)	Elastic_Strain_ Y	-	-0.0488	-0.04919	-0.81
43	Elastic strain component _{\$yy}	(1.609, 0,0)	Elastic_Strain_ Y	-	-0.04991	-0.04998	-0.13
44	Elastic strain component _{\$\vert yy}	(2.187, 0,0)	Elastic_Strain_ Y	_	-0.04021	-4.010E-02	-0.28
45	Elastic strain component _{\$yy}	(3.054, 0,0)	Elastic_Strain_ Y	-	-0.03297	-3.291E-02	-0.18
46	Elastic strain component ε _{yy}	(3.93, 0,0)	Elastic_Strain_ Y	-	-0.02996	-2.992E-02	-0.13

No	Value	Point coordinates	Description	Unit	Target	CAE Fidesys result	Error, %
47	Elastic strain component ε _{yy}	(5.455, 0,0)	Elastic_Strain_ Y	-	-0.02774	-2.772E-02	-0.08
48	Elastic strain component ϵ_{yy}	(10, 0,0)	Elastic_Strain_ Y	-	-0.02607	-2.606E-02	-0.04
49	Displacement component u _x	(1, 0,0)	Displacement X	m	-0.14374	-1.435E-01	-0.17
50	Displacement component u _x	(1.1102, 0,0)	Displacement X	m	-0.11475	-1.146E-01	-0.16
51	Displacement component u _x	(1.2063, 0,0)	Displacement X	m	-0.10044	-1.003E-01	-0.14
52	Displacement component u _x	(1.30623, 0,0)	Displacement X	m	-0.09343	-9.218E-02	-1.34
53	Displacement component u _x	(1.47495, 0,0)	Displacement X	m	-0.0868	-8.621E-02	-0.69
54	Displacement component u _x	(1.70187, 0,0)	Displacement X	m	-0.08491	-8.453E-02	-0.44
55	Displacement component u _x	(2.10559, 0,0)	Displacement X	m	-0.08714	-8.683E-02	-0.35
56	Displacement component u _x	(2.44476, 0,0)	Displacement X	m	-0.09106	-9.079E-02	-0.29
57	Displacement component u _x	(3.1594, 0,0)	Displacement X	m	-0.1026	-1.024E-01	-0.20
58	Displacement component u _x	(7.5045, 0,0)	Displacement X	m	-0.19975	-1.996E-01	-0.05
59	Displacement component u _x	(10, 0,0)	Displacement X	m	-0.26066	-2.606E-01	-0.04
60	Plastic strain	(1, 0,0)	Plastic_Strain_ XX	-	0.330137	0.3313	0.36
61	Plastic strain	(1.12917, 0,0)	Plastic_Strain_ XX	-	0.161152	0.1604	0.47
62	Plastic strain	(1.38922, 0,0)	Plastic_Strain_ XX	-	0.024793	0.02468	0.45
63	Plastic strain	(1.72569, 0,0)	Plastic_Strain_ XX	-	0	1.509E-05	0.00
64	Plastic strain	(1, 0,0)	Plastic_Strain_ YY	-	-0.12074	-0.1209	-0.17
65	Plastic strain	(1.12917, 0,0)	Plastic_Strain_ YY	-	-0.06783	-0.06768	-0.22
66	Plastic strain	(1.38922, 0,0)	Plastic_Strain_ YY	-	-0.01683	-16.85	-0.10
67	Plastic strain	(1.72569, 0,0)	Plastic_Strain_ YY		0	-1.452E-05	0.00

CAE Fidesys script:

reset set default element hex create surface circle radius 10 zplane create surface circle radius 1 zplane subtract body 2 from body 1 webcut body 1 with plane yplane offset 0 webcut body 3 with plane xplane offset 0 delete Body 4 delete Body 1 merge all create material 1 modify material 1 set property 'MODULUS' value 1e+09 modify material 1 set property 'POISSON' value 0.25 modify material 1 set property 'COHESION' value 5.43712e+06 modify material 1 set property 'INT_FRICTION_ANGLE' value 21.43 modify material 1 set property 'DILATANCY ANGLE' value 21.43 modify material 1 set property 'BIOT_ALPHA' value 1 modify material 1 set property 'POROSITY' value 0.25 modify material 1 set property 'PERMEABILITY' value 1e-12 modify material 1 set property 'FLUID_VISCOCITY' value 0.005 modify material 1 set property 'FLUID_BULK_MODULUS' value 1e9 curve 8 12 interval 90 curve 8 scheme bias factor 1.05 start vertex 7 curve 12 scheme bias factor 1.05 start vertex 11 curve 13 14 interval 30 mesh surface all create displacement on curve 8 dof 2 fix 0 create displacement on curve 12 dof 1 fix 0 create porepressure on curve 13 14 value 4e7 create pressure on curve 13 magnitude 4e7 create pressure on curve 14 magnitude 8e7 block 1 surface all block 1 material 1 block 1 element plane order 2 analysis type static elasticity plasticity porefluidtrans dim2 planestrain nonlinearopts maxiters 100 minloadsteps 30 maxloadsteps 10000000 tolerance 1e-3

Reference:

[1] Журавлев А.Б. Влияние фильтрации на напряженно-деформированное состояние породы в окрестности скважины / А.Б. Журавлев, В.И. Карев, Ю.Ф. Коваленко, К.Б. Устинов // Прикладная математика и механика, Т. 78, Вып. 1, 2014, стр. 86-97.

[2] Mountaka Souley, Alain Thoraval. Nonlinear mechanical and poromechanical analyses : comparison with analytical solutions. COMSOL Conference 2011, Oct 2011, Stuttgart, Germany. pp.NC. ffineris00973639

1.22. Test case No1.22

Problem Description

The proposed case simulates the Hertz problem for two hemispheres contacting at the origin. Test case aimed to check correctness of:

- setting a sliding contact without friction in the interface;
- static solution taking into account sliding contact without friction for 3D models;

the correctness of the output of the Stress field, taking into account the contact interaction.

Input Values

Fig 1.37 – Geometrical model

Geometrical model:

- Due to symmetry, one fourth of the hemispheres contacting at the origin is considered;
- Radius of hemispheres r = 50 mm.

Material Properties:

- Isotropic;
- Young's modulus = 2e4 MPa;
- Poisson ratio = 0.3;

Boundary conditions:

- Fixation normal to surfaces ABG и DEG': $u_z|_{z=0} = 0$:
- Fixation normal to surfaces ACG и DFG': $u_x \Big|_{x=0} = 0$;
- Displacement on surface ABC: $u_y \Big|_{y=r} = -2_{\text{MM}}$;
- Displacement on surface DEF: $u_y \Big|_{y=-r} = 2_{\text{MM}}$;

• Common contact for surfaces ABCG and DEFG`.

Mesh:

• First order hexahedrons

Fig 1.38 – Hexahedrons

Calculation settings:

- Static analysis;
- Elasticity;
- 3D.

Target results

No	Value	Description	Unit	Target
1	σ_{yy} component of stress tensor	Stress YY	MPa	-2798.3

Analytical solution

The reference value is obtained using the formula [1]:

$$\sigma_{yy}\Big|_{G} = -\frac{E}{\pi} \frac{1}{1-\nu^2} \sqrt{\frac{4u_y\Big|_{y=-r}}{r}}$$

Results

First order hexahedral mesh

No	Value	Description	Unit	Target	CAE Fidesys result	Error, %
1	$\sigma_{_{yy}}$ component of stress tensor	Stress YY	MPa	-2798.3	-2.744E+03	1.95

CAE Fidesys script:

reset create sphere radius 50 move Volume 1 y 50 include_merged create sphere radius 50 move Volume 2 y -50 include_merged webcut volume 1 with plane yplane offset 50 webcut volume 2 with plane yplane offset -50 delete volume 3 2 webcut volume all with plane xplane offset 0 webcut volume all with plane zplane offset 0 delete volume 5 6 7 8 9 10 volume all scheme polyhedron volume all size auto factor 4 mesh volume all create material 1 modify material 1 name 'Material 1' modify material 1 set property 'MODULUS' value 2e4 modify material 1 set property 'POISSON' value 0.3 set duplicate block elements off block 1 add volume all block 1 material 1 cs 1 element solid order 1 create displacement on surface 25 33 dof 1 fix 0 create displacement on surface 23 31 dof 3 fix 0 create displacement on surface 24 dof 2 fix -2 create displacement on surface 34 dof 2 fix 2 create contact master surface 32 slave surface 26 tolerance 0.0005 friction 0.0 preload 0.0 offset 0.0 ignore_overlap off type general method auto analysis type static plasticity elasticity dim3 nonlinearopts maxiters 50 minloadsteps 10 maxloadsteps 30 tolerance 1e-3 targetiter 5

Reference:

[1] G. DUMONT: "Method of the active stresses applied to the unilateral contact" Note HI-75/93/016.

1.23. Test case No1.23

Problem Description

In the proposed problem, a steel cylinder is pressed into an aluminum block. Both materials are assumed to be linearly elastic. In this case, a point force F acts on the cylinder in the negative direction of the Y axis. The problem has an analytical solution for the case when the coefficient of friction $\mu=0$. The test case is designed to check the correctness of:

- setting the parameters of sliding contact without friction in the interface;
- static solution taking into account sliding contact without friction for the case of 2D;
- the correctness of the output of the voltage field in the contact.

Input values

Fig 1.39 - Geometrical model

Geometrical model:

- Circle with diameter d = 100 mm;
- Sqare plate 200×200 mm.

Material Properties:

- Isotropic;
- Circle Young's modulus E_{circle} = 210 KPa;
- Plate Young's modulus $E_{plate} = 70$ KPa;
- Poisson ratio v = 0,3.

Boundary conditions:

- Due to symmetry, $\frac{1}{2}$ part of the model is considered;
- For edge OC $u_x = u_y = 0$;
- For edge OE, EF $u_x = 0$;
- At point F, a force of 35 kN is applied, directed along the negative Y-axis;
- Sliding contact without friction (common) for surfaces EF and ABCD.

Mesh:

• 8-node sqare elements.

Calculation settings:

- Static analysis;
- 2D;
- Plain strain.

Target results

No	Value	Description	Point	Unit	Target
1	Stress tensor components in the contact zone	Contact Stress Node N	(0, -50, 0)	Ра	3600

Analytical solution

An analytical solution to this contact problem can be obtained from the contact formulas of Hertz [1] for two cylinders. The maximum contact pressure is determined by the formula:

$$p_{\rm max} = \sqrt{\frac{F_n E^*}{2\pi B R^*}},$$

where F_n is the applied normal force, E^* is the combined modulus of elasticity, B is the length of the cylinder, and R^* is the combined radius.

Contact width 2a is defined as:

$$a = \sqrt{\frac{8F_n R^*}{\pi B E^*}} \; .$$

Using a normalized coordinate with a Cartesian coordinate system $\xi = x/a$ and coordinate x, the pressure distribution is determined as follows:

$$p = p_{\max} \sqrt{1 - \xi^2} \; .$$

The combined modulus of elasticity is determined from the modulus of elasticity and Poisson's ratio of the cylinder E_1 , v_1 and block E_2 , v_2 as follows:

$$E^* = \frac{2E_1E_2}{E_2(1-v_1^2) + E_1(1-v_2^2)}$$

The total radius of curvature is calculated from the radius of curvature of the cylinder R_1 and block R_2 as follows:

$$R^* = \frac{R_1 R_2}{R_1 + R_2}$$
For the target solution, the block is approximated by an infinitely large radius. The combined radius is then evaluated as:

$$R^* = \lim_{R_2 \to \infty} \frac{R_1 R_2}{R_1 + R_2} = R_1$$
.

Results

No	Value	Description	Point	Unit	Target	CAE Fidesys result	Error, %
1	Stress tensor components in the contact zone	Contact Stress Node N	(0, -50, 0)	Ра	3600	3535	1.8

Fig. 1.40 - Graph of contact stress node stress N distribution with the contact zone 6.2 mm

CAE Fidesys script:

reset

set default element hex create surface circle radius 50 zplane create surface rectangle width 200 height 200 zplane move Surface 2 y -150 include_merged webcut body 1 2 with plane xplane offset 0 delete Surface 4 6 split surface 3 across location position 0 0 0 location position 50 0 0 create surface rectangle width 25 zplane move Surface 9 y -62.5 include merged move Surface 9 x 12.5 include_merged split surface 5 with surface 9 delete Body 5 split surface 11 across location position 0 -150 0 location position 100 -150 0 curve 18 17 scheme bias fine size 0.25 factor 1.025 start vertex 7 mesh curve 18 17 surface 7 size auto factor 3 mesh surface 7 surface 8 size auto factor 3 mesh surface 8 surface 10 size 1 mesh surface 10 surface 13 12 size auto factor 3 mesh surface 13 12 create material 1 modify material 1 name 'Mat_cube' modify material 1 set property 'MODULUS' value 2.1e5 modify material 1 set property 'POISSON' value 0.3 create material 2 modify material 2 name 'Mat cyl' modify material 2 set property 'MODULUS' value 7e4 modify material 2 set property 'POISSON' value 0.3 set duplicate block elements off block 1 surface 12 13 10 set duplicate block elements off block 2 surface 87 block 1 material 'Mat_cube' block 2 material 'Mat_cyl' create displacement on curve 11 dof all fix create displacement on curve 20 17 28 35 32 dof 1 dof 3 dof 4 dof 5 dof 6 fix create force on vertex 6 force value 17500 direction ny block 1 element plane order 2 block 2 element plane order 2 create contact master curve 27 slave curve 18 tolerance 0.0005 type general friction 0.0 preload 0.0 offset 0.0 ignore_overlap off method penalty normal_stiffness 1.0 tangent_stiffness 0.5 analysis type static elasticity dim2 planestrain

Reference:

[1] Hertz, H., Über die Berührung fester elasticher Körper. J. Reine Angew. Mathm. 92, 156-171, 1881.

1.24. Test case No1.24

Problem Description

We consider the problem of finding the eigenfrequencies of a cantilever beam, which is divided into three parts, between which the condition of coupled contact acts. The beam is clamped at the left end and loaded with a tensile longitudinal force p at the right end. The test task is designed to check the correctness of the modal analysis calculation result, taking into account the rigid contact.

Input Values

Geometrical model:

- Length L = 0.5 m;
- Width b = 0.05 m;
- Height h = 0.02 m.

Fig 1.41 - Geometrical model

Boundary conditions:

- The left end of the beam is fixed along all axes $(u_x = u_y = u_z = r_x = r_y = r_z = 0)$;
- A force applied at the right end of the beam P = 50000 N.

Material properties:

- Young's modulus E = 2.1e + 11 Pa;
- Poisson ratio v = 0.28;
- Density $\rho = 7800$ kg/m³.

Mesh:

• second order tetrahedral mesh.

Contact cettings:

- Rigid;
- Method: auto.

Analysis settings:

- Modal analysis;
- Preloaded model;

• Search for the first lowest frequency.

Target results

No	Value	Description	Value
1	Natural frequency	Eigen Values 1, Hz	86.16

Analytical solution

The analytical solution is as follows [1]:

$$\begin{split} f_1^* &= f_1 \cdot \sqrt{1 + \frac{5PL^2}{14EJ}} \\ f_1 &= \frac{1}{2\pi} \left(\frac{k_1}{L}\right)^2 \sqrt{\frac{EJ}{\rho F}}, \end{split}$$

where f_1 is the first natural frequency of the cantilever beam, J is the moment of inertia, ρ is the density of the material, F is the cross-sectional area, $k_1 = 1.875$.

Results

The displacement values are checked at the point (20, 10, 20).

No	Value	Description	Unit	Value	CAE Fidesys result	Error, %
1	Natural frequency	Eigen Values 1	Hz	86.16	86.19	0.04

CAE Fidesys script:

reset brick x 0.5 y 0.02 z 0.05 webcut volume 1 with plane xplane offset 0.083333333 webcut volume 2 with plane xplane offset -0.083333333 merge all volume all size 0.01 volume all scheme Tetmesh mesh volume all create contact autoselect volume 1 2 tolerance 0.0005 type general friction 0.0 preload 0.0 offset 0.0 ignore_overlap off method auto create contact autoselect volume 3 2 tolerance 0.0005 type general friction 0.0 preload 0.0 offset 0.0 ignore_overlap off method auto create material 1 name "mat1" modify material 1 set property 'DENSITY' value 7800 modify material 1 set property 'POISSON' value 0.28 modify material 1 set property 'MODULUS' value 2.1e+11 set duplicate block elements off

block 1 volume all block 1 material 'mat1' create displacement on surface 4 dof all fix list Surface 6 mesh create force on vertex 2 5 6 1 force value 12500 direction x block 1 element solid order 2 analysis type eigenfrequencies dim3 preload on eigenvalue find 10 smallest

Reference:

[1] AutoFem Analysis First Natural Frequency of the Cantilever Beam under the Stretching Lonqitudinal Force (https://autofem.com)

1.25. Test case No1.25

Problem description

The problem of the dependence of the critical force on the conditions for fixing the rod is considered. The rod is divided into two parts, between which the condition of common contact is valid. The rod is clamped at the left end and loaded with a tensile longitudinal force P at the right end. The control case is designed to check the correctness of the calculation for the analysis of buckling taking into account the common contact.

Input values

Geometrical model:

- Length L = 2.54 m;
- Width b = 0.0508 m;
- Height h = 0.0508 m.

Fig 1.42 - Geometrical model

Boundary conditions:

- The left end of the beam is fixed along all axes $(u_x = u_y = u_z = r_x = r_y = r_z = 0);$
- A force applied at the right end of the beam P = 0.1 N.

Material properties:

- Young's modulus E = 2.1e + 11 Pa;
- Poisson ratio v = 0.3;

Mesh:

• second order hexahedral mesh.

Contact cettings:

- Common;
- Method: auto.

Analysis settings:

- Buckling;
- Search for the first form of buckling.

Target results

113

No	Value	Description	Target
1	Critical force	Critical Values 1	44527

Analytical solution

The analytical solution is as follows [1]:

$$P_{cr} = \frac{\pi^2 E l}{(l/2)^2}$$

Results

The displacement values are checked at the point (70.4225, 4.31214e-15, 0).

No	Value	Description	Unit	Target	CAE Fidesys result	Error, %
1	Critical force	Critical Values 1	-	44527	44590	0.15

CAE Fidesys script:

reset set default element hex brick x 2.54 y 0.0508 z 0.0508 webcut volume 1 with plane yplane webcut volume all with plane zplane surface 19 26 33 31 scheme map mesh surface 19 26 33 31 curve 2 4 6 8 interval 50 curve 2 4 6 8 scheme equal mesh curve 2468 volume all size auto factor 4 mesh volume all create material 1 modify material 1 set property 'POISSON' value 0.3 modify material 1 set property 'MODULUS' value 2.1e11 set duplicate block elements off block 1 volume all block 1 material 1 block 1 element solid order 2 create displacement on surface 23 35 29 21 dof all fix 0 create pressure on surface 19 26 33 31 magnitude 388 create contact autoselect tolerance 0.0005 type general method auto analysis type stability elasticity dim3 eigenvalue find 1 smallest

Reference:

[1] Феодосьев В.И. Сопротивление материалов: Учеб. для вузов. - 10-е издание, перераб. и доп. - М.: Изд-во МГТУ им. Н.Э.Баумана, 1999. - 592 с.

1.26. Test case No1.26

Problem description

Compression of an elastoplastic rectangular parallelepiped (multilinear isotropic hardening) *Input values*

Geometrical model:

• Parallelepiped 5x1x1;

Fig 1.43 - Geometrical model

Boundary conditions:

- For face y = 0 $u_y = 0$;
- For face $z = 0 u_z = 0$;
- For whole model $u_x = -2*x/5$

Material properties:

- Young's modulus E = 5.1e+6;
- Poisson ratio v = 0.25;
- Cohesion c = 15000;
- Internal friction angle $\phi = 0$;
- Dilatation angle $\psi = 0$;

The hardening given by the stress / plastic strain curve (tension) imported from the lider_hardening.csv file:

 $Fig~1.44-Stress\,/\,plastic~strain~curve$

Mesh:

• Second order hexahedrons.

Fig 1.45 – Mesh

Target results

No	Value	Point	Description	Target
1	Stress tensor components for t=0.2	(5, 0, 1)	σxx, Pa	-60117.782
2	Stress tensor components for t=0.4	(5, 0, 1)	σxx, Pa	-74207.347
3	Stress tensor components for t=0.6	(5, 0, 1)	σxx, Pa	-96336.05
4	Stress tensor components for t=0.8	(5, 0, 1)	σxx, Pa	-108917.197
5	Stress tensor components for t=1	(5, 0, 1)	σxx, Pa	-113650.937

Analytical solution

From Hooke's law, elastic strain are related to stress as follows:

$$arepsilon_{11}^2 = rac{1}{E}(\sigma_{11} -
u(\sigma_{22} + \sigma_{33}))
onumber \ arepsilon_{22}^2 = rac{1}{E}(\sigma_{22} -
u(\sigma_{11} + \sigma_{33}))
onumber \ arepsilon_{33}^2 = rac{1}{E}(\sigma_{33} -
u(\sigma_{22} + \sigma_{11}))
onumber \ arepsilon_{23}$$

Expressions for strain ε_{ij} are written as:

$$arepsilon_{ij} = rac{1}{2}igg(rac{\partial u_i}{\partial x_j} + rac{\partial u_i}{\partial x_j}igg)$$

Based on the boundary conditions, $\sigma_{22} = \sigma_{33} = 0$, then Hooke's law and the expression for ε_{ij} can be written as follows:

$$arepsilon_{11}(t) = t rac{\partial u_1}{\partial x_1} = -0.4t$$
 $arepsilon_{11}^e = rac{\sigma_{11}}{E}$
 $arepsilon_{22}^e = -rac{
u \sigma_{11}}{E} = arepsilon_{33}^e$

For this case, the yield stress is reached when the strain ε_{ij} reaches the value:

$$arepsilon_c = -rac{\sigma_c}{E} = -rac{2c}{E} = 0.00588$$

It is achieved at a time t equal to

$$t_c = rac{arepsilon_c}{arepsilon_{11}(1)} = rac{-0.00588}{-0.4} = 0.0147$$

After reaching the yield point, the material acts according to the Drucker-Prager plasticity criterion

$$F\left(\sigma,arepsilon_{eq}^{p}
ight)=\sigma_{eq}+eta\sigma-R\left(arepsilon_{eq}^{p}
ight)=0$$

where σ_{eq} - equivalent stress, H, β , σ_y – given constants, σ - the first invariant of the stress tensor, ε_{eq}^p – equivalent plastic strain

$$egin{aligned} &\sigma_{eq} = \sqrt{rac{3}{2}S_{ij}\cdot S_{ij}} \ &\sigma = \sigma_{11} + \sigma_{22} + \sigma_{33} \ η = rac{2\sin\phi}{3-\sin\phi} = 0 \ &\sigma_y = rac{6c\cos\phi}{3-\sin\phi} = 2c \ &arepsilon_{eq}^p = \sqrt{rac{2}{3}e_{ij}^p\cdot e_{ij}^p} \end{aligned}$$

where S_{ij} - stress tensor deviator, e_{ij}^p - plastic strain tensor deviator, ε^p - the first invariant of the - plastic strain tensor

$$S_{ij}=\sigma_{ij}-rac{\sigma}{3}\delta_{ij}$$
 $e^p_{ij}=arepsilon^p_{ij}-rac{arepsilon^p}{3}\delta_{ij}$ $arepsilon^p=arepsilon^p_{11}+arepsilon^p_{22}+arepsilon^p_{33}$

$$arepsilon_{11}^p = -arepsilon_{eq}^p$$
 $arepsilon_{22}^p = rac{1}{2}arepsilon_{eq}^p = arepsilon_{33}^p$

 $\sigma_{11} = -R(\varepsilon_{ea}^p)$

For the Drucker-Prager plasticity model, the relationship between stress and plastic strain has the following form

$$arepsilon_{ij}^p = arepsilon_{eq}^p \left(-rac{3}{2} rac{S_{ij}}{\sigma_{eq}} + eta \delta_{ij}
ight)$$

Full strain is a sum of elastic and plastic:

$$\varepsilon_{ij} = \varepsilon_{ij}^p + \varepsilon_{ij}^e$$

From boundary conditions, $\sigma_{22} = \sigma_{33} = 0$, then we can evaluate σ_{eq} and σ

$$\sigma=\sigma_{11},\sigma_{eq}=|\sigma_{11}|$$

Since we consider uniaxial compression, $\sigma_{11} < 0 \lor \varepsilon_{11}^p < 0$, then the expressions for the criterion of plasticity and the relationship between stress and plastic strain take on a simpler form:

Then the final expression for σ_{11} will take the form:

$$\sigma_{11} = -R\left(-\varepsilon_{11}^p\right)$$

where $\varepsilon_{11}^p = \varepsilon_{11}^p(\varepsilon_{11})$:

$$\varepsilon_{11} = rac{\sigma_{11}}{E} + \varepsilon_{11}^p$$

Results

N o	Value	Point	Description	Target	CAE Fidesys result	Error, %
1	Stress tensor components for t=0.2	(5, 0, 1)	σxx, Pa	-60117.782	-6.188E+04	-2.93%
2	Stress tensor components for t=0.4	(5, 0, 1)	σxx, Pa	-74207.347	-7.262E+04	-2.14%
3	Stress tensor components for t=0.6	(5, 0, 1)	σxx, Pa	-96336.05	-9.657E+04	-0.24%
4	Stress tensor components for t=0.8	(5, 0, 1)	σxx, Pa	-108917.197	-1.041E+05	-4.39%
5	Stress tensor components for t=1	(5, 0, 1)	σxx, Pa	-113650.937	-1.137E+05	-0.0%

CAE Fidesys script:

reset set default element hex #{h=1} brick x $\{5^{h}\}$ y $\{h\}$ z $\{h\}$ move volume 1 x {5*h/2} y {h/2} z {h/2} create material 1 modify material 1 name "material" modify material 1 set property 'MODULUS' value 5.1e6 modify material 1 set property 'POISSON' value 0.25 modify material 1 set property 'COHESION' value 15000 modify material 1 set property 'INT_FRICTION_ANGLE' value 0 modify material 1 set property 'DILATANCY_ANGLE' value 0 create table 1 file "relative_path_to_model" #commandRelativePath:Models\lider_hardening.csv modify table 1 dependency strain modify material 1 set property 'SIGMA_CURVE' table 1 block 1 volume 1 block 1 material 'material' block 1 element solid order 1 curve 2 4 6 8 interval 20

surface 4 6 size {h/4} mesh volume 1 create displacement on surface 3 dof 2 fix 0 create displacement on surface 2 dof 3 fix 0 create displacement on volume 1 dof 1 fix 0 #compress bcdep displacement 3 value '-2*x/5' analysis type static elasticity plasticity dim3 nonlinearopts maxiters 50 minloadsteps 100 maxloadsteps 100 tolerance 1e-3 targetiter 5

Reference:

[1] RICE JR: The localization of plastic deformations, in Theoretical and Applied Mechanics (1976)

1.27. Test case No1.27

Problem description

Tension of an elastoplastic rectangular parallelepiped (multilinear isotropic hardening) *Input values*

Geometrical model:

• Parallelepiped 5x1x1;

Fig 1.46 - Geometrical model

Boundary conditions:

- For face $y = 0 u_y = 0$;
- For face z = 0 $u_z = 0$;
- For whole model $u_x = 2*x/5$

Material properties:

- Young's modulus E = 5.1e+6;
- Poisson ratio v = 0.25;
- Cohesion c = 15000;
- Internal friction angle $\phi = 0$;
- Dilatation angle $\psi = 0$;

The hardening given by the stress / plastic strain curve (tension) imported from the lider_hardening.csv file:

Fig 1.48 – Hardening curve

Mesh:

0

• Second order hexahedrons.

Fig 1.47 – Mesh

Target results

No	Value	Point	Description	Target
1	Stress tensor components for t=0.2	(5, 0, 1)	σxx, Pa	60117.782
2	Stress tensor components for t=0.4	(5, 0, 1)	σxx, Pa	74207.347
3	Stress tensor components for t=0.6	(5, 0, 1)	σxx, Pa	96336.05
4	Stress tensor components for t=0.8	(5, 0, 1)	σxx, Pa	108917.197
5	Stress tensor components for t=1	(5, 0, 1)	σxx, Pa	113650.937

Analytical solution

From Hooke's law, elastic strain are related to stress as follows:

$$egin{aligned} arepsilon_{11}^2 &= rac{1}{E}(\sigma_{11} -
u(\sigma_{22} + \sigma_{33})) \ arepsilon_{22}^2 &= rac{1}{E}(\sigma_{22} -
u(\sigma_{11} + \sigma_{33})) \ arepsilon_{33}^2 &= rac{1}{E}(\sigma_{33} -
u(\sigma_{22} + \sigma_{11})) \end{aligned}$$

Expressions for strain ε_{ij} are written as:

$$arepsilon_{ij} = rac{1}{2} igg(rac{\partial u_i}{\partial x_j} + rac{\partial u_i}{\partial x_j} igg)$$

Based on the boundary conditions, $\sigma_{22} = \sigma_{33} = 0$, then Hooke's law and the expression for ε_{ij} can be written as follows:

$$arepsilon_{11}(t) = t rac{\partial u_1}{\partial x_1} = -0.4t$$
 $arepsilon_{11}^e = rac{\sigma_{11}}{E}$
 $arepsilon_{22}^e = -rac{
u \sigma_{11}}{E} = arepsilon_{33}^e$

For this case, the yield stress is reached when the strain ε_{ij} reaches the value:

$$arepsilon_c = -rac{\sigma_c}{E} = -rac{2c}{E} = 0.00588$$

It is achieved at a time t equal to

$$t_c = rac{arepsilon_c}{arepsilon_{11}(1)} = rac{-0.00588}{-0.4} = 0.0147$$

After reaching the yield point, the material acts according to the Drucker-Prager plasticity criterion

$$F\left(\sigma, \varepsilon_{eq}^{p}
ight) = \sigma_{eq} + eta\sigma - R\left(\varepsilon_{eq}^{p}
ight) = 0$$

where σ_{eq} - equivalent stress, H, β , σ_y – given constants, σ - the first invariant of the stress tensor, ε_{eq}^p – equivalent plastic strain

$$egin{aligned} &\sigma_{eq} = \sqrt{rac{3}{2}S_{ij}\cdot S_{ij}} \ &\sigma = \sigma_{11} + \sigma_{22} + \sigma_{33} \ η = rac{2\sin\phi}{3-\sin\phi} = 0 \ &\sigma_y = rac{6c\cos\phi}{3-\sin\phi} = 2c \ &arepsilon_{eq} = \sqrt{rac{2}{3}e_{ij}^p\cdot e_{ij}^p} \end{aligned}$$

where S_{ij} - stress tensor deviator, e_{ij}^p - plastic strain tensor deviator, ε^p - the first invariant of the - plastic strain tensor

$$egin{aligned} S_{ij} &= \sigma_{ij} - rac{\sigma}{3} \delta_{ij} \ e^p_{ij} &= arepsilon_{ij}^p - rac{arepsilon^p}{3} \delta_{ij} \ arepsilon^p &= arepsilon_{11}^p + arepsilon_{22}^p + arepsilon_{33}^p \end{aligned}$$

For the Drucker-Prager plasticity model, the relationship between stress and plastic strain has the following form

$$arepsilon_{ij}^p = arepsilon_{eq}^p \left(-rac{3}{2} rac{S_{ij}}{\sigma_{eq}} + eta \delta_{ij}
ight)$$

Full strain is a sum of elastic and plastic:

$$\varepsilon_{ij} = \varepsilon_{ij}^p + \varepsilon_{ij}^e$$

From boundary conditions, $\sigma_{22} = \sigma_{33} = 0$, then we can evaluate σ_{eq} and σ

$$\sigma=\sigma_{11},\sigma_{eg}=|\sigma_{11}|$$

Since we consider uniaxial compression, $\sigma_{11} < 0 \le \varepsilon_{11}^p < 0$, then the expressions for the criterion of plasticity and the relationship between stress and plastic strain take on a simpler form:

$$egin{aligned} \sigma_{11} &= -R\left(arepsilon_{eq}^p
ight) \ arepsilon_{11}^p &= -arepsilon_{eq}^p \ arepsilon_{22}^p &= rac{1}{2}arepsilon_{eq}^p &= arepsilon_{33}^p \end{aligned}$$

Then the final expression for σ_{11} will take the form:

124

$$\sigma_{11} = -R\left(-\varepsilon_{11}^p\right)$$

where $\varepsilon_{11}^p = \varepsilon_{11}^p(\varepsilon_{11})$:

$$\varepsilon_{11} = \frac{\sigma_{11}}{E} + \varepsilon_{11}^p$$

Results

No	Value	Point	Description	Target	CAE Fidesys result	Error, %
1	Stress tensor components for t=0.2	(5, 0, 1)	σxx, Pa	60117.782	6.188E+04	2.93%
2	Stress tensor components for t=0.4	(5, 0, 1)	σxx, Pa	74207.347	7.262E+04	2.14%
3	Stress tensor components for t=0.6	(5, 0, 1)	σxx, Pa	96336.05	9.657E+04	0.24%
4	Stress tensor components for t=0.8	(5, 0, 1)	σxx, Pa	108917.197	1.041E+05	4.39%
5	Stress tensor components for t=1	(5, 0, 1)	σxx, Pa	113650.937	1.137E+05	0.0%

CAE Fidesys script:

reset set default element hex $#{h=1}$ brick x $\{5^{h}\}$ y $\{h\}$ z $\{h\}$ move volume 1 x $\{5*h/2\}$ y $\{h/2\}$ z $\{h/2\}$ create material 1 modify material 1 name "material" modify material 1 set property 'MODULUS' value 5.1e6 modify material 1 set property 'POISSON' value 0.25 modify material 1 set property 'COHESION' value 15000 modify material 1 set property 'INT_FRICTION_ANGLE' value 0 modify material 1 set property 'DILATANCY_ANGLE' value 0 create table 1 file "relative_path_to_model" #commandRelativePath:Models\lider_hardening.csv modify table 1 dependency strain modify material 1 set property 'SIGMA CURVE' table 1 block 1 volume 1 block 1 material 'material' block 1 element solid order 1 curve 2 4 6 8 interval 20 surface 4 6 size $\{h/4\}$ mesh volume 1 create displacement on surface 3 dof 2 fix 0 create displacement on surface 2 dof 3 fix 0 create displacement on volume 1 dof 1 fix 0 bcdep displacement 3 value '2*x/5' analysis type static elasticity plasticity dim3 nonlinearopts maxiters 1000 minloadsteps 10 maxloadsteps 1000000 tolerance 1e-3 targetiter 5

Reference:

[1] RICE JR: The localization of plastic deformations, in Theoretical and Applied Mechanics (1976)

1.28. Test case No 1.28

Problem description

Определение эффективных пороупругих механических для куба пористого материала (модель Био).

Input values

Material properties:

- Isotropic;
- Young's modulus E = 1e9 Pa;
- Poisson ratio v = 0.25;
- Density $\rho = 1800 \text{ kg/m}^3$;
- Cohesion 5.43712e6 Pa;
- Internal friction angle 21.43;
- Dilatancy angle 21.43;
- Porosity 0.25;
- Fluid's viscosity 0.005;
- Biot modulus 1;
- Fluid's bulk modulus 1e9 Pa;
- Fluid's density 1000 kg/m³.

Geometrical model

• A solid cube with a side of 1m.

Boundary conditions:

• Nonperiodic.

Mesh:

• Hexahedron, first order.

Target results модуля

No	Value		Unit	Target
1	Effective Biot coefficients	BIOT_ALPHA	-	0

Analytical solution

Consider a representative volume V_0 , chosen in the initial state, before deformation. On its boundary, we set boundary conditions in the form of zero displacements

$$u|_{\Gamma_0}=0$$

We apply an internal pressure p to the inner surface of all pores and solve the boundary value problem of elasticity theory on a representative volume

 $\nabla\cdot\sigma=0$

As a result of the calculation of the described problem, we obtain the distribution field of the strain tensor σ on a representative volume. We average it:

$$\sigma^e = \frac{1}{V} \int\limits_V \sigma dV$$

As a result, we have that zero displacements of the boundary were set for the representative volume, providing zero effective deformations - and as a result of averaging, the effective deformation tensor σ^e was obtained. In general, this tensor will be non-zero due to the applied pore pressure. Effective poroelastic characteristics will be sought in the form

$$\sigma^e = -\alpha_{ii}p$$

For a homogeneous material, the numerically approximate analytical solution is trivial: due to the absence of pores, the effective Biot coefficients will be equal to zero. This works for isotropic, transversely isotropic and orthotropic materials.

Results

No	Value	Unit	Target	CAE Fidesys result	Error, %
1	Effective Biot coefficients		0	0	0.00

CAE Fidesys script:

```
reset
brick x 1
volume 1 size 1
mesh volume 1
create material 1
modify material 1 name 'mat1'
modify material 1 set property 'MODULUS' value 1e+09
modify material 1 set property 'POISSON' value 0.25
modify material 1 set property 'DENSITY' value 1800
modify material 1 set property 'COHESION' value 5.43712e+06
modify material 1 set property 'INT_FRICTION_ANGLE' value 21.43
modify material 1 set property 'DILATANCY_ANGLE' value 21.43
modify material 1 set property 'SOLID_BULK_MODULUS' value 0
modify material 1 set property 'POROSITY' value 0.25
modify material 1 set property 'PERMEABILITY' value 0
modify material 1 set property 'FLUID VISCOCITY' value 0.005
modify material 1 set property 'BIOT ALPHA' value 1
modify material 1 set property 'BIOT MODULUS' value 0
modify material 1 set property 'FLUID_BULK_MODULUS' value 1000
modify material 1 set property 'FLUID_DENSITY' value 1000
set duplicate block elements off
block 1 add volume 1
block 1 material 1 cs 1 element solid order 1
analysis type effectiveprops elasticity poroelast dim3 preload off
periodicbc off
```

Reference:

[1] P.C. Carman. Fluid flow through granular beds // Transactions, Institution of Chemical Engineers, London, Vol. 15, 1937. – P. 150–166.

[2] P.C. Carman. Flow of gases through porous media (Butterworths, London, 1956).

1.29. Test case No 1.29

Problem description

The problem of the movement of a load with an initial velocity along an inclined plane (taking into account the stiffness of the spring) is considered. The control task checks:

- the correctness of the calculation of the dynamic calculation of the model, taking into account the contact interaction "sliding contact with friction";
- solution for mismatched grids for spectral elements.

Input values модуля

Geometrical model:

- See figure 1.49;
- Cargo cube 1x1 m;
- Base Spring K = 30 kN/m.

Fig. 1.49 - Geometrical model

Boundary conditions:

- Initial stress for spring 50mm;
- Initial velocity 2м/с;
- The base is rigidly fixed;
- Contact pare: general contact with frictioan, method Auto, Friction: 0.2.

Material properties:

- Young's modulus Егруза = 2e11 Па;
- Poisson ratio v=0.3;
- Base is rigid.

Mesh:

- Hexhahedron;
- Order 3 and more.

Fig. 1.50 – Finite elements mesh

Настройки расчета:

- Transient;
- 3D.

Target results модуля

No	Value	Description	Unit	Target
1	Displacement of the spring at the moment of complete stop of the load	Displacement_SUM	М	0.1744
2	The X component of the displacement vector at a point (8, -3, 0)	Displacement_X	М	0.164
3	The Y component of the displacement vector at a point (8, -3, 0)	Displacement_Y	М	0.06

Analytical solution

Analytical solution lies in solving the laws of conservation of work and energy[1].

$$T_1 + V_1 + U_{1 \to 2} = T_2 + V_2$$

Position 1:

$$T_{1} = \frac{1}{2}mv_{1}^{2} = \frac{1}{2}(50)(2)^{2} = 100 \text{ J}$$

$$V_{1g} = mgh_{1} = (50)(9.81)(8\sin 20^{\circ}) = 1342.09 \text{ J}$$

$$V_{1e} = \frac{1}{2}ke_{1}^{2} = \frac{1}{2}(30 \times 10^{3})(0.05)^{2} = 37.5 \text{ J}$$

Position 2:

$$T_{2} = \frac{1}{2}mv_{2}^{2} = 0 \text{ since } v_{2} = 0.$$

$$V_{2g} = mgh_{2} = (50)(9.81)(-x\sin 20^{\circ}) = -167.76x$$

$$V_{2e} = \frac{1}{2}ke_{2}^{2} = \frac{1}{2}(30 \times 10^{3})(0.05 + x)^{2} = 37.5 + 1500x + 15,000x^{2}$$

The work of friction forces:

$$+ \swarrow \Sigma F_n = 0$$

$$N - mg \cos 20^\circ = 0$$

$$N = mg \cos 20^\circ$$

$$= (50)(9.81) \cos 20^\circ$$

$$= 460.92 \text{ N}$$

$$F_f = \mu_k N$$

$$= (0.2)(460.92)$$

$$= 92.184$$

$$U_{1 \to 2} = -F_f d$$

$$= -92.184(8 + x)$$

$$= -737.47 - 92.184x$$

Reference:

[1] Vector mechanics for engineers (dynamics), 13.68(13.69)

Results

Spectral Hexahedrons (3 order) with friction

NoNo	Value	Description	UnitTarget		CAE Fidesys result	Error, %
11	Displacement of the spring at the moment of complete stop of the load (2.26 sec)	Displacement_SUM	М	0.1744	0.17741	1.7
22	The X component of the displacement vector at a point (8, -3, 0)	Displacement_X	М	00.164	0.166714	1.7
33	The Y component of the displacement vector at a point (8, -3, 0)	Displacement_Y	М	00.06	0.06067	1.1

CAE Fidesys script:

reset

create surface rectangle width 1 height 1 zplane

create surface rectangle width 10 height 0.5 zplane

Surface 1 copy move x 10

move Surface 2 x 4.5 y -0.75 include_merged

sweep curve 4 vector 1 0 0 distance 0.5 keep webcut body all with plane yplane Surface 7 copy move y -0.5 move Surface 10 9 x 8 include_merged create curve vertex 26 24 webcut Surface 6 5 with plane xplane Surface 11 2 copy move y 1.5 move Surface 12 to 15 x 6 include_merged merge all move Surface 12 to 15 x -6 include_merged rotate Surface all angle -20 about Z include_merged create cs type cartesian origin vertex 26 dir1 vertex 22 dir2 vertex 13 surface all size auto factor 4 mesh surface all curve 39 interval 1 curve 39 scheme equal mesh curve 39 create material 1 modify material 1 name 'mat 1' modify material 1 set property 'MODULUS' value 2e+12 modify material 1 set property 'POISSON' value 0.3 modify material 1 set property 'DENSITY' value 50 create material 2 modify material 2 name 'mat 2' modify material 2 set property 'MODULUS' value 2e+11 modify material 2 set property 'POISSON' value 0.3 modify material 2 set property 'DENSITY' value 5e-3 set duplicate block elements off block 1 add surface 2 17 11 7 8 16 9 10 block 1 material 2 cs 1 element plane order 3 block 2 add surface 13 12 14 15 block 3 add curve 39 block 2 material 1 cs 1 element plane order 3 create spring properties 1 modify spring properties 1 type 'linear_spring' modify spring properties 1 stiffness 30000 modify spring properties 1 spring_constant_damping 0 modify spring properties 1 spring_linear_damping 0 modify spring properties 1 spring_mass 0 block 3 element spring

131

block 3 spring properties 1

move Surface 12 to 15 y -6 include_merged

create displacement on surface 17 2 8 16 7 11 dof all fix

create contact master curve 44 42 slave curve 58 type general friction 0 ignore_overlap off offset 0.0 tolerance 0.005 method penalty normal_stiffness 0.000001 tangent_stiffness 0.001

create contact master curve 51 47 slave curve 5 type general friction 0.2 ignore_overlap off offset 0.0 tolerance 0.005 method penalty normal_stiffness 1 tangent_stiffness 0.5

create contact master curve 19 21 slave curve 31 33 type general friction 0 ignore_overlap off offset 0.0 tolerance 0.005 method penalty normal_stiffness 0.01 tangent_stiffness 0.5

create directionrestraint on curve 14 16 displacement value 0 normal

move Surface 12 to 15 y 6 include_merged

create initial velocity on surface 14 15 13 12

modify initial velocity 1 dof 1 value 1.87938524

modify initial velocity 1 dof 2 value -0.684040291

modify initial velocity 1 cs 1

create gravity on surface all

modify gravity 1 dof 2 value -9.8

analysis type dynamic elasticity dim2 planestrain preload off

dynamic method full_solution scheme implicit steps 400 newmark_gamma 0.01 maxtime 2.4

output nodalforce on energy off record3d on log on vtu on material off results everystep 1

nonlinearopts maxiters 100 minloadsteps 1 maxloadsteps 1000 tolerance 0.000001 targetiter 5

create force on vertex 25 force value 1500 direction x

bcdep force 1 value 'if(t<2.21,0,-1500)'

bcdep force 1 cs 2

Hexahedron (order 2) with friction

NoNo	Value	Description	UnitTarget		CAE Fidesys result	Error, %
11	Displacement of the spring at the moment of complete stop of the load (2.26 sec)	Displacement_SUM	М	0.1744	0.17741	1.7
22	The X component of the displacement vector at a point (8, -3, 0)	Displacement_X	М	00.164	0.166714	1.7
33	The Y component of the displacement vector at a point (8, -3, 0)	Displacement_Y	М	00.06	0.06067	1.1

CAE Fidesys script:

reset

create surface rectangle width 1 height 1 zplane create surface rectangle width 10 height 0.5 zplane Surface 1 copy move x 10 move Surface 2 x 4.5 y -0.75 include_merged sweep curve 4 vector 1 0 0 distance 0.5 keep webcut body all with plane yplane Surface 7 copy move y -0.5 move Surface 10 9 x 8 include_merged

create curve vertex 26 24 webcut Surface 6 5 with plane xplane Surface 11 2 copy move y 1.5 move Surface 12 to 15 x 6 include_merged merge all move Surface 12 to 15 x -6 include merged rotate Surface all angle -20 about Z include_merged create cs type cartesian origin vertex 26 dir1 vertex 22 dir2 vertex 13 surface all size auto factor 4 mesh surface all curve 39 interval 1 curve 39 scheme equal mesh curve 39 create material 1 modify material 1 name 'mat 1' modify material 1 set property 'MODULUS' value 2e+12 modify material 1 set property 'POISSON' value 0.3 modify material 1 set property 'DENSITY' value 50 create material 2 modify material 2 name 'mat 2' modify material 2 set property 'MODULUS' value 2e+11 modify material 2 set property 'POISSON' value 0.3 modify material 2 set property 'DENSITY' value 5e-3 set duplicate block elements off block 1 add surface 2 17 11 7 8 16 9 10 block 1 material 2 cs 1 element plane order 3 block 2 add surface 13 12 14 15 block 3 add curve 39 block 2 material 1 cs 1 element plane order 3 create spring properties 1 modify spring properties 1 type 'linear_spring' modify spring properties 1 stiffness 30000 modify spring properties 1 spring_constant_damping 0 modify spring properties 1 spring_linear_damping 0 modify spring properties 1 spring_mass 0 block 3 element spring block 3 spring properties 1 move Surface 12 to 15 y -6 include_merged create displacement on surface 17 2 8 16 7 11 dof all fix create contact master curve 44 42 slave curve 58 type general friction 0 ignore_overlap off offset 0.0 tolerance 0.005 method penalty normal stiffness 0.000001 tangent stiffness 0.001 create contact master curve 51 47 slave curve 5 type general friction 0.2 ignore_overlap off offset 0.0 tolerance 0.005 method penalty normal stiffness 1 tangent stiffness 0.5 create contact master curve 19 21 slave curve 31 33 type general friction 0 ignore overlap off offset 0.0 tolerance 0.005 method penalty normal stiffness 0.01 tangent stiffness 0.5 create directionrestraint on curve 14 16 displacement value 0 normal move Surface 12 to 15 y 6 include_merged create initial velocity on surface 14 15 13 12 modify initial velocity 1 dof 1 value 1.87938524 modify initial velocity 1 dof 2 value -0.684040291 modify initial velocity 1 cs 1 create gravity on surface all modify gravity 1 dof 2 value -9.8 analysis type dynamic elasticity dim2 planestrain preload off dynamic method full_solution scheme implicit steps 400 newmark_gamma 0.01 maxtime 2.4 output nodalforce on energy off record3d on log on vtu on material off results everystep 1 nonlinearopts maxiters 100 minloadsteps 1 maxloadsteps 1000 tolerance 0.000001 targetiter 5 create force on vertex 25 force value 1500 direction x bcdep force 1 value 'if(t<2.21,0,-1500)' bcdep force 1 cs 2

1.30. Test case No 1.30

Problem description

The problem of beam bending under the action of axial and small transverse loads is considered. The beam is subjected to pure compression until a critical bending load is reached, after which the beam deflects with large transverse displacements. The control task checks:

- calculation taking into account finite deformations;

- stepped load (change of boundary conditions between steps).

Input values

Fig. 1.51 - Geometrical model

Geometrical model:

- See figure 1.51;
- Beam 3.2×0.1×0.1 м;
- A = (0, 0, 0).

Boundary conditions:

- Left end fixed in all directions;
- The entire volume is fixed along the axis Oz: uz = 0;
- P = 3.844e2 N, 3.844e4 N, Q=3.844e3 N, 3.844e6 N;
- Forces Q and P are applied to the vertices of the right end along the axes Ox and Oy, respectively.

Material properties:

- Isotropic;
- Young's modulus $E = 200 \Gamma \Pi a$;
- Poisson ratio v = 0.0.

Mesh:

• Hexhahedron.

Target results модуля

N o	Value	Description	Unit	Target
1	The Ux component of the displacement vector at the point (3.2,0.05, -0.05) at step 2	Displacement_X	m	-5.0464
2	The Uy component of the displacement vector at the point (3.2,0.05, -0.05) at step 2	Displacement_Y	m	-1.3472

N o	Value	Description	Unit	Target
3	The Uz component of the displacement vector at the point (3.2,0.05, -0.05) at step 2	Displacement_Z	m	0
4	Step number	step	-	2

Analytical solution

An analytical solution to this problem can be obtained on the basis of the fundamental theory of Bernoulli-Euler, taking into account large displacements of the beam. The solution is a non-linear second-order differential equation from which displacements and curvature can be derived using elliptic integrals. The reference solution is presented in [1] based on [2].

Fig. 1.52 - Referense solution presented in[1,2]

Reference

 [1] NAFEMS R0072 Introduction to Non-Linear Finite Element Analysis (FE Example 5: Cantilever Problem) (пример 5.b, страница 196)
 [2] Lyons P. and Holsgrove, S. [1989] Finite elements benchmarks for 2D beams and axisymmetric shells involving geometry non-linearity, NAFEMS Report, P10

Results

N o	Value	Description	Unit	Target	CAE Fidesys result	Error, %
1	The Ux component of the displacement vector at the point (3.2,0.05, -0.05) at step 2	Displacement_X	m	-5.0464	-5.06008	0.27
2	The Uy component of the displacement vector at the point (3.2,0.05, -0.05) at step 2	Displacement_Y	m	-1.3472	-1.36135	1.05
3	The Uz component of the displacement vector at the point (3.2,0.05, -0.05) at step 2	Displacement_Z	m	0	0	<0.01
4	Step number	step	-	2	2	-

CAE Fidesys script: #{P=3.844e4} #{Q=3.844e6} reset set default element hex brick x 3.2 y 0.1 z 0.1 move Volume 1 x 1.6 y 0.05 z -0.05 include_merged volume 1 size 0.05 #order,quality: 1,0.01 mesh volume 1 create material 1 modify material 1 name 'material' modify material 1 set property 'POISSON' value 0 modify material 1 set property 'MODULUS' value 210e9 set duplicate block elements off block 1 add volume 1 block 1 material 1 cs 1 element solid order 2 create displacement on surface 4 dof all fix 0 create displacement on volume 1 dof 3 fix 0 create force on vertex 1 2 5 6 force value 1 direction nx create force on vertex 1 2 5 6 force value 1 direction ny create table 1 modify table 1 dependency time modify table 1 insert row 1 modify table 1 insert row 1 modify table 1 cell 1 1 value 1 modify table 1 cell 2 1 value 2 modify table 1 cell 1 2 value 96.1 modify table 1 cell 2 2 value 9610 bcdep force 2 table 1 create table 2 modify table 2 dependency time modify table 2 insert row 1 modify table 2 insert row 1 modify table 2 cell 1 1 value 1 modify table 2 cell 2 1 value 2 modify table 2 cell 1 2 value 961 modify table 2 cell 2 2 value 961000 bcdep force 1 table 2 static steps 2 analysis type static elasticity findefs dim3

1.31. Test case No 1.31

The problem of compression of an elastic-plastic sample with asymmetric hardening is solved. *Input values*

- Young's modulus E = 5.1e+6 Pa
- Poisson ratio v = 0.25
- Yield strength $\sigma t = 1.5541e+4$ Pa
- Yield compressive strength $\sigma c = 4.3414e+4$ Pa
- Stress(Strain) curve for compression (table):

ϵ_p^{eq}	σ _{eq} , Πa
0	43414
1	1043414

Geometrical model:

• Rectangular brick with sides $0 \le x \le 5$, $0 \le y \le 1$, $0 \le z \le 1$

Boundary conditions:

- For y = 0 uy = 0
- For z = 0 uz = 0
- For volume $ux = -0.12 \times x/5$

Mesh:

• Hexahedron (first order).

Fig. 1.53 – Finite Elements Mesh

Target results модуля

No.	Coordinates	Description	Unit	Target
1	(0; 0; 0)	Stress σ_{xx}	Pa	-43414.2
2	(0; 0; 0)	Stress σ_{xx}	Pa	-64826.3838

Analytical solution

Analytical solution based on the method proposed in [1]: Expression for σ 11:

$$\sigma_{11}(t) = \frac{\sigma_c(\beta - 1) + E_c \varepsilon_{11}(t)}{1 - \beta + \frac{E_t}{E}}$$

where E_c is the compressive strength modulus calculated for linear hardening as follows:

$$E_c = \frac{\sigma_c^u - \sigma_c}{\varepsilon_u^p}$$

where $\sigma_{c}{}^{u}$ - ultimate stress, $\epsilon_{c}{}^{u}$ - ultimate plastic strain.

Reference:

[1] Code_Aster Integration of the elastoplastic mechanical behaviors of Drucker-Prager, associated (DRUCK_PRAGER)and non-aligned (DRUCK_PRAG_N_A) and postprocessings <u>https://www.code-aster.org/V2/doc/v12/en/man_r/r7/r7.01.16.pdf</u>

Results

No	Value	Description	Unit	Target	CAE Fidesys result	Error, %
1	Stress σ_{xx} at the point (5, 0, 0) in 0.36 sec	Stress XX	Ра	-43414.2	-4.359E+04	0.41
2	Stress σ_{xx} at the point (5, 0, 0) in 1 sec	Stress XX	Ра	-64826.38	-6.483E+04	0.0

CAE Fidesys script:

reset set default element hex brick x 5 y 1 z 1 move volume 1 x 2.5 y 0.5 z 0.5 create material 1 modify material 1 name "material" modify material 1 set property 'MODULUS' value 5.1e6 modify material 1 set property 'POISSON' value 0.25 modify material 1 set property 'DP_YIELD_STRENGTH_COMPR' value 4.3414e4 modify material 1 set property 'DP_YIELD_STRENGTH_COMPR' value 4.3414e4 create table 1 modify table 1 dependency strain modify table 1 insert row modify table 1 cell 1 1 value 0 modify table 1 cell 1 2 value 4.3414e4 modify table 1 insert row modify table 1 cell 2 1 value 1 modify table 1 cell 2 2 value 104.3414e4 modify material 1 set property 'SIGMA_CURVE_COMPR' table 1 block 1 volume 1 block 1 material 'material' block 1 element solid order 1 curve 2 4 6 8 interval 20 surface 4 6 size 0.25 mesh volume 1 create displacement on surface 3 dof 2 fix 0 $\,$ create displacement on surface 2 dof 3 fix 0 create displacement on volume 1 dof 1 fix 0 bcdep displacement 3 value '-0.12*x/5' analysis type static elasticity plasticity dim3 nonlinearopts maxiters 1000 minloadsteps 100 maxloadsteps 1000000 tolerance 1e-3 targetiter 5

1.32. Test case No 1.32

Problem description

The problem of tension of an elastic-plastic sample with asymmetric strengthening is considered.

Input values

Material properties:

- Young's modulus E = 5.1e+6;
- Poisson ratio v = 0.25;
- Yield strength $\sigma_t = 1.5541e+4$;
- Yield compressive strength $\sigma_c = 4.3414e+4;$
- Stress(Strain) curve for compression (table):

$\epsilon_p{}^{eq}$	σ _{eq} , Πa
0	43414
1	1043414

Геометрия:

• Rectangular brick with sides $0 \le x \le 5$, $0 \le y \le 1$, $0 \le z \le 1$

Boundary conditions:

- For $y = 0 u_y = 0$
- For $z = 0 u_z = 0$
- For volume $u_x = 0.12 * x/5$

Mesh:

• Hexahedron (first order).

Fig. 1.54 – Finite Elements Mesh

Target results

No.	Coordinates	Value	Unit	Target
1	(0; 0; 0)	Stress σ_{xx} t=0.13 c	Ра	15541
2	(0; 0; 0)	Stress σ_{xx} t=1 c	Ра	20402.0642

Analytical solution

Analytical solution based on the method proposed in [1]: Expression for σ 11:

$$\sigma_{11}(t) = \frac{\sigma_t (1+\beta)^2 + E_c (1-\beta)\varepsilon_{11}(t)}{(1+\beta)^2 + \frac{E_c}{E} (1-\beta)}$$

where E_c is the compressive strength modulus calculated for linear hardening as follows:

$$E_c = \frac{\sigma_c^u - \sigma_c}{\varepsilon_u^p}$$

where $\sigma_c{}^u$ - ultimate stress, $\epsilon_p{}^u$ - ultimate plastic strain.

Reference:

[1] Code_Aster Integration of the elastoplastic mechanical behaviors of Drucker-Prager, associated (DRUCK_PRAGER) and non-aligned (DRUCK_PRAG_N_A) and postprocessings <u>https://www.code-aster.org/V2/doc/v12/en/man_r/r7/r7.01.16.pdf</u>

Results

No.	Coordinates	Value	Unit	Target	CAE Fidesys result	Error, %
1	(0; 0; 0)	Stress σ_{xx}	Па	15541	1.556E+04	0.11
2	(0; 0; 0)	Stress σ_{xx}	Па	20402.0642	2.040E+04	<0.01

CAE Fidesys script:

reset set default element hex brick x 5 y 1 z 1 move volume 1 x 2.5 y 0.5 z 0.5 create material 1 modify material 1 name "material" modify material 1 set property 'MODULUS' value 5.1e6 modify material 1 set property 'POISSON' value 0.25 modify material 1 set property 'DP_YIELD_STRENGTH_COMPR' value 4.3414e4 modify material 1 set property 'DP_YIELD_STRENGTH' value 1.5541e4 create table 1 modify table 1 dependency strain modify table 1 insert row modify table 1 cell 1 1 value 0 modify table 1 cell 1 2 value 4.3414e4 modify table 1 insert row modify table 1 cell 2 1 value 1 modify table 1 cell 2 2 value 104.3414e4 modify material 1 set property 'SIGMA_CURVE_COMPR' table 1 #a block 1 volume 1 block 1 material 'material' block 1 element solid order 1 curve 2 4 6 8 interval 20 surface 4 6 size 0.25 mesh volume 1 create displacement on surface 3 dof 2 fix 0 create displacement on surface 2 dof 3 fix 0 create displacement on volume 1 dof 1 fix 0 bcdep displacement 3 value '0.12*x/5' analysis type static elasticity plasticity dim3 nonlinearopts maxiters 1000 minloadsteps 10 maxloadsteps 1000000 tolerance 1e-3 targetiter 5

1.33. Test case No 1.33

Problem description

The problem of plate stability is considered with the addition of a contact condition. In the control task, the correctness of the calculation of the analysis of the buckling of the model is checked, taking into account the contact interaction "sliding contact with friction".

Input values

Geometrical model:

- See figure 1.55;
- Width b = 0,1 м;
- Thickness h = 0,002 м;
- Length a = 0,1 M.

Fig. 1.55 - Geometrical model

Boundary conditions:

- See figure 1.56;
- Both ends of the rod rest on hinges;
- Contact pair selection of main and secondary entities, General contact with friction, Autoselect method, Friction: 0, 0.2, 1;
- There is a compressive force.

Fig. 1.56 – Boundary conditions

Material properties:

- Young's modulus $E = 2e11 \Pi a$;
- Poisson ratio v=0.3;
- Density *р*=1000 кг/м3.

Mesh:
- Hexhahedron (2 order).
- •

Fig. 1.57 – Finite Elements Mesh

Calculation settings:

- Buckling;
- 3D;
- Number of buckling modes: 1.

Target results модуля

No	Value	Description	Unit	Target
1	First critical load factor	load multipliers(1)	-	56220.0

Analytical solution

The problem has an approximate analytical solution [1] given below. The approximate formula for the critical stress of the plate becomes:

$$\sigma_{crit} = E\left(\frac{\delta}{b}\right)^2$$

The critical buckling force of the plate is determined by the formulas:

$$P_{crit} = E \frac{\delta^3}{b}$$

Reference:

 [1] Е.И. Орешко, В.С. Ерасов, А.Н Луценко Особенности расчетов устойчивости стержней и пластин // Авиационные материалы и технологии. – 2016 - No4(45)
 УДК 517.25, DOI 10.18577/207-9140-2016-0-4-74-79.

Results

No	Value	Description	Unit	Target	CAE Fidesys result	Error, %
1	First critical load factor	load multipliers(1)	-	56220.0	5.475E+03	2.78

CAE Fidesys script:

reset

brick x 0.1 y 0.1 z 0.002 webcut volume 1 with plane zplane offset 0 webcut volume all with plane yplane offset 0 curve 18 26 20 25 interval 2 curve 18 26 20 25 scheme equal move Volume 3 4 y .02 include_merged merge all move Volume 3 4 y -.02 include_merged volume all size auto factor 7 mesh volume all create material 1 modify material 1 name 'mat1' modify material 1 set property 'POISSON' value 0.3 modify material 1 set property 'MODULUS' value 7.9e+10 modify material 1 set property 'DENSITY' value 100 block 1 add volume all block 1 material 1 cs 1 element solid order 2 create pressure on surface 31 19 33 25 magnitude 500 # $p=0.1~\mathrm{H}$ create displacement on curve 35 43 dof 2 dof 3 fix 0 create displacement on curve 41 36 dof 1 dof 2 dof 3 fix 0 create contact master surface 17 27 slave surface 32 22 type general friction 0.1 ignore_overlap off offset 0.0 tolerance 0.0005 method auto analysis type buckling elasticity dim3 eigenvalue find 1 smallest

2. Test cases with numerically approximate analytical solutions

2.1.Test Case No2.1

Problem Description

Determination of effective mechanical characteristics for a two-layer layer-fiber composite. A numerical approximate solution is used.

Input Values

Material Properties:

Steel:

- Young's modulus E = 200 kPa;
- Poisson ratio v = 0.25.

Rubber:

- Young's modulus E = 2 Pa;
- Poisson ratio V = 0.49.

Geometric model:

Generate automatically using interface with parameters:

- Laminated fiber composite;
- Thread diameter 6.0;
- Filament angle 30 degrees;
- Thread pitch-8.0;
- Layer thickness– 16.0.

Boundary conditions:

• Periodic.

Mesh

• Tetrahedron mesh order 2.

Fig 2.1 – Mesh 3D - Tetrahedron

Output Values

No	Value	Description	Unit	Target
1	Effective elastic modulus	C_1111	Ра	24852.4
2	Effective elastic modulus	C_1122	Ра	8281.54
3	Effective elastic modulus	C_2222	Ра	2763.12
4	Effective elastic modulus	C_1212	Ра	8283.5
5	Density	Density	кг / м ³	0

Calculation method used for the reference solution

Six deformation types are applied to a representative volume, each of which has its own type of effective strain tensor E^{e} :

31.
$$E_e = \begin{pmatrix} q & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 - stretching/compression along the axis X;
32. $E_e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & 0 \end{pmatrix}$ - stretching/compression along the axis Y;
33. $E_e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & q \\ 0 & 0 & q \end{pmatrix}$ - stretching/compression along the axis Z;
34. $E_e = \begin{pmatrix} 0 & q & 0 \\ q & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ - in plane shear XY;
35. $E_e = \begin{pmatrix} 0 & 0 & q \\ 0 & 0 & 0 \\ q & 0 & 0 \end{pmatrix}$ - in plane shear XZ;
36. $E_e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & q \\ 0 & q & 0 \end{pmatrix}$ - in plane shear YZ.

So, for each of the six boundary value problems, an effective strain tensor E^e was given and the effective stress tensor σ^e is obtained.

The linear dependence of σ^e on q is presented by the formula:

$$a_{ij}^e = a_{ij}q$$

Since the magnitude of deformations q and the corresponding tensor σ^e are known, the tensor coefficient of the dependence a_{ij} can be calculated simply:

2

$$a_{ij} = \frac{\sigma_{ij}^e}{q}$$

Since the effective properties are estimated in the form of the generalized Hooke's law

$$\sigma_{ij} = Cijkle_{kl}$$

considering the form E^e in each problem, the formulas for *Cijkl* will look like this:

$$1) \quad E^{e} = \begin{pmatrix} q & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = \sigma_{ij11}q, \quad \sigma_{ij} = \alpha_{ij}^{(1)}q;$$

$$2) \quad E^{e} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = \sigma_{ij22}q, \quad \sigma_{ij} = \alpha_{ij}^{(2)}q;$$

$$3) \quad E^{e} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & q \\ 0 & 0 & q \end{pmatrix} \Rightarrow \sigma_{ij} = \sigma_{ij33}q, \quad \sigma_{ij} = \alpha_{ij}^{(3)}q;$$

$$4) \quad E^{e} = \begin{pmatrix} 0 & q & 0 \\ q & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = (\sigma_{ij12} + \sigma_{ij21})q, \quad \sigma_{ij} = \alpha_{ij}^{(4)}q;$$

$$5) \quad E^{e} = \begin{pmatrix} 0 & 0 & q \\ 0 & 0 & 0 \\ q & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = (\sigma_{ij13} + \sigma_{ij31})q, \quad \sigma_{ij} = \alpha_{ij}^{(5)}q;$$

$$6) \quad E^{e} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & q \\ 0 & q & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = (\sigma_{ij23} + \sigma_{ij32})q, \quad \sigma_{ij} = \alpha_{ij}^{(6)}q.$$

Hence, the coefficients *Cijkl* are calculated from the corresponding α_{ij} :

1) $C_{ij11} = \alpha_{ij}^{(1)};$ 2) $C_{ij22} = \alpha_{ij}^{(2)};$ 3) $C_{ij33} = \alpha_{ij}^{(3)};$ 4) $C_{ij12} = C_{ij21} = \frac{1}{2}\alpha_{ij}^{(4)};$ 5) $C_{ij13} = C_{ij31} = \frac{1}{2}\alpha_{ij}^{(5)};$ 6) $C_{ij23} = C_{ij32} = \frac{1}{2}\alpha_{ij}^{(6)}.$

Reference:

[1] Бидерман В.Л., Гуслицер Р.Л., Захаров С.П., Ненахов Б.В., Селезнев И.И., Цукерберг С.М. Автомобильные шины (конструкция, расчет, испытание, эксплуатация). – Под общей редакцией Бидермана В.Л. – М.: Государственное научно-техническое изд-во химической литературы, 1963. – 384 с.

[2] Кристенсен Р. Введение в механику композитов. – М.: «Мир», 1982. – 334 с.

[3] Победря Б.Е. Механика композиционных материалов. - М.: Издательство Московского университета, 1984. - 335 с.

[4] Mohammad Ali Bagheri, Antonin Settari Effects of fractures on reservoir deformation and flow modeling // Canadian Geotechnical Journal, Vol 43, 2006. - P. 574-586.

[5] Hashin, Z, and Shtrikman, S, 1963, A variational approach to the elastic behavior of multiphase minerals. Journal of the Mechanics and Physics of Solids, 11 (2), 127-140.

[6] Kachanov M., Tsukrov I., Shafiro B. Effective modulus of solids with cavities of various shapes // Applied Mechanics Reviews, Vol. 47, No. 1, Part 2, 1994 - P. 151-174.

Result comparison

No	Value	Description	Unit	Target	CAE Fidesys	Error,%
1	Effective elastic modulus	C_1111	Ра	24852.4	24854.847	0.01
2	Effective elastic modulus	C_1122	Ра	8281.54	8308.11363	0.32
3	Effective elastic modulus	C_2222	Ра	2763.12	2799.135749	1.3
4	Effective elastic modulus	C_1212	Ра	8283.5	8283.85704	0.004
5	Density	Density	кг / м ³	0	0	0

Script CAE Fidesys:

reset

create brick width 16 depth 9.2376 height 16 create cylinder height 50.4752 radius 3 volume 2 rotate 90.0 about y volume 2 rotate 30 about z volume 2 move y -9.2376 create cylinder height 50.4752 radius 3 volume 3 rotate 90.0 about y volume 3 rotate 30 about z volume 3 move y 0 create cylinder height 50.4752 radius 3 volume 4 rotate 90.0 about y volume 4 rotate 30 about z volume 4 move y 9.2376 intersect volume 1 2 keep intersect volume 1 3 keep intersect volume 1 4 keep delete volume 2 delete volume 3 delete volume 4

subtract volume 5 6 7 from volume 1 keep delete volume 1 volume all move z 8 volume all move z 16 copy volume 9 10 11 12 reflect 1.0 0.0 0.0 imprint volume all merge volume all block 1 volume 5 6 7 9 10 11 block 2 volume 8 12 $#{steel_E = 2.0e5}$ $\#\{\text{steel } nu = 0.25\}$ $#\{rub_E = 2.0\}$ $#\{rub_nu = 0.49\}$ $\#\{\text{mesh_size} = 2.0\}$ create material 1 modify material 1 name 'steel' modify material 1 set property 'POISSON' value {steel_nu} modify material 1 set property 'MODULUS' value {steel_E} create material 2 modify material 2 name 'rubber' modify material 2 set property 'POISSON' value {rub_nu} modify material 2 set property 'MODULUS' value {rub_E} block 1 material 1 block 2 material 2 block 1 2 element solid order 2 volume all scheme Tetmesh set tetmesher interior points on set tetmesher optimize level 3 overconstrained off sliver off set tetmesher boundary recovery off volume all tetmesh growth_factor 1.0 volume all size {mesh_size} volume all size {mesh_size} mesh volume all analysis type effectiveprops elasticity dim3 periodicbc on

2.2.Test Case No2.2

Problem Description

Determination of effective mechanical characteristics for a dispersed composite of periodic structure, reinforced with spherical inclusions.

Input Values

Material Properties:

Matrix:

- Young's modulus = 1 Pa;
- Poisson ratio $_{V} = 0.4;$
- Density $\rho = 1000 \text{ kg/m}^3$.

Inclusion:

- Young's modulus E = 10 Pa;
- Poisson ratio $\mathcal{V} = 0.25;$
- Density $\rho = 10000 \text{ kg/m}^3$.

Geometric model:

- Solid cube with side 1 m;
- In the center, an inclusion in the form of a ball with radius 0.228542449538.

Boundary conditions:

• Periodic.

Mesh

• Tetrahedron mesh order 2.

 $Fig\ 2.2-Mesh\ 3D-Tetrahedron$

Output Values

No	Value	Description	Unit	Target
1	Effective elastic modulus	C_1111	Ра	2.26175
2	Effective elastic modulus	C_1122	Ра	1.48163
3	Effective elastic modulus	C_1133	Ра	1.48163
4	Effective elastic modulus	C_1212	Ра	0.39006
5	Effective elastic modulus	C_1313	Ра	0.39006
6	Effective elastic modulus	C_2222	Ра	2.26175
7	Effective elastic modulus	C_2233	Ра	1.48163
8	Effective elastic modulus	C_2323	Ра	0.39006
9	Effective elastic modulus	C_3333	Ра	2.26175
10	Density	Density	кг / м ³	1450
11	Young's modulus	Е	Ра	1.08889201676
12	Poisson ratio	ν	-	0.395799805264

Calculation method used for the reference solution

Six deformation types are applied to a representative volume, each of which has its own type of effective strain tensor E^{e} :

37.
$$E_e = \begin{pmatrix} q & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 - stretching/compression along the axis X;
38. $E_e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & 0 \end{pmatrix}$ - stretching/compression along the axis Y;
39. $E_e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & q \end{pmatrix}$ - stretching/compression along the axis Z;
40. $E_e = \begin{pmatrix} 0 & q & 0 \\ q & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ - in plane shear XY;
41. $E_e = \begin{pmatrix} 0 & 0 & q \\ 0 & 0 & 0 \\ q & 0 & 0 \end{pmatrix}$ - in plane shear XZ;

42.
$$E_e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & q \\ 0 & q & 0 \end{pmatrix}$$
 – in plane shear YZ

So, for each of the six boundary value problems, an effective strain tensor E^e was given and the effective stress tensor σ^e is obtained.

The linear dependence of σ^e on q is presented by the formula:

Since the magnitude of deformations q and the corresponding tensor σ^e are known, the tensor coefficient of the dependence a_{ij} can be calculated simply:

$$a_{ij} = \frac{\sigma_{ij}^e}{q}$$

Since the effective properties are estimated in the form of the generalized Hooke's law

$$\sigma_{ij} = Cijkle_{kl}$$

considering the form E^e in each problem, the formulas for *Cijkl* will look like this:

$$1) \quad E^{e} = \begin{pmatrix} q & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = \sigma_{ij11}q, \ \sigma_{ij} = \alpha_{ij}^{(1)}q;$$

$$2) \quad E^{e} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = \sigma_{ij22}q, \ \sigma_{ij} = \alpha_{ij}^{(2)}q;$$

$$3) \quad E^{e} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & q \end{pmatrix} \Rightarrow \sigma_{ij} = \sigma_{ij33}q, \ \sigma_{ij} = \alpha_{ij}^{(3)}q;$$

$$4) \quad E^{e} = \begin{pmatrix} 0 & q & 0 \\ q & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = (\sigma_{ij12} + \sigma_{ij21})q, \ \sigma_{ij} = \alpha_{ij}^{(4)}q;$$

$$5) \quad E^{e} = \begin{pmatrix} 0 & 0 & q \\ 0 & 0 & 0 \\ q & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = (\sigma_{ij13} + \sigma_{ij31})q, \ \sigma_{ij} = \alpha_{ij}^{(5)}q;$$

$$6) \quad E^{e} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & q \\ 0 & q & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = (\sigma_{ij23} + \sigma_{ij32})q, \ \sigma_{ij} = \alpha_{ij}^{(6)}q.$$

Hence, the coefficients *Cijkl* are calculated from the corresponding α_{ij} : 1) $C_{ij11} = \alpha_{ij}^{(1)}$;

- 2) $C_{ij22} = \alpha_{ij}^{(2)};$
- 3) $C_{ij33} = \alpha_{ij}^{(3)};$

- 4) $C_{ij12} = C_{ij21} = \frac{1}{2} \alpha_{ij}^{(4)};$
- 5) $C_{ij13} = C_{ij31} = \frac{1}{2} \alpha_{ij}^{(5)};$
- 6) $C_{ij23} = C_{ij32} = \frac{1}{2} \alpha_{ij}^{(6)}$.

Reference:

[1] Бидерман В.Л., Гуслицер Р.Л., Захаров С.П., Ненахов Б.В., Селезнев И.И., Цукерберг С.М. Автомобильные шины (конструкция, расчет, испытание, эксплуатация). – Под общей редакцией Бидермана В.Л. – М.: Государственное научно-техническое изд-во химической литературы, 1963. – 384 с.

[2] Кристенсен Р. Введение в механику композитов. – М.: «Мир», 1982. – 334 с.

[3] Победря Б.Е. Механика композиционных материалов. - М.: Издательство Московского университета, 1984. - 335 с.

[4] Mohammad Ali Bagheri, Antonin Settari Effects of fractures on reservoir deformation and flow modeling // Canadian Geotechnical Journal, Vol 43, 2006. - P. 574-586.

[5] Hashin, Z, and Shtrikman, S, 1963, A variational approach to the elastic behavior of multiphase minerals. Journal of the Mechanics and Physics of Solids, 11 (2), 127-140.

[6] Kachanov M., Tsukrov I., Shafiro B. Effective modulus of solids with cavities of various shapes // Applied Mechanics Reviews, Vol. 47, No. 1, Part 2, 1994 - P. 151-174.

Result comparison

No	Value	Description	Unit	Target	CAE Fidesys	Error,%
1	Effective elastic modulus	C_1111	Ра	2.26175	2.27029	0.38
12	Effective elastic modulus	C_1122	Ра	1.48163	1.481390	0.02
13	Effective elastic modulus	C_1133	Ра	1.48163	1.481391	0.02
14	Effective elastic modulus	C_1212	Ра	0.39006	0.390033	0.01
15	Effective elastic modulus	C_1313	Ра	0.39006	0.390014	0.01
16	Effective elastic modulus	C_2222	Ра	2.26175	2.270277	0.38
17	Effective elastic modulus	C_2233	Ра	1.48163	1.48141	0.01
18	Effective elastic modulus	C_2323	Ра	0.39006	0.390035	0.01
19	Effective elastic modulus	C_3333	Ра	2.26175	2.270278	0.38
20	Density	Density	kg/m ³	1450	1449.7445	0.02
21	Young's modulus	Е	Ра	1.08889201676	1.1003858	1.06
22	Poisson ratio	ν	-	0.395799805264	0.39486241	0.24

Script CAE Fidesys:

reset $#{Pi = 3.1415926}$ $\#\{\text{cube}_{\text{size}} = 1.0\}$ $#\{ratio = 0.05\}$ $\#\{E_m = 1.0\}$ $#\{nu_m = 0.4\}$ $\#\{ro_m = 1000\}$ $#{E_i = 10.0}$ $#{nu_i = 0.25}$ $\#\{ro_i = 10000\}$ $#{sphere_rad = (0.75 * ratio * cube_size^3 / Pi)^{0.3333}}$ create brick width {cube_size} create sphere radius {sphere_rad} subtract volume 2 from volume 1 keep delete volume 1 imprint volume all merge volume all create material 1 name 'matr' modify material 1 set property 'MODULUS' value {E_m} modify material 1 set property 'POISSON' value {nu_m} modify material 1 set property 'DENSITY' value {ro_m} create material 2 name 'incl' modify material 2 set property 'MODULUS' value {E_i} modify material 2 set property 'POISSON' value {nu_i} modify material 2 set property 'DENSITY' value {ro_i} volume all size 0.1 #order,quality: 3,1

volume all scheme Tetmesh mesh volume all block 1 volume 2 block 2 volume 3 block 1 material 'incl' block 2 material 'matr' set node constraint on block 1 element solid order 2 block 2 element solid order 2 $\#\{G_m = E_m / (2.0 + 2.0*(nu_m))\} \#$ shear modules from Young's modulus and Poisson's ratio $\#\{G_i = E_i / (2.0 + 2.0*(nu_i))\}$ $\#\{K_m = E_m / (3.0 - 6.0*(nu_m))\} \#$ bulk modules from Young's modulus and Poisson's ratio $\#\{K_i = E_i / (3.0 - 6.0*(nu_i))\}$ $\#\{G_{eff} = G_{m} * (1.0 - 15.0*(1 - (nu_m))*(1 - G_{i}/G_{m})*ratio / (7.0 - 5.0*(nu_m) + 2.0*(4.0 - 5.0*(nu_m))*G_{i}/G_{m}))\}$ $\#\{K_{eff} = K_m + (K_i - K_m) * ratio / (1.0 + (K_i - K_m)/(K_m + 1.33333*G_m))\}$ $\#\{E_{eff} = 9.0 K_{eff} / (3.0 K_{eff} + G_{eff})\} \#$ Young's modulus from shear modulus and bulk modulus $\#\{nu_{eff} = (3.0*K_{eff} - 2.0*G_{eff}) / (6.0*K_{eff} + 2.0*G_{eff})\} \#$ Poisson's ratio from shear modulus and bulk modulus analysis type effectiveprops elasticity dim3 periodicbc on

2.3.Test Case No.2.3

Problem Description

Determination of effective mechanical properties for a layered composite containing layers of two materials. *Input Values*

Material Properties:

Steel:

- Young's modulus $E = 200 \text{ k}\Pi a$;
- Poisson ratio V = 0.25;
- Density $\rho = 7800 \ \kappa 2 \ / \ M^3$.

Rubber:

- Young's modulus $E = 2 \Pi a$;
- Poisson ratio $\mathcal{V} = 0.49;$
- Density $\rho = 1300 \ \kappa z \ / \ M^3$.

Geometric model:

- Solid cube with side 1.3m;
- In the middle (perpendicular to the Z-axis) there is a layer of steel with thickness 0.3.

Boundary conditions:

• Periodic.

Mesh

• Tetrahedron mesh order 2.

Fig 2.3 – Mesh 3D - Tetrahedron

No	Value	Description	Unit	Target
1	Effective elastic modulus	C_1111	Ра	49262.4200024
2	Effective elastic modulus	C_1122	Ра	12338.3105548
3	Effective elastic modulus	C_1133	Pa	36.3071714214
4	Effective elastic modulus	C_1212	Pa	18462.0547238
5	Effective elastic modulus	C_1313	Pa	0.872481025635
6	Effective elastic modulus	C_2222	Pa	49262.4200024
7	Effective elastic modulus	C_2233	Pa	36.3071714214
8	Effective elastic modulus	C_2323	Pa	0.872481025635
9	Effective elastic modulus	C_3333	Pa	44.4947405774
10	Density	Density	кг / м ³	2800
11	Young's modulus	E1=E2	Ра	46155.5
12	Young's modulus	E3	Pa	44.4519
13	Poisson ratio	v12=v21	-	0.25001
14	Poisson ratio	v13=v31	-	0.611983

Output Values

Calculation method used for the reference solution

Six deformation types are applied to a representative volume, each of which has its own type of effective strain tensor E^{e} :

- 1. $E_e = \begin{pmatrix} q & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ stretching/compression along the axis X;
- 2. $E_e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & 0 \end{pmatrix}$ stretching/compression along the axis Y;

3.
$$E_e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & q \end{pmatrix}$$
 - stretching/compression along the axis Z;

4.
$$E_e = \begin{pmatrix} 0 & q & 0 \\ q & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 – in plane shear XY;

5.
$$E_e = \begin{pmatrix} 0 & 0 & q \\ 0 & 0 & 0 \\ q & 0 & 0 \end{pmatrix}$$
 – in plane shear XZ;

6.
$$E_e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & q \\ 0 & q & 0 \end{pmatrix}$$
 – in plane shear YZ.

So, for each of the six boundary value problems, an effective strain tensor E^e was given and the effective stress tensor σ^e is obtained.

The linear dependence of σ^e on q is presented by the formula:

$$a_{ij}^e = a_{ij}q$$

Since the magnitude of deformations q and the corresponding tensor σ^e are known, the tensor coefficient of the dependence a_{ij} can be calculated simply:

$$a_{ij} = \frac{\sigma_{ij}^e}{q}$$

Since the effective properties are estimated in the form of the generalized Hooke's law

$$\sigma_{ij} = Cijkle_{kl}$$

considering the form E^e in each problem, the formulas for *Cijkl* will look like this:

$$1) \quad E^{e} = \begin{pmatrix} q & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = \sigma_{ij11}q, \quad \sigma_{ij} = \alpha_{ij}^{(1)}q;$$

$$2) \quad E^{e} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = \sigma_{ij22}q, \quad \sigma_{ij} = \alpha_{ij}^{(2)}q;$$

$$3) \quad E^{e} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & q \end{pmatrix} \Rightarrow \sigma_{ij} = \sigma_{ij33}q, \quad \sigma_{ij} = \alpha_{ij}^{(3)}q;$$

$$4) \quad E^{e} = \begin{pmatrix} 0 & q & 0 \\ q & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = (\sigma_{ij12} + \sigma_{ij21})q, \quad \sigma_{ij} = \alpha_{ij}^{(4)}q;$$

$$5) \quad E^{e} = \begin{pmatrix} 0 & 0 & q \\ 0 & 0 & 0 \\ q & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = (\sigma_{ij13} + \sigma_{ij31})q, \quad \sigma_{ij} = \alpha_{ij}^{(5)}q;$$

$$6) \quad E^{e} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & q \\ 0 & q & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = (\sigma_{ij23} + \sigma_{ij32})q, \quad \sigma_{ij} = \alpha_{ij}^{(6)}q.$$

Hence, the coefficients *Cijkl* are calculated from the corresponding α_{ij} : 1) $C_{ij11} = \alpha_{ij}^{(1)}$;

- 2) $C_{ij22} = \alpha_{ij}^{(2)};$
- 3) $C_{ij33} = \alpha_{ij}^{(3)};$
- 4) $C_{ij12} = C_{ij21} = \frac{1}{2} \alpha_{ij}^{(4)};$
- 5) $C_{ij13} = C_{ij31} = \frac{1}{2}\alpha_{ij}^{(5)};$
- 6) $C_{ij23} = C_{ij32} = \frac{1}{2} \alpha_{ij}^{(6)}$.

Reference:

[1] Бидерман В.Л., Гуслицер Р.Л., Захаров С.П., Ненахов Б.В., Селезнев И.И., Цукерберг С.М. Автомобильные шины (конструкция, расчет, испытание, эксплуатация). – Под общей редакцией Бидермана В.Л. – М.: Государственное научно-техническое изд-во химической литературы, 1963. – 384 с.

[2] Кристенсен Р. Введение в механику композитов. – М.: «Мир», 1982. – 334 с.

[3] Победря Б.Е. Механика композиционных материалов. - М.: Издательство Московского университета, 1984. - 335 с.

[4] Mohammad Ali Bagheri, Antonin Settari Effects of fractures on reservoir deformation and flow modeling // Canadian Geotechnical Journal, Vol 43, 2006. - P. 574-586.

[5] Hashin, Z, and Shtrikman, S, 1963, A variational approach to the elastic behavior of multiphase minerals. Journal of the Mechanics and Physics of Solids, 11 (2), 127-140.

[6] Kachanov M., Tsukrov I., Shafiro B. Effective modulus of solids with cavities of various shapes // Applied Mechanics Reviews, Vol. 47, No. 1, Part 2, 1994 - P. 151-174.

Result comparison

No	Value	Description	Unit	Target	CAE Fidesys	Error,%
1	Effective elastic modulus	C_1111	Ра	49262.4200024	49229.61829	0.07
2	Effective elastic modulus	C_1122	Ра	12338.3105548	12330.11285	0.07
3	Effective elastic modulus	C_1133	Ра	36.3071714214	36.3136	0.02
4	Effective elastic modulus	C_1212	Ра	18462.0547238	18462.05472	<<0.01
5	Effective elastic modulus	C_1313	Ра	0.872481025635	0.872481026	<<0.01
6	Effective elastic modulus	C_2222	Ра	49262.4200024	49229.61829	0.07
7	Effective elastic modulus	C_2233	Ра	36.3071714214	36.3136	0.02
8	Effective elastic modulus	C_2323	Ра	0.872481025635	0.872481	<<0.01
9	Effective elastic modulus	C_3333	Ра	44.4947405774	44.494741	<<0.01
10	Density	Density	кг / м ³	2800	2800	0
11	Young's modulus	E1=E2	Ра	46155.5	46124.7424	0.07
12	Young's modulus	E3	Ра	44.4519	44.451898	<<0.01
13	Poisson ratio	v12=v21	-	0.25001	0.250	<<0.01
14	Poisson ratio	v13=v23	-	0.611983	0.6121	0.02
15	Poisson ratio	v31=v32	-	0.000589395	0.0005899	0.08
16	Shear modulus	G12	Ра	18462.1	18462.055	<<0.01
17	Shear modulus	G13=G23	Ра	0.872481	0.8725	<<0.01

Script CAE Fidesys: cubit.cmd("reset") fidesys.cmd("set default element hex") rub_thick = 1.0 steel_thick = 0.3 rub_number = 1 length = 1.3 width = 1.3 height = rub_number*(rub_thick + steel_thick)

def lambda_Calc_E_nu (E, nu): return E * nu / ((1+nu)*(1-2*nu)) def G_Calc_E_nu(E, nu): return E / (2 + 2*nu)steel E = 2.0e5steel_nu = 0.25steel_lambda = lambda_Calc_E_nu(steel_E, steel_nu) steel_G = G_Calc_E_nu(steel_E, steel_nu) steel rho = 7800.0 $rub_E = 2.0$ rub_nu = 0.49 rub_lambda = lambda_Calc_E_nu(rub_E,rub_nu) rub G = G Calc E nu(rub E, rub nu) $rub_rho = 1300.0$ $mesh_size = 0.1$ cubit.cmd("brick x " + str(length) + " y " + str(width) + " z " + str(height)) for i in range(0, rub_number): cubit.cmd("webcut body all with plane zplane offset " + str(0.5*rub_thick + i*(rub_thick+steel_thick) - 0.5*height) + " imprint merge") for i in range(0, rub_number): cubit.cmd("webcut body all with plane zplane offset " + str((i+1)*(rub_thick+steel_thick) -0.5*height - 0.5*rub_thick) + " imprint merge") command1 = "block 2 volume" for i in range(1, rub_number+2): command1 = command1 + " " + str(i) cubit.cmd(command1) command2 = "block 1 volume" for i in range(rub_number+2, 2*rub_number+2): command2 = command2 + " " + str(i) cubit.cmd(command2) cubit.cmd("imprint volume all") cubit.cmd("merge volume all") cubit.cmd("create material 1 name 'steel"") cubit.cmd("create material 2 name 'rubber'") cubit.cmd("modify material 1 set property 'MODULUS' value " + str(steel_E)) cubit.cmd("modify material 1 set property 'POISSON' value " + str(steel_nu)) cubit.cmd("modify material 1 set property 'DENSITY' value " + str(steel_rho)) cubit.cmd("modify material 2 set property 'MODULUS' value " + str(rub_E)) cubit.cmd("modify material 2 set property 'POISSON' value " + str(rub_nu)) cubit.cmd("modify material 2 set property 'DENSITY' value " + str(rub_rho)) cubit.cmd("block 1 material 'steel"") cubit.cmd("block 2 material 'rubber'") cubit.cmd("block 1 2 element solid order 2") cubit.cmd("volume all scheme Sweep") cubit.cmd("volume all size " + str(mesh size)) cubit.cmd("mesh volume all") cubit.cmd("analysis type effectiveprops elasticity dim3") cubit.cmd("periodicbc on") cubit.cmd("analysis type effectiveprops elasticity dim3") cubit.cmd("periodicbc on")

2.4.Test Case No.2.4

Problem Description

Determination of effective mechanical characteristics for a layered composite containing layers of two materials, one of which is modeled by a shell.

Input Values

Material Properties:

Steel:

- Young's modulus E = 2.0e5 Pa;
- Poisson ratio $_V = 0.25$.
- Density $\rho = 7800 \ \kappa 2 \ / \ M^3$.

Rubber:

- Young's modulus $E = 2 \Pi a$;
- Poisson ratio v = 0.49.
- Density $\rho = 1300 \text{ kg/m}^3$.

Geometric model:

- Solid cube with side 1.3m;
- In the middle (perpendicular to the Z axis) there is a layer of steel 0.05 thick, modeled by shell elements

Boundary conditions:

• Periodic.

Mesh

• Tetrahedron mesh order 2.

Fig 2.4 - Mesh 3D - shell (volumetric view)

Output Values

No	Value	Description	Unit	Target
1	Effective elastic modulus	C_1111	Па	8238.889
2	Effective elastic modulus	C_1122	Ра	2083.752
3	Effective elastic modulus	C_1133	Ра	33.342
4	Effective elastic modulus	C_1212	Ра	3077.568
5	Effective elastic modulus	C_1313	Ра	0.698
6	Effective elastic modulus	C_2222	Ра	8238.889
7	Effective elastic modulus	C_2233	Ра	33.342
8	Effective elastic modulus	C_2323	Ра	0.698
9	Effective elastic modulus	C_3333	Ра	35.597
10	Density	Density	kg/m ³	1600
11	Young's modulus	E1=E2	Ра	7694.38
12	Young's modulus	E3	Ра	35.3816
13	Poisson ratio	v12=v21	-	0.250074
14	Poisson ratio	v13=v23	-	0.70242
15	Poisson ratio	v31=v32	-	0.00322999
16	Shear modulus	G12	Pa	3077.57
17	Shear modulus	G13=G23	Pa	0.698

Calculation method used for the reference solution

Six deformation types are applied to a representative volume, each of which has its own type of effective strain tensor E^{e} :

7.
$$E_e = \begin{pmatrix} q & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 - stretching/compression along the axis X;
8.
$$E_e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 - stretching/compression along the axis Y;

9.
$$E_e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & q \end{pmatrix}$$
 - stretching/compression along the axis Z;

10.
$$E_e = \begin{pmatrix} 0 & q & 0 \\ q & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 – in plane shear XY;

11.
$$E_e = \begin{pmatrix} 0 & 0 & q \\ 0 & 0 & 0 \\ q & 0 & 0 \end{pmatrix}$$
 - in plane shear XZ;

12.
$$E_e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & q \\ 0 & q & 0 \end{pmatrix}$$
 – in plane shear YZ.

So, for each of the six boundary value problems, an effective strain tensor E^e was given and the effective stress tensor σ^e is obtained.

The linear dependence of σ^e on q is presented by the formula:

$$a_{ij}^e = a_{ij}q$$

Since the magnitude of deformations q and the corresponding tensor σ^e are known, the tensor coefficient of the dependence a_{ij} can be calculated simply:

$$a_{ij} = \frac{\sigma_{ij}^e}{q}$$

Since the effective properties are estimated in the form of the generalized Hooke's law

$$\sigma_{ij} = Cijkle_{kl}$$

considering the form E^e in each problem, the formulas for *Cijkl* will look like this:

$$1) \quad E^{e} = \begin{pmatrix} q & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = \sigma_{ij11}q, \ \sigma_{ij} = \alpha_{ij}^{(1)}q;$$

$$2) \quad E^{e} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = \sigma_{ij22}q, \ \sigma_{ij} = \alpha_{ij}^{(2)}q;$$

$$3) \quad E^{e} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & q \end{pmatrix} \Rightarrow \sigma_{ij} = \sigma_{ij33}q, \ \sigma_{ij} = \alpha_{ij}^{(3)}q;$$

$$4) \quad E^{e} = \begin{pmatrix} 0 & q & 0 \\ q & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = (\sigma_{ij12} + \sigma_{ij21})q, \ \sigma_{ij} = \alpha_{ij}^{(4)}q;$$

$$5) \quad E^{e} = \begin{pmatrix} 0 & 0 & q \\ 0 & 0 & 0 \\ q & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = (\sigma_{ij13} + \sigma_{ij31})q, \ \sigma_{ij} = \alpha_{ij}^{(5)}q;$$

6)
$$E^e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & q \\ 0 & q & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = (\sigma_{ij23} + \sigma_{ij32})q, \ \sigma_{ij} = \alpha_{ij}^{(6)}q.$$

Hence, the coefficients *Cijkl* are calculated from the corresponding α_{ij} : 1) $C_{ij11} = \alpha_{ij}^{(1)}$;

- 2) $C_{ij22} = \alpha_{ij}^{(2)};$
- 3) $C_{ij33} = \alpha_{ij}^{(3)};$
- 4) $C_{ij12} = C_{ij21} = \frac{1}{2}\alpha_{ij}^{(4)};$
- 5) $C_{ij13} = C_{ij31} = \frac{1}{2} \alpha_{ij}^{(5)};$

6)
$$C_{ij23} = C_{ij32} = \frac{1}{2}\alpha_{ij}^{(6)}$$
.

Reference:

[1] Бидерман В.Л., Гуслицер Р.Л., Захаров С.П., Ненахов Б.В., Селезнев И.И., Цукерберг С.М. Автомобильные шины (конструкция, расчет, испытание, эксплуатация). – Под общей редакцией Бидермана В.Л. – М.: Государственное научно-техническое изд-во химической литературы, 1963. – 384 с.

[2] Кристенсен Р. Введение в механику композитов. – М.: «Мир», 1982. – 334 с.

[3] Победря Б.Е. Механика композиционных материалов. - М.: Издательство Московского университета, 1984. - 335 с.

[4] Mohammad Ali Bagheri, Antonin Settari Effects of fractures on reservoir deformation and flow modeling // Canadian Geotechnical Journal, Vol 43, 2006. - P. 574-586.

[5] Hashin, Z, and Shtrikman, S, 1963, A variational approach to the elastic behavior of multiphase minerals. Journal of the Mechanics and Physics of Solids, 11 (2), 127-140.

[6] Kachanov M., Tsukrov I., Shafiro B. Effective modulus of solids with cavities of various shapes // Applied Mechanics Reviews, Vol. 47, No. 1, Part 2, 1994 - P. 151-174.

Result comparison

No	Value	Description	Unit	Target	CAE Fidesys	Error,%
1	Effective elastic modulus	C_1111	Ра	8238.889	8239.3564	3.0775942
22	Effective elastic modulus	C_1122	Ра	2083.752	2084.168	0.02
23	Effective elastic modulus	C_1133	Ра	33.342	32.885906	1.37
34	Effective elastic modulus	C_1212	Ра	3077.568	3077.5942	<< 0.001

No	Value	Description	Unit	Target	CAE Fidesys	Error,%
55	Effective elastic modulus	C_1313	Ра	0.698	0.67114094	3.85
66	Effective elastic modulus	C_2222	Ра	8238.889	8239.3564	0.01
77	Effective elastic modulus	C_2233	Ра	33.342	32.885906	1.37
88	Effective elastic modulus	C_2323	Ра	0.698	0.67114094	3.85
99	Effective elastic modulus	C_3333	Ра	35.597	34.228188	3.85
110	Density	Density	кг / м ³	1600	1600	0
111	Young's modulus	E1=E2	Ра	7694.38	7694.4592	<<0.001
112	Young's modulus	E3	Ра	35.3816	34.018670	3.85
113	Poisson ratio	v12 = v21	-	0.250074	0.25007696	<<0.001
114	Poisson ratio	v13 = v23	-	0.70242	0.72051429	2.58
115	Poisson ratio	$\nu 31 = \nu 32$	-	0.00322999	0.0031855309	1.38
116	Shear modulus	G12	Ра	3077.57	3077.5942	<<0.001
117	Shear modulus	G13=G23	Ра	0.698	0.67114094	3.85

Script CAE Fidesys: fidesys.cmd("reset") fidesys.cmd("set default element hex") rub thick = 1.25 $steel_thick = 0.05$ $steel_E = 2.0e5$ $steel_nu = 0.25$ $steel_alpha = 1.3e-5$ $steel_lambda = 40.0$ $steel_rho = 7800.0$ $rub_E = 2.0$ $rub_nu = 0.49$ $rub_alpha = 7.7e-5$ $rub_lambda = 1.0$ $rub_rho = 1300.0$ $mesh_size = 0.65$ def lambda_Calc_E_nu (E, nu): return E * nu / ((1+nu)*(1-2*nu)) def G_Calc_E_nu(E, nu): return E / (2 + 2*nu)# averaging over the volume def aver(st, rub): return (steel_thick * st + rub_thick * rub) / (rub_thick + steel_thick) fidesys.cmd("brick x " + str(rub_thick + steel_thick)) fidesys.cmd("webcut volume all with plane zplane offset 0 merge ") fidesys.cmd("create material 1") fidesys.cmd("modify material 1 name 'steel'")

fidesys.cmd("modify material 1 set property 'MODULUS' value " + str(steel_E)) fidesys.cmd("modify material 1 set property 'POISSON' value " + str(steel_nu)) fidesys.cmd("modify material 1 set property 'ISO_THERMAL_EXPANSION' value " + str(steel_alpha)) fidesys.cmd("modify material 1 set property 'ISO_CONDUCTIVITY' value " + str(steel_lambda)) fidesys.cmd("modify material 1 set property 'DENSITY' value " + str(steel_rho)) fidesys.cmd("create material 2 ") fidesys.cmd("modify material 2 name 'rubber'") fidesys.cmd("modify material 2 set property 'MODULUS' value " + str(rub_E)) fidesys.cmd("modify material 2 set property 'POISSON' value " + str(rub_nu)) fidesys.cmd("modify material 2 set property 'ISO_THERMAL_EXPANSION' value " + str(rub_alpha)) fidesys.cmd("modify material 2 set property 'ISO CONDUCTIVITY' value " + str(rub lambda)) fidesys.cmd("modify material 2 set property 'DENSITY' value " + str(rub_rho)) fidesys.cmd("set duplicate block elements off") fidesys.cmd("block 1 add surface 7") fidesys.cmd("set duplicate block elements off") fidesys.cmd("block 2 add volume 1 2") fidesys.cmd("block 1 material 1") fidesys.cmd("block 2 material 2") fidesys.cmd("block 1 element shell order 1") fidesys.cmd("block 2 element solid order 1") fidesys.cmd("create shell properties 1") fidesys.cmd("modify shell properties 1 thickness " + str(steel_thick)) fidesys.cmd("modify shell properties 1 eccentricity 0.5") fidesys.cmd("block 1 shell properties 1") fidesys.cmd("volume all scheme Sweep") fidesys.cmd("volume all size " + str(mesh_size)) fidesys.cmd("mesh volume all") fidesys.cmd("analysis type effectiveprops heattrans elasticity dim3 preload off") fidesys.cmd("periodicbc on") fidesys.cmd("solver method direct use uzawa no try other off")

fidesys.cmd("output nodalforce off energy off record3d on log on vtu on material off")

2.5.Test Case No.2.5

Problem Description.

Determination of effective mechanical characteristics for a porous material of periodic structure, with spherical pores. *Input Values*

Material:

- Young's modulus E = 1 Pa;
- Poisson ratio v = 0.4;
- Density $\rho = 1 \kappa 2 / M^3$.

Geometric model:

- Solid cube with side 1m;
- In the center there is a hole in the form of a ball with a radius 0.228542449528.

Boundary conditions:

• Periodic.

Mesh

• Tetrahedron mesh order 2.

Fig 2.5 – Mesh 3D - Tetrahedron

Output Values

No	Value	Description	Unit	Target
1	Poisson ratio	ν	-	0.383928510975
2	Young's modulus	Е	Ра	0.899553532133
3	Density	Density	кг / м ³	0.95

Calculation method used for the reference solution

Six deformation types are applied to a representative volume, each of which has its own type of effective strain tensor E^{e} :

1. $E_e = \begin{pmatrix} q & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ - stretching/compression along the axis X; 2. $E_e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & 0 \end{pmatrix}$ - stretching/compression along the axis Y; 3. $E_e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & q \\ 0 & 0 & q \end{pmatrix}$ - stretching/compression along the axis Z; 4. $E_e = \begin{pmatrix} 0 & q & 0 \\ q & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ - in plane shear XY; 5. $E_e = \begin{pmatrix} 0 & 0 & q \\ 0 & 0 & 0 \\ q & 0 & 0 \end{pmatrix}$ - in plane shear XZ; 6. $E_e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & q \\ 0 & 0 & 0 \end{pmatrix}$ - in plane shear YZ.

So, for each of the six boundary value problems, an effective strain tensor E^e was given and the effective stress tensor σ^e is obtained.

The linear dependence of σ^{e} on q is presented by the formula:

$$a_{ij}^e = a_{ij}q$$

Since the magnitude of deformations q and the corresponding tensor σ^e are known, the tensor coefficient of the dependence a_{ij} can be calculated simply:

$$a_{ij} = \frac{\sigma_{ij}^e}{q}$$

Since the effective properties are estimated in the form of the generalized Hooke's law

considering the form E^e in each problem, the formulas for *Cijkl* will look like this:

1)
$$E^{e} = \begin{pmatrix} q & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = \sigma_{ij11}q, \ \sigma_{ij} = \alpha_{ij}^{(1)}q;$$

2) $E^{e} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = \sigma_{ij22}q, \ \sigma_{ij} = \alpha_{ij}^{(2)}q;$

$$3) \quad E^{e} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & q \\ 0 & 0 & q \end{pmatrix} \Rightarrow \sigma_{ij} = \sigma_{ij33}q, \ \sigma_{ij} = \alpha_{ij}^{(3)}q;$$

$$4) \quad E^{e} = \begin{pmatrix} 0 & q & 0 \\ q & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = (\sigma_{ij12} + \sigma_{ij21})q, \ \sigma_{ij} = \alpha_{ij}^{(4)}q;$$

$$5) \quad E^{e} = \begin{pmatrix} 0 & 0 & q \\ 0 & 0 & 0 \\ q & 0 & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = (\sigma_{ij13} + \sigma_{ij31})q, \ \sigma_{ij} = \alpha_{ij}^{(5)}q;$$

$$6) \quad E^{e} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & q \\ 0 & q & 0 \end{pmatrix} \Rightarrow \sigma_{ij} = (\sigma_{ij23} + \sigma_{ij32})q, \ \sigma_{ij} = \alpha_{ij}^{(6)}q.$$

Hence, the coefficients *Cijkl* are calculated from the corresponding α_{ij} :

- 1) $C_{ij11} = \alpha_{ij}^{(1)};$ 2) $C_{ij22} = \alpha_{ij}^{(2)};$
- 3) $C_{ij33} = \alpha_{ij}^{(3)};$
- 4) $C_{ij12} = C_{ij21} = \frac{1}{2}\alpha_{ij}^{(4)};$

5)
$$C_{ij13} = C_{ij31} = \frac{1}{2} \alpha_{ij}^{(5)};$$

6)
$$C_{ij23} = C_{ij32} = \frac{1}{2} \alpha_{ij}^{(6)}.$$

Reference:

[1] Бидерман В.Л., Гуслицер Р.Л., Захаров С.П., Ненахов Б.В., Селезнев И.И., Цукерберг С.М. Автомобильные шины (конструкция, расчет, испытание, эксплуатация). – Под общей редакцией Бидермана В.Л. – М.: Государственное научно-техническое изд-во химической литературы, 1963. – 384 с.

[2] Кристенсен Р. Введение в механику композитов. – М.: «Мир», 1982. – 334 с.

[3] Победря Б.Е. Механика композиционных материалов. - М.: Издательство Московского университета, 1984. - 335 с.

[4] Mohammad Ali Bagheri, Antonin Settari Effects of fractures on reservoir deformation and flow modeling // Canadian Geotechnical Journal, Vol 43, 2006. - P. 574-586.

[5] Hashin, Z, and Shtrikman, S, 1963, A variational approach to the elastic behavior of multiphase minerals. Journal of the Mechanics and Physics of Solids, 11 (2), 127-140.

[6] Kachanov M., Tsukrov I., Shafiro B. Effective modulus of solids with cavities of various shapes // Applied Mechanics Reviews, Vol. 47, No. 1, Part 2, 1994 - P. 151-174.

Result comparison

No	Value	Description	Unit	Target	CAE Fidesys	Error,%
1	Poisson ratio	ν	-	0.383928510975	0.388215587	1.12
2	Young's modulus	Е	Ра	0.899553532133	0.916450489	1.88
3	Density	Density	кг / м ³	0.95	0.95342265	0.36

Script CAE Fidesys: reset set node constraint off $#{Pi = 3.1415926}$ #{cube_size = 1.0} #{ratio = 0.05} # porosity $\#\{E \ m = 1.0\}$ $\#\{nu_m = 0.4\}$ $##{E_i = 100.0}$ $##{nu_i = 0.25}$ $#{sphere_rad} = (0.75 * ratio * cube_size^3 / Pi)^{0.3333}$ create brick width {cube_size} create sphere radius {sphere_rad} subtract volume 2 from volume 1 create material 1 name 'matr' modify material 1 set property 'MODULUS' value {E_m} modify material 1 set property 'POISSON' value {nu m} modify material 1 set property 'DENSITY' value 1.0 volume all size 0.1 #order,quality: 3,1 volume all scheme Tetmesh mesh volume all block 1 volume 3 block 1 material 'matr' block 1 element solid order 2 $\#\{G_m = E_m / (2.0 + 2.0*nu_m)\} \#$ shear modulus from Young's modulus and Poisson's ratio $\#\{K_m = E_m / (3.0 - 6.0*nu_m)\} \#$ bulk modulus from Young's modulus and Poisson's ratio $\#\{G_{eff} = G_m * (1.0 - 15.0*(1 - nu_m)*ratio / (7.0 - 5.0*nu_m))\}$ $\#\{K_{eff} = K_m - K_m * ratio / (1.0 - K_m / (K_m + 1.33333 * G_m))\}$ $#{E_eff = 9.0*K_eff*G_eff / (3.0*K_eff + G_eff)} # Young's modulus from shear modulus and bulk modulus$ $\#\{nu_{eff} = (3.0*K_{eff} - 2.0*G_{eff}) / (6.0*K_{eff} + 2.0*G_{eff})\} \#$ Poisson's ratio from shear modulus and bulk modulus analysis type effectiveprops elasticity dim3 periodicbc on

2.6.Test case No.2.6

Problem Description

The dynamic problem of a square is considered, the sides of which move according to the given laws from time to time. In this setting, the square is divided into 4 parts along the diagonals - three contact pairs. *Input Values*

Geometric model:

• Side of a square a=10 m.

Fig 2.6 - Geometric model of test case

Border conditions:

- Symmetry condition: curve AB displacement $u_x = 0$;
- Symmetry condition: curve AD displacement $u_y = 0$;
- The displacement of the CD side along the X axis is $-4 \cdot e^{-70 \cdot t} \cdot sin(314 \cdot t + 3.14)$;
- The displacement of the BC side along the Y axis is $-8 \cdot e^{-70 \cdot t} \cdot sin(314 \cdot t + 3.14)$;
- Three contact pairs (automatic selection of the main and secondary entity);
- Contact accuracy 0.03 for all contact pairs.

Fig 2.7 - Contact pairs

Material parameters:

- Elastic modulus E = 2e + 11 Pa;
- Poisson's ratio v = 0.3;
- Density $\rho = 7900$ kg/m³.

Mesh options:

- Mixed non-conformal mesh of the 2cd order;
- Finite elements: squares and triangles.

Fig 2.8 - Finite element mesh model

Calculation settings:

- Time analysis;
- Scheme: Implicit;
- Maximum time: 2e-2;

• Time step: 6e-5.

Calculation method used for the reference solution

The data obtained in the ANSYS package are used as a reference solution.

Result comparison

No.	Value	Description	Unit	Target	CAE Fidesys	Error,%
1	Component X of the displacement vector at the point $(0, 0, 0)$	Displacement X	m	0.423	0.40984529	3.11
2	ComponentYofthedisplacementvectoratthepoint $(0, 0, 0)$ $(0, 0, 0)$ $(0, 0, 0)$ $(0, 0, 0)$	Displacement Y	m	0.845	0.81715182	3.3

Script Fidesys:

reset create surface rectangle width 10.1 zplane webcut body 1 with general plane location 0 -1 0 direction 1 1.1 0 webcut body 2.1 with plane xplane rotate -45 about z center 0.00 move Surface 5 y -0.025 include_merged move Surface 4 y -0.025 include_merged move Surface 4 y -0.025 include_merged move Surface 7 x 0.025 include_merged webcut body 1 2 3 with general plane location 0 -4.95 0 direction 0 1 0 delete surface 9 11 webcut body 3 4 with general plane location -4.98 0 0 direction 1 0 0 webcut body 1 4 with general plane location 5.02 0 0 direction 1 0 0 delete surface 13 15 17 18 20 surface 21 19 size auto factor 1 surface 14 10 size auto factor 1 surface 14 10 scheme trimesh surface 21 19 scheme auto mesh surface all create material 1 modify material 1 name 'Material 1' modify material 1 set property 'DENSITY' value 7900 modify material 1 set property 'POISSON' value 0.3 modify material 1 set property 'MODULUS' value 2e11 block 1 surface all block 1 material 'Material 1' block 1 element plane order 2 create displacement on curve 43 37 dof 1 fix 0 create displacement on curve 25 38 54 dof 2 fix 0 create displacement on curve 52 58 dof 1 fix 1 create displacement on curve 59 dof 2 fix 1

bcdep displacement 3 value '-4*exp(-70*t)*sin(314*t+3.14)' bcdep displacement 4 value '-8*exp(-70*t)*sin(314*t+3.14)' create contact master curve 27 slave curve 32 tolerance 0.08 type tied method auto create contact master curve 39 slave curve 44 tolerance 0.08 type tied method auto create contact master curve 60 slave curve 53 tolerance 0.08 type tied method auto create contact master curve 21 slave curve 26 tolerance 0.08 type tied method auto analysis type dynamic elasticity dim2

dynamic method full_solution scheme implicit maxtime 2e-2 timestep 6e-5 newmark_gamma 0.005 nonlinearopts maxiters 50 minloadsteps 1 maxloadsteps 10 tolerance 1e-3

output nodalforce off results everystep 1000

2.7.Test case No.2.7

Problem Description

Calculation of the stress-strain and thermal state of solid tires at axial loads from 0 to 100 tons. Consider a typical model of a solid tire (see Fig.2.9). We will assume that the mechanical properties of rubber and steel tires are described by Hooke's law.

Input Values

Geometric model:

- R1 = 0.1 m;
- R2 = 0.2 m;
- R3 = 0.21 m;
- R4 = 0.26 m;
- H1 = 0.07 m;
- H2 = 0.01 m.

Fig 2.9 - Solid tire projections

Border conditions:

- Pinch condition: $\vec{u}|_{z=0} = \vec{0}$;
- Axial load, simulated by pressure at the left end of the tire (z = 2 H1 + H2): $p = 1000 \cdot t$;

- Axial acceleration on the inner surface $r = R_1$ (cylindrical SC) $l_z = 0.01 \text{ m/s}^2$;
- Temperature 25 °C throughout the solid tire.

Fig 2.10 - 3D view of a massive tire

Material parameters:

- Steel:
- \circ Elastic modulus E = 210 GPa;
- Poisson ratio v = 0.3;
- o Density $\rho = 7800 \text{ kg/m}^3$;
- Coefficient of thermal expansion $\alpha = 1.2e-5 \ ^{\circ}C^{-1}$;
- Coefficient of thermal conductivity $\lambda = 58 \text{ Vt/(m \cdot K)}$;
- Coefficient of specific heat $c = 462 \text{ Dg/(kg \cdot K)}$.
- Rubber:
 - \circ Elastic modulus E = 5 MPa;
 - Poisson ratio v = 0.45;
 - o Density $\rho = 1200 \text{ kg/m}^3$;
 - Coefficient of thermal expansion $\alpha = 7.7e-5 \circ C^{-1}$;
 - Coefficient of thermal conductivity $\lambda = 0.1 \text{ Vt/(m \cdot K)};$
 - Coefficient of specific heat $c = 1420 \text{ Dg/(kg \cdot K)}$.

Mesh:

• Hexahedral mesh.

Fig 2.11 - Finite element mesh model

Calculation settings:

- Time analysis;
- Scheme: Implicit;
- Elasticity;
- Thermal conductivity;
- Maximum time: 1000;
- Number of steps: 10.
Calculation method used for the reference solution

The ANSYS solution acts as a reference.

Fig 2.12 - Solving a problem in ANSYS

Result comparison

No.	Value	Description	Unit	Target	CAE Fidesys	Error,%
1	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Displacement Z	m	0.0171	0.016878524	1.3

Script Fidesys:

reset $#\{tireOuterHeight = 0.15\}$ $#\{tireThinHeight = 0.01\}$ $#\{wideSteelInnerR = 0.2\}$ $#\{thinSteelInnerR = 0.1\}$ $#\{$ wideSteelH = 0.01 $\}$ $#\{wideRubberH = 0.05\}$ set node constraint off create Cylinder height {tireOuterHeight} radius {wideSteelInnerR} create Cylinder height {tireOuterHeight} radius {wideSteelInnerR + wideSteelH} create Cylinder height {tireOuterHeight} radius {wideSteelInnerR + wideSteelH + wideRubberH} subtract body 1 from body 2 keep subtract body 2 from body 3 delete volume 1 webcut body all with plane zplane offset {tireThinHeight/2} webcut body all with plane zplane offset {-tireThinHeight/2} create Cylinder height {tireThinHeight} radius {wideSteelInnerR} create Cylinder height {tireThinHeight} radius {thinSteelInnerR} subtract body 10 from body 9 merge all

create material 1 modify material 1 name 'steel' modify material 1 set property 'MODULUS' value 2.1e+11 modify material 1 set property 'POISSON' value 0.3 modify material 1 set property 'DENSITY' value 7800 modify material 1 set property 'SPECIFIC_HEAT' value 462 modify material 1 set property 'ISO_CONDUCTIVITY' value 58 modify material 1 set property 'ISO_THERMAL_EXPANSION' value 1.2e-05 create material 2 modify material 2 name 'rubber' modify material 2 set property 'MODULUS' value 5e6 modify material 2 set property 'POISSON' value 0.45 modify material 2 set property 'DENSITY' value 1200 modify material 2 set property 'SPECIFIC_HEAT' value 1420 modify material 2 set property 'ISO_CONDUCTIVITY' value 0.1 modify material 2 set property 'ISO_THERMAL_EXPANSION' value 7.7e-05 block 1 volume 3 5 7 block 2 volume 4689 block 1 material 2 block 2 material 1 block 1 element solid order 2 block 2 element solid order 2 volume all size auto factor 4 mesh volume all create temperature on volume all value 25 create displacement on surface 12 15 dof all fix 0 create pressure on surface 13 16 magnitude 0 bcdep pressure 1 value '(1e3)*t' #create acceleration on surface 47 dof 3 fix 0.01 analysis type dynamic heattrans elasticity dim3 dynamic method full solution scheme implicit maxtime 1000 steps 10 nonlinearopts maxiters 50 minloadsteps 1 maxloadsteps 10 tolerance 1e-3 targetiter 5

2.8. Test case No.2.8

Problem Description

The transient process of loading a bar structure with a concentrated force is considered. The task checks the maximum total displacements at the moment of 1 sec, as well as the equality of the maximum total displacements to zero at the moment of 5 sec.

Input Values

Geometric model:

• Truss geometry is built in a third-party CAD package and imported as a file with the stp extension (Truss.stp).

Fig 2.13 - Geometric model

Border conditions

- Fastening on all movements at points A, B, C.
- At point D, a point force is applied, depending on time according to the law in a tabular form (table 1)

Time	Target force, N
0	0
1	10 ⁵
2	0
5	0

Table 1 Setting the dependence on time for force

Material parameters:

- Isotropic
- Elastic modulus E = 200 GPa;
- Density $\rho = 7800 \text{ kg/m}^3$;
- Poisson ratio v = 0.3.

Mesh:

- Beam finite elements of the first order;
- Section of beam elements: hollow tube, outer radius 100mm, inner radius 90mm.

Calculation settings:

- Dynamic calculation;
- Implicit scheme;
- Newton-Raphson method;
- At the first stage, from 0 sec to 2 sec, a step of 0.01 sec was used;
- At the second stage. From 2 sec to 5 sec, a step of 0.1 sec was used;
- Maximum time 5 s;
- Maximum number of steps 230;
- Output of every 10th step to .vtu file.

Calculation method used for the reference solution

The problem has a numerical solution obtained in the ANSYS package.

Fig 2.14 - Total displacements at time t = 1 s, m

Fig 2.15 - Total displacements at time t = 5 s, m

Result comparison

Below are the values for the displacements at the point (6.06032, 4.81675, 49.3827) at the time t = 1 s.

No.	Value	Description	Unit	Target	CAE Fidesys	Error,%
1	Component X of the displacement vector at the mesh nodes	Displacement X	m	0	5.4466067e-05	0.01
2	Component Y of the displacement vector at the mesh nodes	Displacement Y	m	8.72e-2	8.7121458e-02	0.09
3	Component Z of the displacement vector at the mesh nodes	Displacement Z	m	-3.48e-3	-3.4934805e-03	0.39

Below are the values for the displacements at the point (6.06032, 4.81675, 49.3827) at the last moment of time t = 5 s.

No.	Value	Description	Unit	Target	CAE Fidesys	Error,%
1	Component X of the displacement vector at the mesh nodes	Displacement X	М	0	0	0
2	Component Y of the displacement vector at the mesh nodes	Displacement Y	м	0	0	0
3	Component Z of the displacement vector at the mesh nodes	Displacement Z	м	0	0	0

CAE Fidesys script:

reset import step "C:\Users\ Truss.stp" heal merge vertex all curve all interval 5 curve all scheme equal mesh curve all create material 1 from 'Steel' modify material 1 set property 'DENSITY' value 7800 set duplicate block elements off block 1 add curve all block 1 material 1 create beam properties 1 modify beam properties 1 type 'Circle With Offset Hole' modify beam properties 1 angle 0.0 modify beam properties 1 ey 0.0 modify beam properties 1 ez 0.0 modify beam properties 1 geom_D1 200e-3

modify beam properties 1 geom_D2 180e-3 modify beam properties 1 geom e 0 modify beam properties 1 mesh_quality 5 modify beam properties 1 warping_dof off block 1 element beam order 1 block 1 beam properties 1 create displacement on vertex 4 2 1 dof all fix create force on vertex 54 force value {1e5} direction 0 1 0 create table 1 modify table 1 dependency time modify table 1 insert row 1 modify table 1 cell 2 1 value 1 modify table 1 cell 3 1 value 2 modify table 1 cell 4 1 value 5 modify table 1 cell 2 2 value 1e5 bcdep force 1 table 1 analysis type dynamic elasticity dim3 preload on dynamic method full_solution scheme implicit maxtime 5 steps 500 newmark_gamma 0.005 damping mass_matrix 0 stiffness_matrix 0.05 solver method direct use uzawa auto try other off output nodalforce off energy off record3d off log on vtu on material off results everystep 10

2.9. Test case No.2.9

Problem Description

The Lamb problem is considered, which is a dynamic action model of a concentrated load on the elastic halfplane boundary. Applied load depends on time according to Berlage's law. The model consists of two layers with different materials.

Input Values

Geometric model:

• See Fig 2.16.

Fig 2.16 - Geometric model

Border conditions:

• Point force is given using the Berlage formula: $f(t) = A \cdot \frac{\omega_1^2 e^{-\omega_1 t}}{4} (\sin(\omega_0 t)(-\frac{t^2}{\omega_1} + \frac{t}{\omega_1^2} + \frac{1}{\omega_1^3}) - \cos(\omega_0 t)\sqrt{3}(\frac{t^2}{\omega_1} + \frac{t}{\omega_1^2})), \omega_1 = \frac{\omega_0}{\sqrt{3}}, \omega_0 = 2\pi\omega$

where A - amplitude, ω - frequency, t - time;

Non-reflective conditions applied to bottom and side faces.

Material parameters of the top layer:

- Young's modulus E = 2e + 08;
- Poisson ratio v = 0.3;
- Density $\rho = 1900$;
- Cohesion K = 29000;
- Angle of internal friction $\alpha = 20$;

• Angle of dilatancy $\beta = 10$

Material parameters of the bottom layer:

- Young's modulus E = 3e + 08;
- Poisson ratio v = 0.3;
- Density $\rho = 1900$;
- Cohesion K = 29000;
- Angle of internal friction $\alpha = 20$;
- Angle of dilatancy $\beta = 10$.

Finite element mesh generation:

• Spectral elements of the 3rd order.

The mesh should be of flat quadrangles, the height of the element is calculated in accordance with the wavelength (see subclause 1.6).

Contact settings:

- Type: Tied;
- Tolerance 0.0005;
- Method: MPC.

Calculation settings:

- Dynamic calculation;
- Maximum time 5 s;
- Maximum number of steps 2025;
- Output of every 135 steps to a .vtu file.

Calcuation method used for the reference solution

The values are compared to the full model, without using the associated contact (1.16)

Result comparison

The displacement values are checked at the point (70.4225, 4.31214e-15, 0).

No.	Value	Description	Unit	Target	CAE Fidesys	Error,%
1	Displacement vector components at mesh nodes at step 6	Displacement X	m	-0.00110025	-0.0011002537	<<0.01
2	Displacement vector components at mesh nodes at step 6	Displacement Y	m	0.000517095	0.00051707876	<<0.01
3	Displacement vector components at mesh nodes at step 8	Displacement X	m	-4.78016e-05	-4.7799808e-05	<<0.01
4	Displacement vector components at mesh nodes at step 8	Displacement Y	m	-0.000445372	-0.00044537138	<<0.01

Script CAE Fidesys:

reset set default element hexzplane webcut body 1 with plane xplane offset 0 webcut body 1 with plane yplane offset 0 delete Surface 3 rotate Surface 4 5 angle -90 about Z include_merged webcut body 3 1 with plane yplane offset -250 merge curve 18 25 merge curve 22 27 surface all size 7 mesh surface all create material 1 modify material 1 name 'Material1' modify material 1 set property 'MODULUS' value 2e+08 modify material 1 set property 'POISSON' value 0.3 modify material 1 set property 'DENSITY' value 1900 modify material 1 set property 'COHESION' value 29000 modify material 1 set property 'INT_FRICTION_ANGLE' value 20 modify material 1 set property 'DILATANCY_ANGLE' value 10 create material 2 modify material 2 name 'Material2' modify material 2 set property 'MODULUS' value 2e+08 modify material 2 set property 'POISSON' value 0.3 modify material 2 set property 'DENSITY' value 1900 modify material 2 set property 'COHESION' value 29000 modify material 2 set property 'INT_FRICTION_ANGLE' value 20 modify material 2 set property 'DILATANCY_ANGLE' value 10 set duplicate block elements off block 1 add surface 97 set duplicate block elements off block 2 add surface 8 6 block 1 material 1 block 2 material 2 block 1 2 element plane order 3 create absorption on curve 28 24 13 15 19 21 create force on vertex 10 force value 1 direction 0 -1 0 bcdep force 1 value 'berlage(1e+8, 10, time)' create receiver on curve 16 displacement 1 1 1 #create receiver on curve 16 velocity 1 1 1 #create receiver on curve 16 principalstress 1 1 1

#create receiver on curve 16 pressure

create contact master curve 17 23 slave curve 20 26 tolerance 0.0005 type tied method auto analysis type dynamic elasticity dim2 planestrain preload off dynamic method full_solution scheme explicit maxtime 3 maxsteps 2025 output nodalforce off energy off record3d on log on vtu on material off results everystep 135

2.10. Test case No.2.10

Problem Description

In the problem, a suspended beam with a square section is considered, fixed in the upper section. An axial tensile force is applied to the free end of the beam.

Input values

Geometric model:

- Beam height L = 10 in;
- Beam width d = 2 in;
- Geometry is imported from 01_model.stp file.

Fig 2.17 - Geometric model of the problem

Border conditions:

- Zero displacements along all axes on the Y = 0 plane;
- Axial force F = 5000, 7500, 10,000 lb, applied to all nodes of the Y = L plane.
- Number of loading steps: 3

Material parameters:

- Elastic modulus E = 10.4e + 6 psi;
- Poisson ratio v = 0.3.

Mesh:

- Second-order conformal mesh;
- Finite elements: hexahedrons.

Fig 2.18 - Finite element mesh model

Calcuation method used for the reference solution

The ANSYS solution VM37 problem [1] acts as a reference.

Reference:

[1] Verification Manual for the Mechanical APDL Application, SAS IP, Inc 2009 *Result comparison*

No.	Loading steps	Value	Description	Unit	Target	CAE Fidesys	Error,%
1	Step 3	Stresstensorcomponent σ_{yy} atpoint(1, L/2, 1)	Stress YY	psi	4444	4443.109	0.02
2	Step 3	Step number	dimensionless	-	3	3	-

CAE Fidesys script: reset

import step "01_model.stp"

#import step "D:/Комплект численных решений/CAD/01 model.stp" heal move Volume 1 x 1 y 0 z 1 include merged volume 1 size auto factor 10 mesh volume 1 create material 1 modify material 1 name 'mat1' modify material 1 set property 'MODULUS' value 1.04e+07 modify material 1 set property 'POISSON' value 0.3 set duplicate block elements off block 1 add volume 1 block 1 material 1 cs 1 element solid order 2 create displacement on surface 4 dof all fix create pressure on surface 2 magnitude -10000 create table 1 modify table 1 dependency time modify table 1 insert row 1 modify table 1 insert row 1 modify table 1 insert row 1 modify table 1 cell 1 1 value 1 modify table 1 cell 2 1 value 2 modify table 1 cell 3 1 value 3 modify table 1 cell 1 2 value -5000 modify table 1 cell 2 2 value -7500 modify table 1 cell 3 2 value -10000 bcdep pressure 1 table 1 analysis type static elasticity dim3

static steps 3

2.11. Test Case No2.11

Problem Description

The problem of testing the ability of contact algorithms to transmit uniform pressure using a non-conformal irregular mesh is considered.

Input Values

Geometric model:

Fig 2.19 - Geometric model

Boundary conditions:

- The bottom side of the foundation is fixed in vertical movement, the center of this side is fixed in all directions;
- To improve the convergence of the problem, added pinning of vertex 2 along the x axis;
- Pressure $q=40000 \text{ H/m}^2$.

Material Properties:

- Isotropic;
- Young's modulus E = 100 MPa;
- Poisson ratio v = 0.3.

Mesh:

• Non-conformal irregular mesh, first-order elements.

Fig 2.20 - Non-conformal irregular mesh

Contact Settings:

- Type: general;
- Tolerance: 0.0005;
- Method: auto.

Calculation Settings:

- Static;
- Elasticity.

Output Values

The values for the voltage in contact at points with coordinates (-0.5,0.001,0), (0,0.001,0) and (0.5,0.001,0) are presented below.

No	Value	Description	Unit	Target
1	Stress tensor components in the contact zone at a point (-0.5,0.001,0)	Contact Stress N	Pa	40000
2	Stress tensor components in the contact zone at a point (0,0.001,0)	Contact Stress N	Pa	40000
3	Stress tensor components in the contact zone at a point (0.5,0.001,0)	Contact Stress N	Ра	40000

Calculation method used for the reference solution

The problem has a numerical solution [1]. Expected results:

Reference:

[1] NAFEMS R0081 - Benchmark Tests for Finite Element Modelling of Contact, Gapping and Sliding *Result comparison*

No	Value	Description	Unit	Target	CAE Fidesys	Error, %
1	Stress tensor components in the contact zone at a point (- 0.5,0.001,0)	Contact Stress N	Pa	40000	39839.9999	0.4
2	Stress tensor components in the contact zone at a point (0,0.001,0)	Contact Stress N	Pa	40000	39836.085	0.41
3	Stress tensor components in the contact zone at a point (0.5,0.001,0)	Contact Stress N	Ра	40000	39840	0.4

CAE Fidesys Script:

reset set default element hex create surface rectangle width 1 height 1 zplane webcut body 1 with plane yplane offset 0 partition create curve 3 position 0 -50 0 create material 1 modify material 1 name 'mat1' modify material 1 set property 'MODULUS' value 1e+8 modify material 1 set property 'POISSON' value 0.3 curve 1 interval 4 curve 1 scheme equal mesh curve 1 curve 9 10 interval 2 curve 9 10 scheme equal mesh curve 9 10 mesh surface 3 node 12 move X -0.120828 Y 0.000000 Z 0.000000 node 11 move X -0.094434 Y 0.000000 Z 0.000000 node 10 move X 0.074762 Y 0.000000 Z 0.000000 node 13 move X -0.058639 Y 0.049426 Z -0.000000 node 15 move X 0.047123 Y -0.026582 Z -0.000000 node 13 move X 0.006909 Y -0.039155 Z -0.000000 curve 7 6 interval 2 curve 7 6 scheme equal mesh curve 7 6 curve 11 3 interval 2 curve 11 3 scheme equal mesh curve 11 3 surface 2 size auto factor 10 mesh surface 2 node 27 move X -0.058639 Y 0.000000 Z 0.000000 node 30 move X -0.058639 Y 0.026582 Z -0.000000 node 29 move X 0.078311 Y 0.031188 Z -0.000000 node 28 move X 0.056336 Y -0.001057 Z -0.000000 block 1 add surface 2 block 2 add surface 3 block all material 'mat1' block 1 element plane order 1 block 2 element plane order 1 create displacement on vertex 9 dof all fix create displacement on curve 3 11 dof 2 fix create displacement on vertex 2 dof 1 fix create pressure on curve 1 magnitude 40000 create contact master curve 5 slave curve 8 type general friction 0.0 ignore_overlap off offset 0.0 tolerance 0.0005 method auto analysis type static elasticity dim2 planestrain

2.12. Test Case No2.12

Problem Description

The problem of testing the ability of contact algorithms to transfer total displacements using a non-conformal irregular mesh with a rigid contact is considered.

Input Values

Geometric model:

• 02_model.stp.

Material Properties:

- Isotropic;
- Young's modulus $E = 2e11 \Pi a$;
- Poisson ratio v = 0.3;
- Density $\rho = 7850 \text{ kg/m}^3$.

Mesh:

• Finite-elements mesh (order 2).

Boundary conditions:

- The inner surface of the larger cylinder is rigidly fixed;
- Pressure p=1e5 MΠa acts on the upper surface of the small cylinder;

• Tolerance for tied contact settings is 0.25.

Before starting the calculation, the model should be scaled by 0.001 for correct results.

Calculation Settings:

- Static;
- Elasticity.

Fig 2.22 - Finite-element mesh

Output Values

No	Value	Description	Unit	Target
1	Maximum value of total displacements on a mesh with element size 0.0025	Displacement sum	m	3.2011e-6

Calculation method used for the reference solution

The ANSYS solution acts as a reference. For the correctness of the comparison, a study was carried out for mesh convergence (Figures 2.24-2.26).

Fig 2.24 - Values of total displacements with an element size = 0.01

Fig 2.25 - Values of total displacements with an element size = 0.005

Fig 2.26 - Values of total displacements with an element size = 0.0025

Result comparison

N	Value	Description	Unit	Target	CAE Fidesys	Error,%
1	Maximum value of total displacements on a mesh with element size $= 0.0025$	Displacement sum	m	3.2011e- 6	3. 1847985e-6	0.51

CAE Fidesys Script:

reset import step "C: /02_model.step" heal Volume all scale 0.001 volume all size 0.0025 mesh volume 1 volume 3 redistribute nodes off volume 3 scheme Sweep source surface 24 target surface 23 sweep transform least squares volume 3 autosmooth target on fixed imprints off smart smooth off volume 3 redistribute nodes off volume 3 scheme Sweep source surface 24 target surface 23 sweep transform least squares volume 3 autosmooth target on fixed imprints off smart smooth off mesh volume 3 volume 2 scheme tetmesh proximity layers off geometry approximation angle 15 volume 2 tetmesh growth_factor 1 Trimesher surface gradation 1.3 Trimesher volume gradation 1.3 Trimesher geometry sizing on mesh volume 2 create material 1 modify material 1 name 'material 1' modify material 1 set property 'MODULUS' value 2e+11 modify material 1 set property 'POISSON' value 0.3 modify material 1 set property 'DENSITY' value 7850 set duplicate block elements off block 1 add volume all block 1 material 1 cs 1 element solid order 2 create displacement on surface 19 dof all fix 0 create pressure on surface 24 magnitude 1e5 create contact autoselect tolerance 0.00025 type tied method auto analysis type static elasticity dim3

2.13. Test case No2.13

Problem description

Determination of effective mechanical characteristics for a cube of a homogeneous isotropic material. *Input values*

Material properties:

- Isotropic;
- Young's modulus E = 1 Pa;
- Poisson ratio v = 0.25;
- Density $\rho = 1 kg / m^3$;
- Thermal conductivity coefficient $\varkappa = 1 \text{ W/(m \cdot K)};$
- Thermal expansion coefficient $\alpha = 1 \text{ K}^{-1}$.

Geometrical model

- Cube with edge length of 1 m;
- Homogeneous material.

Boundary conditions:

• Non-periodic

Mesh:

• First order hexahedrons.

Target results

No	Value	Description	Unit	Target
1	Effective thermal expansion coefficients	α_{11}	K^{-1}	1
2	Effective thermal expansion coefficients	α_{22}	K^{-1}	1
3	Effective thermal expansion coefficients	α ₃₃	K^{-1}	1

Numerically approximate analytical solution

Let us consider the representative volume V_0 , allocated in the initial state, before deformation. At its boundary, we set the boundary conditions in the form of zero pressure

$$N \cdot \sigma|_{\Gamma_0} = 0$$

we change the temperature of the entire volume by ΔT and solve the boundary value problem of the elasticity theory on the representative volume

$$\nabla\cdot\sigma=0$$

As a result of calculating the described problem, we obtain the distribution field of the strain tensor E on a representative volume. We average it by volume:

$$E^e = \frac{1}{V} \int\limits_V EdV$$

As a result, we have that we set the same temperature change ΔT for the representative volume and no more boundary conditions, except for zero pressure at the boundary - and as a result of averaging we obtained the effective strain tensor E^e . We will seek effective thermoelastic characteristics in the form:

$$E^e = \alpha_{ij} \Delta T$$

For a homogeneous material, a numerically approximate analytical solution is trivial: with averaging, we should obtain effective thermal expansion coefficients, equal to the thermal expansion coefficients of this homogeneous material. This works for isotropic, transversely isotropic, and orthotropic materials.

Results

First order hexahedral mesh

No	Value	Description	Unit	Target	CAE Fidesys result	Error, %
1	Effective thermal expansion coefficients	α_{11}	K^{-1}	1	1	0
2	Effective thermal expansion coefficients	α22	K^{-1}	1	1	0
3	Effective thermal expansion coefficients	α ₃₃	K^{-1}	1	1	0

CAE Fidesys script:

reset brick x 1 volume 1 scheme Map volume 1 size 0.5 mesh volume 1 create material 1 name 'Material1' modify material 1 set property 'MODULUS' value 1 modify material 1 set property 'POISSON' value 0.25 modify material 1 set property 'ISO_THERMAL_EXPANSION' value 1 modify material 1 set property 'ISO_CONDUCTIVITY' value 1 block 1 volume 1 block 1 material 'Material1' block 1 element solid order 2 analysis type effectiveprops heattrans dim3 periodicbc off

Reference

[1] Вишняков Л.Р., Грудина Т.В., Кадыров В.Х., Карпинос Д.М., Олейник В.И., Сапожникова А.Б., Тучинский Л.И. Композиционные материалы. Справочник. – Киев: Наукова думка, 1985. – 592 с.

[2] Кристенсен Р. Введение в механику композитов. – М.: «Мир», 1982. – 334 с.

[3] Победря Б.Е. Механика композиционных материалов. - М.: Издательство Московского университета, 1984. - 335 с.

2.14. Test case No2.14

Problem description

Determination of effective mechanical properties for a cube of homogeneous orthotropic material. *Input values*

Material Properties:

- Orthotropic;
- Young's modulus $E_x = 12$ Pa;
- Young's modulus E_y = 8 Pa;
- Young's modulus $E_z = 4$ Pa;
- Principal Poisson's ratio $v_{xy} XY = 0.375$;
- Principal Poisson's ratio $v_{xz} = 0.75$;
- Principal Poisson's ratio $v_{yz} = 0.5$;
- Density $\rho = 1 kg / m^3$;
- Shear modulus $G_{xy} = 3$ Pa;
- Shear modulus $G_{xz} = 2$ Pa;
- Shear modulus $G_{yz} = 1$ Pa;
- Thermal expansion coefficient $\alpha_x = 1 \text{ K}^{-1}$;
- Thermal expansion coefficient $\alpha_y = 2 \text{ K}^{-1}$;
- Thermal expansion coefficient $\alpha_z = 3 \text{ K}^{-1}$.

Geometrical model

- Cube with edge length of 1 m;
- Homogeneous material.

Boundary conditions:

• Non-periodic

Mesh:

• Second order hexahedrons.

Target results

No	Value	Description	Unit	Target
1	Effective thermal expansion coefficients	α_{11}	K ⁻¹	1
2	Effective thermal expansion coefficients	a22	K ⁻¹	2
3	Effective thermal expansion coefficients	α33	K^{-1}	3

Numerically approximate analytical solution

Numerically approximate analytical solution given in part 2.1.

Results

Second order hexahedral mesh

No	Value	Description	Unit	Target	CAE Fidesys result	Error, %
1	Effective thermal expansion coefficients	α11	K^{-1}	1	1	0.00%
2	Effective thermal expansion coefficients	α ₂₂	K^{-1}	2	2	0.00%
3	Effective thermal expansion coefficients	α33	K ⁻¹	3	3	0.00%

	TT' 1	•
(ΛL)	HIDOGTO	compt
CAE	1.1002878	SCHDL.
		~

reset set default element hex brick x 1.0 volume 1 size 0.5 mesh volume 1 create material 1 modify material 1 name 'Material 1' modify material 1 set property 'ORTHOTROPIC_E_X' value 12 modify material 1 set property 'ORTHOTROPIC_E_Y' value 8 modify material 1 set property 'ORTHOTROPIC_E_Z' value 4 modify material 1 set property 'ORTHOTROPIC_PR_XY' value 0.375 modify material 1 set property 'ORTHOTROPIC_PR_XZ' value 0.75 modify material 1 set property 'ORTHOTROPIC_PR_YZ' value 0.5 modify material 1 set property 'ORTHOTROPIC_G_XY' value 3 modify material 1 set property 'ORTHOTROPIC_G_XZ' value 2 modify material 1 set property 'ORTHOTROPIC_G_YZ' value 1 modify material 1 set property 'ORTHO_THERMAL_EXPANSION_X' value 1 modify material 1 set property 'ORTHO_THERMAL_EXPANSION_Y' value 2 modify material 1 set property 'ORTHO_THERMAL_EXPANSION_Z' value 3 modify material 1 set property 'DENSITY' value 1 modify material 1 set property 'ORTHO CONDUCTIVITY X' value 1 modify material 1 set property 'ORTHO CONDUCTIVITY Y' value 2 modify material 1 set property 'ORTHO_CONDUCTIVITY_Z' value 3 block 1 volume 1 block 1 material 'Material 1' block 1 element solid order 2 analysis type effectiveprops heattrans dim3 periodicbc off

Reference:

[1] Вишняков Л.Р., Грудина Т.В., Кадыров В.Х., Карпинос Д.М., Олейник В.И., Сапожникова А.Б., Тучинский Л.И. Композиционные материалы. Справочник. – Киев: Наукова думка, 1985. – 592 с.

[2] Кристенсен Р. Введение в механику композитов. – М.: «Мир», 1982. – 334 с.

[3] Победря Б.Е. Механика композиционных материалов. - М.: Издательство Московского университета, 1984. - 335 с.

2.15. Test case No2.15

Problem description

Determination of effective mechanical characteristics for a cube of a homogeneous transversely isotropic material.

Input values

Material Properties:

- Transversely isotropic;
- Young's modulus $E_T = 3$ Pa;
- Young's modulus $E_L = 4$ Pa;
- Principal Poisson's ratio $v_T = 0.25$;
- Principal Poisson's ratio $v_{TL} = 0.5$;
- Shear modulus $G_{TL} = 1$ Pa;
- Thermal expansion coefficient $\alpha_T = 1 \text{ K}^{-1}$;
- Thermal expansion coefficient $\alpha_L = 2 \text{ K}^{-1}$.

Geometrical model

- Cube with edge length of 1 m;
- Homogeneous material.

Boundary conditions:

• Non-periodic

Mesh:

• First order hexahedrons.

Target results

No	Value	Description	Unit	Target
1	Effective thermal expansion coefficients	α_{11}	K ⁻¹	1
2	Effective thermal expansion coefficients	α ₂₂	K^{-1}	1
3	Effective thermal expansion coefficients	α ₃₃	K^{-1}	2

Numerically approximate analytical solution

Numerically approximate analytical solution given in part 2.1.

Results

No	Value	Description	Unit	Target	CAE Fidesys result	Error, %
1	Effective thermal expansion coefficients	α ₁₁	K^{-1}	1	1	0.00%
2	Effective thermal expansion coefficients	α22	K^{-1}	1	1	0.00%
3	Effective thermal expansion coefficients	α33	K ⁻¹	2	2	0.00%

CAE Fidesys script:

reset brick x 1 volume 1 scheme Map volume 1 size 0.5 mesh volume 1 create material 1 modify material 1 set property 'TR_ISO_CONDUCTIVITY_T' value 1 modify material 1 set property 'TR_ISO_CONDUCTIVITY_L' value 2 block 1 volume 1 block 1 volume 1 block 1 element solid order 2 analysis type effectiveprops heattrans dim3 periodicbc off

Reference:

[1] Вишняков Л.Р., Грудина Т.В., Кадыров В.Х., Карпинос Д.М., Олейник В.И., Сапожникова А.Б., Тучинский Л.И. Композиционные материалы. Справочник. – Киев: Наукова думка, 1985. – 592 с.

[2] Кристенсен Р. Введение в механику композитов. – М.: «Мир», 1982. – 334 с.

[3] Победря Б.Е. Механика композиционных материалов. - М.: Издательство Московского университета, 1984. - 335 с.

2.16. Test case No2.16

Problem Description

Determination of effective mechanical properties for a single layer fibrous composite.

Input values

Material Properties:

- Matrix material:
 - o Isotropic;
 - \circ Young's modulus = 1 Pa;
 - \circ Poisson ratio = 0.25;
 - Thermal conductivity coefficient = $2 \frac{W}{m_*\kappa}$.
- Thread material:
 - o Isotropic;
 - Young's modulus = 1 Pa;
 - Poisson ratio = 0.25;
 - Thermal conductivity coefficient = $10 \frac{W}{m*\kappa}$.

Geometrical model:

- Parallelepiped 4 x 16 x 16;
- Thread of length 25 and radius of 2.85459861019 (selected so the thread volume concentration in composite is equal to 10%) runs through center line parallel to the X axis;
- Thread: $\lambda = 10$;
- Matrix: $\lambda = 2$.

Boundary conditions:

• Periodic.

Mesh:

• First order tetrahedrons.

Target results

No	Value	Description	Unit	Target
1	Effective thermal conductivity coefficient	λ_11	$\frac{W}{m * K}$	2.8
2	Effective thermal conductivity coefficient	λ_22	$\frac{W}{m * K}$	2.28571

3	Effective thermal conductivity coefficient	λ_33	$\frac{W}{m * K}$	2.28571
---	--	------	-------------------	---------

Numerically approximate analytical solution

Numerically approximate analytical solutiontaken from 1.6.2 paragraph of Karpinos's "Composite materials". Effective thermal conductivity coefficients determined by following formula:

$$\lambda_x = \gamma_f \lambda_f + \gamma_m \lambda_m$$
$$\lambda_y = \lambda_z \approx \lambda_m \frac{1 + \gamma_f + \gamma_m \frac{\lambda_m}{\lambda_f}}{\gamma_m + (1 + \gamma_f) \frac{\lambda_m}{\lambda_f}}$$

Fibers here directed along X axis, λ_f , λ_m - thermal conductivity coefficients of thread and matrix, γ_f , γ_m - volume concentration of thread and matrix (in total they are equal to 1).

Boundary conditions - only periodic.

Results

No	Value	Description	Unit	Target	CAE Fidesys result	Error, %
1	Effective thermal conductivity coefficient	λ_11	$\frac{W}{m * K}$	2.8	2.773E+00	0.95
2	Effective thermal conductivity coefficient	λ_22	$\frac{W}{m * K}$	2.28571	2.283E+00	0.12
3	Effective thermal conductivity coefficient	λ_33	$\frac{W}{m * K}$	2.28571	2.292E+00	0.26

CAE Fidesys script:

reset $#\{\text{length} = 25.0\}$ $#{pitch = 16.0}$ $#{$ thick = 16.0 $}$ # thickness $\#\{\text{conc} = 10\} \# \text{cord concentration, percents}$ $#{rad = sqrt(0.01 * pitch * thick * conc / 3.1415926)}$ $#{size = 3.0}$ create brick width {length} depth {pitch} height {thick} create cylinder height {length} radius {rad} volume 2 rotate 90.0 about y subtract volume 2 from volume 1 keep delete volume 1 imprint volume all merge volume all volume all scheme Tetmesh volume all size {size} mesh volume all create material 1 name 'fiber' modify material 1 set property 'MODULUS' value 1 modify material 1 set property 'POISSON' value 0.25

modify material 1 set property 'ISO_CONDUCTIVITY' value 10 create material 2 name 'matrix' modify material 2 set property 'MODULUS' value 1 modify material 2 set property 'POISSON' value 0.25 modify material 2 set property 'ISO_CONDUCTIVITY' value 2 block 1 volume 2 block 2 volume 3 block 1 material 'fiber' block 2 material 'matrix' block 1 2 element solid order 2 analysis type effectiveprops heattrans dim3 periodicbc on

Reference:

[1] Карпинос Д. М. Композиционные материалы. Справочник. – Киев: Наукова думка, 1985. – 592 с.

2.17. Test case No2.17

Problem Description

Determination of effective mechanical properties for a single layer fibrous composite.

Input values

Material Properties:

- Matrix material:
 - Isotropic;
 - Young's modulus = 2 Pa;
 - Poisson ratio = 0.3;
 - Thermal conductivity coefficient =7.7 * $10^{-5} \frac{W}{m^{*K}}$.
- Thread material:
 - o Isotropic;
 - Young's modulus = 2000 Pa;
 - Poisson ratio = 0.2;
 - Thermal conductivity coefficient = $1.3 * 10^{-5} \frac{W}{m^{*K}}$.

Geometrical model:

- Parallelepiped 25 x 16 x 16;
- Thread of length 25 and radius of 2.85459861019 (selected so the thread volume concentration in composite is equal to 10%) runs through center line parallel to the X axis;
- Thread: $\lambda = 10$;
- Matrix: $\lambda = 2$.

Boundary conditions:

• Periodic.

Mesh:

• First order tetrahedrons.

Target results

No	Value	Description	Unit	Target
1	Effective thermal conductivity coefficient	λ_11	$\frac{W}{m * K}$	$1.35709 * 10^{-5}$
2	Effective thermal conductivity coefficient	λ_22	$\frac{W}{m * K}$	$8.58878 * 10^{-5}$
3	Effective thermal conductivity coefficient	λ_33	$\frac{W}{m * K}$	$8.58878 * 10^{-5}$

Numerically approximate analytical solution

Numerically approximate analytical solutiontaken from 1.6.2 paragraph of Karpinos's "Composite materials". Effective thermal conductivity coefficients determined by following formula:

$$\lambda_x = \gamma_f \lambda_f + \gamma_m \lambda_m$$
$$\lambda_y = \lambda_z \approx \lambda_m \frac{1 + \gamma_f + \gamma_m \frac{\lambda_m}{\lambda_f}}{\gamma_m + (1 + \gamma_f) \frac{\lambda_m}{\lambda_f}}$$

Fibers here directed along X axis, λ_f , λ_m - thermal conductivity coefficients of thread and matrix, γ_f , γ_m - volume concentration of thread and matrix (in total they are equal to 1).

Boundary conditions - only periodic.

Results

No	Value	Description	Unit	Target	CAE Fidesys result	Error, %
1	Effective thermal conductivity coefficient	λ_11	$\frac{W}{m * K}$	1.35709 * 10 ⁻⁵	1.358E-05	0.08
2	Effective thermal conductivity coefficient	λ_22	$\frac{W}{m * K}$	8.58878 * 10 ⁻⁵	8.484E-05	1.22
3	Effective thermal conductivity coefficient	λ_33	$\frac{W}{m * K}$	8.58878 * 10 ⁻⁵	8.484E-05	1.22

CAE Fidesys script:

reset set default element hex $#\{\text{length} = 25.0\}$ $#{pitch = 16.0}$ $#{$ thick = 16.0 $}$ # thickness $\#\{\text{conc} = 10\} \# \text{ cord concentration, percents}$ #{rad = sqrt(0.01*pitch*thick*conc/3.1415926)} $#{size = 1.0}$ create brick width {length} depth {pitch} height {thick} create cylinder height {length} radius {rad} volume 2 rotate 90.0 about y subtract volume 2 from volume 1 keep delete volume 1 imprint volume all merge volume all volume all size {size} curve 18 20 22 24 interval 10 mesh volume all create material 1 name 'fiber' modify material 1 set property 'MODULUS' value 2000 modify material 1 set property 'POISSON' value 0.2 modify material 1 set property 'ISO_THERMAL_EXPANSION' value 1.3e-5 create material 2 name 'matrix' modify material 2 set property 'MODULUS' value 2 modify material 2 set property 'POISSON' value 0.3

modify material 2 set property 'ISO_THERMAL_EXPANSION' value 7.7e-5 block 1 volume 2 block 2 volume 3 block 1 material 'fiber' block 2 material 'matrix' block all element solid order 2 analysis type effectiveprops heatexpansion dim3 periodicbc on

Reference:

[1] Карпинос Д. М. Композиционные материалы. Справочник. – Киев: Наукова думка, 1985. – 592с.

2.18. Test case No2.18

Problem Description

Determination of effective mechanical properties for a laminated composite containing layers of two materials.

Input values

Material Properties:

- Rubber:
 - Isotropic;
 - \circ Young's modulus = 2 Pa;
 - \circ Poisson ratio = 0.49;
 - Thermal conductivity coefficient = $1 \frac{W}{m_{*}\kappa}$.
- Steel:
 - o Isotropic;
 - \circ Young's modulus = 2e5 Pa;
 - Poisson ratio = 0.25;
 - Thermal conductivity coefficient = $40 \frac{W}{m^*\kappa}$.

Geometrical model:

- Cube with edge length of 1.3;
- In the middle (perpendicular to the Z axis) of the cube there is a steel layer with thickness of 0.3;.

Boundary conditions:

• Periodic.

Mesh:

• Second order hexahedrons.

Target results

No	Value	Description	Unit	Target
1	Effective thermal conductivity coefficient	λ_11	$\frac{W}{m * K}$	10.0
2	Effective thermal conductivity coefficient	λ_22	$\frac{W}{m * K}$	10.0
3	Effective thermal conductivity coefficient	λ_33	$\frac{W}{m * K}$	1.29032

Numerically approximate analytical solution

A laminated composite consists of several layers of different materials glued together. In formulas [1], it is assumed that the layers lie in the XY plane.

$$\lambda_x = \lambda_y = \langle \lambda \rangle,$$

 $\lambda_z = \frac{1}{\langle 1/\lambda \rangle},$

where the symbols () mean the averaging of the value over the volume, that is, in fact, over the height.

The boundary conditions are strictly periodic.

Results

No	Value	Description	Unit	Target	CAE Fidesys result	Error, %
1	Effective thermal conductivity coefficient	λ_11	$\frac{W}{m * K}$	10.0	10	0.00
2	Effective thermal conductivity coefficient	λ_22	$\frac{W}{m * K}$	10.0	10	0.00
3	Effective thermal conductivity coefficient	λ_33	$\frac{W}{m * K}$	1.29032	1.291E+00	0.09

CAE Fidesys script:

cubit.cmd("reset") rub thick = 1.0steel thick = 0.3 $rub_number = 1$ length = 1.3 # lengthwidth = 1.3 # width height = rub_number*(rub_thick + steel_thick) # height def lambda_Calc_E_nu (E, nu): return E * nu / ((1+nu)*(1-2*nu)) def G_Calc_E_nu(E, nu): return E / (2 + 2*nu)# steel constants steel E = 2.0e5 $steel_nu = 0.25$ steel cond = 40.0steel_lambda = lambda_Calc_E_nu(steel_E, steel_nu) steel_G = G_Calc_E_nu(steel_E, steel_nu) # rubber constants $rub_E = 2.0$ $rub_nu = 0.49$ $rub_cond = 1.0$ rub_lambda = lambda_Calc_E_nu(rub_E,rub_nu) rub_G = G_Calc_E_nu(rub_E, rub_nu) mesh size = 0.1cubit.cmd("brick x " + str(length) + " y " + str(width) + " z " + str(height)) for i in range(0, rub_number): cubit.cmd("webcut body all with plane zplane offset " + str(0.5*rub_thick + i*(rub_thick+steel_thick) - 0.5*height) + " imprint merge") for i in range(0, rub_number): cubit.cmd("webcut body all with plane zplane offset " + str((i+1)*(rub_thick+steel_thick) -0.5*height - 0.5*rub_thick) + " imprint merge") # rubber block
command1 = "block 2 volume" for i in range(1, rub_number+2): command1 = command1 + " " + str(i) cubit.cmd(command1) # steel block command2 = "block 1 volume" for i in range(rub number+2, 2*rub number+2): command2 = command2 + " " + str(i) cubit.cmd(command2) cubit.cmd("imprint volume all") cubit.cmd("merge volume all") # materials cubit.cmd("create material 1 name 'steel'") cubit.cmd("create material 2 name 'rubber'") cubit.cmd("modify material 1 set property 'MODULUS' value " + str(steel_E)) cubit.cmd("modify material 1 set property 'POISSON' value " + str(steel nu)) cubit.cmd("modify material 1 set property 'ISO_CONDUCTIVITY' value " + str(steel_cond)) cubit.cmd("modify material 2 set property 'MODULUS' value " + str(rub_E)) cubit.cmd("modify material 2 set property 'POISSON' value " + str(rub_nu)) cubit.cmd("modify material 2 set property 'ISO_CONDUCTIVITY' value " + str(rub_cond)) # blocks cubit.cmd("block 1 material 'steel"") cubit.cmd("block 2 material 'rubber'") cubit.cmd("block 1 2 element solid order 2") # meshing cubit.cmd("volume all scheme Sweep") cubit.cmd("volume all size " + str(mesh_size)) cubit.cmd("mesh volume all") # solution settings cubit.cmd("analysis type effectiveprops heattrans dim3")

cubit.cmd("analysis type effectiveprops heattrans dim3") cubit.cmd("periodicbc on") cubit.cmd("solver method direct use_uzawa auto try_other on")

Reference:

[1] Победря Б.Е. Механика композиционных материалов. – М: Изд-во МГУ, 1984. – 335 с.

2.19. Test case No2.19

Problem Description

Determination of effective mechanical properties for a single layer fibrous composite.

Input values

Material Properties:

- Matrix material:
 - Isotropic;
 - \circ Young's modulus = 1 Pa;
 - \circ Poisson ratio = 0.25;
 - Thermal conductivity coefficient = $2 \frac{W}{m^*\kappa}$.
- Thread material:
 - Isotropic;
 - \circ Young's modulus = 1 Pa;
 - \circ Poisson ratio = 0.25;
 - Thermal conductivity coefficient = $10 \frac{W}{m_{*K}}$.

Geometrical model:

- 16 x 16 square;
- In the center there is a circle (thread) with a radius of 2.85459861019 (selected so the thread volume concentration in composite is equal to 10%);

Boundary conditions:

• Periodic.

Mesh:

• Second order flat triangular elements.

Target results

No	Value	Description	Unit	Target
1	Effective thermal conductivity coefficient	λ_11	$\frac{W}{m * K}$	2.28571
2	Effective thermal conductivity coefficient	λ_22	$\frac{W}{m * K}$	2.28571
3	Effective thermal conductivity coefficient	λ_33	$\frac{W}{m * K}$	2.8

Numerically approximate analytical solution

Numerically approximate analytical solutiontaken from 1.6.2 paragraph of Karpinos's "Composite materials". Effective thermal conductivity coefficients determined by following formula:

$$\lambda_x = \gamma_f \lambda_f + \gamma_m \lambda_m$$
$$\lambda_y = \lambda_z \approx \lambda_m \frac{1 + \gamma_f + \gamma_m \frac{\lambda_m}{\lambda_f}}{\gamma_m + (1 + \gamma_f) \frac{\lambda_m}{\lambda_f}}$$

Fibers here directed along X axis, λ_f , λ_m - thermal conductivity coefficients of thread and matrix, γ_f , γ_m - volume concentration of thread and matrix (in total they are equal to 1).

Boundary conditions - only periodic.

Results

No	Value	Description	Unit	Target	CAE Fidesys result	Error, %
1	Effective thermal conductivity coefficient	λ_11	$\frac{W}{m * K}$	2.28571	2.28571	0.00%
2	Effective thermal conductivity coefficient	λ_22	$\frac{W}{m * K}$	2.28571	2.28571	0.00%
3	Effective thermal conductivity coefficient	λ_33	$\frac{W}{m * K}$	2.8	2.8	0.00%

CAE FIdesys script:

reset

#{pitch = 16.0}
#{thick = 16.0} # thickness
#{conc = 10} # cord concentration, percents
#{rad = sqrt(0.01*pitch*thick*conc/3.1415926)}
#{size = 1.0}

geometry
create surface rectangle width {pitch} depth {thick} zplane
create surface circle radius {rad} zplane
subtract body 2 from body 1 keep
delete body 1
imprint body all
merge body all

meshing
surface all scheme trimesh
surface all size {size}
mesh surface all

materials create material 1 modify material 1 name 'fiber' modify material 1 set property 'MODULUS' value 1 modify material 1 set property 'POISSON' value 0.25 modify material 1 set property 'ISO_CONDUCTIVITY' value 10 create material 2 modify material 2 name 'matrix' modify material 2 set property 'MODULUS' value 1 modify material 2 set property 'POISSON' value 0.25 modify material 2 set property 'ISO_CONDUCTIVITY' value 2

blocks block 1 add surface 2 block 2 add surface 3 block 1 material 'fiber' block 2 material 'matrix' block 1 2 element plane order 2

solution options

analysis type effectiveprops heattrans dim2 periodicbc on

Reference:

[1] Карпинос Д. М. Композиционные материалы. Справочник. – Киев: Наукова думка, 1985. – 592 с.

2.20. Test caseNo2.20

Problem description

We consider the problem of an elastic strip that moves with an initial velocity and crashes into a rigid wall. During interaction, the strip is in contact with the wall (sliding contact without friction). During the solution, the interaction and separation times, as well as the corresponding displacements and velocities on the contact surface, are determined and compared with the solution given in [1]. The test task checks the correctness of:

- support of contact interaction "sliding without friction";
- support for non-conformally matched grids from spectral elements.

Input values

Fig 2.34 - Geometrical model

Geometrical model

- Strip: rectangle (L=10 in, h=1 in);
- Wall: rectangle (L=5 in, h=1 in);
- Initial gap between strip and wall 0.01 in.

Material Properties:

• $E_{\text{strip}}=3e7 \text{ psi}, v_{\text{strip}}=0.3;$

Boundary conditions:

- The wall is fixed in all directions;
- The strip is fixed in the vertical direction;
- The strip is affected by the initial speed $V_0=202.2$ in/sec².

Mesh:

• 8-node elements.

Fig 2.35 - Mesh

Contact:

- General contact (master entity curve 6, slave entity curve 4);
- Friction 0;
- Accuracy 0.0005;
- Penalty method (normal contact stiffness 1, tangent contact stiffness 0.5).

Calculation settings:

- Dynamic anaysis;
- 2D;
- Plain strain;
- Full solution;
- Implicit;
- Max time 0.003 c;
- Step number 1000.

Target results

No	Value	Description	Unit	Target
1	Contact status in contact region at point (5,0,0) at t=0.00005 sec.	contact_status	-	2
2	Displacement vector component u_x at point (0,0,0) at t=0.00005 sec.	Displacement_XX	in	0.01
3	Velocity vector component v_x at point (0,0,0) at t=0.00005 sec.	Velocity_XX	In/c	202.2
	Contact status in contact region at point (5,0,0) at t=0.00015 sec.	contact_status	-	0

No	Value	Description	Unit	Target
	Displacement vector component u_x at point (0,0,0) at t=0.00015 sec.	Displacement_XX	in	0.01
	Velocity vector component v_x at point (0,0,0) at t=0.00015 sec.	Velocity_XX	In/c	-202.2

Table 2.3.1 Setting time dependency for force

Time	Force value, N
0	0
1	10 ⁵
2	0
5	0

Numerically approximate analytical solution

Numerically approximate analytical solution given in [1].

Results

No	Value	Description	Unit	Target	CAE Fidesys result	Error, %
1	Contact status in contact region at point (5,0,0) at t=0.00005 sec.	contact_status	-	2	2	0.00
2	Displacement vector component u_x at point (0,0,0) at t=0.00005 sec.	Displacement_XX	in	0.01	1.011E-02	1.10
3	Velocityvectorcomponent v_x at point(0,0,0) at t=0.00005 sec.	Velocity_XX	In/c	202.2	2.022E+02	0.00
4	Contact status in contact region at point (5,0,0) at t=0.00015 sec.	contact_status	-	0	0	0.00

CAE Fidesys script:

reset

create surface rectangle width 10 height 1 zplane create surface rectangle width 1 height 5 zplane move Surface 2 x 5.51 include_merged surface all size auto factor 5 undo group begin surface all size auto factor 5 mesh surface all undo group end create material 1 modify material 1 name 'mat1' modify material 1 set property 'MODULUS' value 3e+07 modify material 1 set property 'POISSON' value 0.3 modify material 1 set property 'DENSITY' value 0.73 set duplicate block elements off block 1 add surface all block 1 material 1 cs 1 element plane order 2 create displacement on surface 1 dof 2 dof 3 fix create displacement on surface 2 dof all fix create initial velocity on surface 1 modify initial velocity 1 dof 1 value 202.2 create contact master curve 6 slave curve 4 tolerance 0.0005 type general friction 0.0 preload 0.0 offset 0.0 ignore_overlap off method penalty normal_stiffness 1.0 tangent_stiffness 0.5 analysis type dynamic elasticity dim2 planestrain preload off dynamic method full_solution scheme implicit maxtime 0.0003 steps 1000 newmark_gamma 0.005 calculation start path 'C:/fidesys01.pvd'

Reference:

[1] N.J. Carpenter, R.L. Taylor and M.G. Katona, "Lafrange Constraints For Transient Finite Element Surface Contact", International Journal for Numerical Methods in Engineering, vol.32, 1991. pg 103-128.

2.21. Test case No2.23

Problem Description

We consider the plane static problem of material step by step changing. The goal of the assignment is to check the correctness of the material change in the solution steps. Sub-steps material properties are checked with the results in Fidesys Viewer. The test case checks the correctness:

- linear elastic mathematical model of the material;
- change of boundary conditions between loading steps;
- change of material properties between loading steps.

Input values

Geometrical model:

There is an inclusion in the plate. During the calculation, the material properties of the inclusion change.

- Plate length a = 10 m;
- Plate width b = 5 m;
- Circle with radius R = 1 m.

Boundary conditions:

- The AB side is fixed on all axes and rotates;
- Sides AD and BC are fixed along the Y-axis;
- The pressure applied to the side CD with step by step load:
 - Step 1: 1000 Pa;
 - Step 2: 1000 Pa;
 - о Step 3: 0 Па.

Material Properties:

- Material for the plate:
 - Elastic modulus E = 2e + 11 Pa;

- Poisson's ratio v = 0.3.
- Materials for the inclusion:
 - Material 2: E = 0.7e + 11 Pa, v = 0.34;
 - Material 3: E = 1e + 11 Pa, v = 0.35.

The material for the inclusion is entered in tabular form:

- Step 1: Material 2;
- Step 2: Material 2;
- Step 3: Material 3.

Mesh:

- Conformal mesh;
- Quadrangular finite elements.

Fig 2.37 - Finite element mesh model

Calculation settings:

- static analisys;
- 2D plane strain state;
- elasticity;
- number of loading steps: 3.

Output Values

No	Loading steps	Value	Description	Unit	Target
1	Step 1	Young's modulus at a point (0, 0, 0)	Elasticity Modulus Young's modulus	Ра	7e10
2	Step 2	Young's modulus at a point (0, 0, 0)	Elasticity Modulus Young's modulus	Ра	7e10
3	Step 3	Young's modulus at a point (0, 0, 0)	Elasticity Modulus Young's modulus	Ра	1e11

Results

No	Loading steps	Value	Description	Unit	Target	CAE Fidesys result	Error, %
1	Step 1	Young's modulus at a point (0, 0, 0)	Elasticity Modulus Young's modulus	Ра	7e10	7e10	0.00
2	Step 2	Young's modulus at a point (0, 0, 0)	Elasticity Modulus Young's modulus	Ра	7e10	7e10	0.00
3	Step 3	Young's modulus at a point (0, 0, 0)	Elasticity Modulus Young's modulus	Ра	1e11	1e11	0.00

CAE Fidesys script:

reset

reset set default element hex create surface rectangle width 10 height 5 zplane create surface circle radius 1 zplane subtract surface 2 from surface 1 keep delete surface 1 merge curve all compress all surface all size auto factor 4 mesh surface all set duplicate block elements off create material 1 from 'Steel' create material 2 modify material 2 name ' 2' modify material 2 set property 'POISSON' value 0.34 modify material 2 set property 'MODULUS' value 0.7e11 create material 3 modify material 3 name '3' modify material 3 set property 'MODULUS' value 1e+11 modify material 3 set property 'POISSON' value 0.35 block 1 add surface 2 block 2 add surface 1 block 1 material 1 block 2 material 2 block all element plane order 2 create displacement on curve 3 dof all fix create displacement on curve 2 4 dof 2 fix create pressure on curve 5 magnitude 1 create table 1 modify table 1 dependency time modify table 1 insert row 1 modify table 1 insert row 1 modify table 1 insert row 1 modify table 1 cell 1 1 value 1

modify table 1 cell 1 2 value -1000 modify table 1 cell 2 1 value 2 modify table 1 cell 2 2 value -1000 modify table 1 cell 3 1 value 3 bcdep pressure 1 table 1 block 2 step 1 2 material 2 block 2 step 3 material 3 block 1 step all output nodalforce off midresults on record3d on log on vtu on material on analysis type static elasticity dim2 planestrain static steps 3 nonlinearopts maxiters 100 minloadsteps 10 maxloadsteps 1000 tolerance 0.01 targetiter 5

2.22. Test case No2.24

Problem Description

We consider the plane problem of the formation in a preloaded, infinitely extended body (the mechanical properties of the material of which are described by the Murnaghan potential) of a circular one at the moment of the onset of the inclusion. The mechanical properties of the inclusion material are described by the Murnaghan potential. A variant of the model of the formation of an elastic inclusion is considered, which (at the moment of formation) completely repeats the shape of the removed part of the body in the case when forces act on the surface of the inclusion opposite to the forces acting on the newly formed boundary of the body (through the replacement of the material in steps). The test case checks the correctness:

- physically nonlinear mathematical model of the material;
- change of material properties between loading steps.

Input values

Geometrical model:

There is an inclusion in the plate. During the calculation, the material properties of the inclusion change.

- Plate length 100 m;
- Plate width 100 m;
- The inclusion: circle with radius R = 1 m.

Fig 2.38 - Geometric model of the problem

Boundary conditions:

- In view of symmetry, ¹/₄ part of the model is consider;
- The AB side is fixed along the X-axis;
- The AD side is fixed along the Y-axis;
- The pressure applied to the side CD with value 0.00315 Pa.

Material Properties:

- Matrix material:
 - \circ $\lambda_{matrix}=0.39;$
 - $G_{matrix} = 0.186;$
 - \circ C_{3mat} = -0.013;
 - \circ C_{4mat} = -0.07;
 - \circ C_{5mat} = 0.063.
- Material for the inclusion:

- \circ $\lambda_{inclusion}=1.07;$
- $\circ \quad G_{inclusion} = 0.477;$
- \circ C_{3inc} = -0.093;
- \circ C_{4inc} = 1.72;
- \circ C_{5inc} = -5.31.

The material for the model is entered in tabular form:

- Step 1: Matrix material;
- Step 2: Material for the inclusion.

Mesh:

- Conformal mesh.
- Quadrangular finite elements second order.

Fig 2.39 - Finite element mesh model

Calculation settings:

- static analisys;
- 2D plane strain state;
- elasticity;
- number of loading steps: 2.

Output Values

No	Value	Description	Unit	Target
1	Stress σ_{xx} at a point (0,0,0)	Stress XX	Ра	0.00275

Numerically approximate analytical solution

The solution algorithm is presented in [1]. Below is the result of the solution for the stresses for the inclusion and the matrix. For the criterion of this test case, the linear case is considered.

Fig 2.40 - Distribution for inclusion and matrix: 0 - linear solution, 1 - nonlinear solution

Results

No	Value	Description	Unit	Target	CAE Fidesys result	Error, %
1	Stress σ_{xx} at a point (0,0,0)	Stress XX	Pa	0.00275	2.674E-03	2.77

CAE Fidesys script:

reset

create surface rectangle width 100 zplane create surface ellipse major radius 0.5 minor radius {0.5-0.005601016} zplane subtract surface 2 from surface 1 keep_tool webcut body all with plane xplane offset 0 webcut body all with plane yplane offset 0 delete Body 4 3 7 8 delete Body 1 delete Body 2 merge all curve 30 32 26 size 0.1 curve 30 32 26 scheme equal curve 30 32 26 size 0.1 curve 30 32 26 scheme equal mesh curve 30 32 26 surface 11 size auto factor 5 mesh surface 11 curve 24 7 scheme bias fine size 0.1 factor 1.09 start vertex 22 8 curve 24 7 scheme bias fine size 0.1 factor 1.09 start vertex 22 8 mesh curve 247 surface 9 size auto factor 5 mesh surface 9 create material 1 modify material 1 name 'Матрица' create material 2 modify material 2 name 'Включение' modify material 1 set property 'MUR_SHEAR' value 0.186 modify material 1 set property 'MUR LAME' value 0.39 modify material 1 set property 'MUR_C3' value -0.013

modify material 1 set property 'MUR_C4' value -0.07

modify material 1 set property 'MUR_C5' value 0.063 modify material 2 set property 'MUR LAME' value 1.07 modify material 2 set property 'MUR_SHEAR' value 0.477 modify material 2 set property 'MUR_C3' value -0.93 modify material 2 set property 'MUR C4' value 1.72 modify material 2 set property 'MUR_C5' value -5.31 modify material 2 set property 'INIT_STRESS_XZ' value 0 modify material 2 set property 'INIT_STRESS_YZ' value 0 modify material 2 set property 'INIT_STRESS_XY' value 0 modify material 2 set property 'INIT STRESS ZZ' value 0 modify material 2 set property 'INIT_STRESS_YY' value 0 modify material 2 set property 'INIT_STRESS_XX' value 0 set duplicate block elements off block 1 add surface 9 block 1 name 'Матрица' set duplicate block elements off block 2 add surface 11 block 2 name 'Включение' block 1 material 1 cs 1 element plane order 2 block 2 material 1 cs 1 element plane order 2 create displacement on curve 11 dof 2 fix {0.05*0.063} delete displacement 1 create displacement on curve 30 24 dof 2 fix create displacement on curve 32 7 dof 1 fix create pressure on curve 25 magnitude {-0.05*0.063} static steps 2 block 2 step 2 material 2 analysis type static elasticity dim2 planestrain static steps 2 nonlinearopts maxiters 100 minloadsteps 10 maxloadsteps 1000 tolerance 0.01 targetiter 5

Reference:

[1] В. А. Левин, И. А. Мишин, А. В. Вершинин, Плоская задача об образовании включения в упругом нагруженном теле. Конечные деформации, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2006, номер 1, 56–59

2.23. Test case No2.23

Problem Description

We consider a tunnel heated from the inside (the temperature on the inner surface acts as a load).

Input values

Material Properties:

- Elastic modulus E = 18500 Pa;
- Poisson's ratio v = 0.3333;
- Density $\rho = 1e-8$;
- Cohesion = 11;
- Internal friction angle = 35;
- Dilatancy angle = 35;
- Specific heat coefficient = 1.23;
- Conductivity = 1;
- Coefficient of thermal expansion = 1.72e-5.

Boundary conditions:

- The inner surface of the tunnel is affected by a temperature of 250°C, the temperature on the outer surface of the tunnel 0°C;
- Fixing from symmetry conditions.

Mesh:

• First order hexahedrons.

Fig 2.39 - Finite element mesh model

Output Values

Presented with the calculation results.

Numerically approximate analytical solution

For this problem, a numerical solution was considered obtained in the ANSYS.

Results

No	Value	Point	Description	Unit	Target	CAE Fidesys result	Error, %
1	Displacement component u _x	(0.5, 0,0)	Displacement X	М	0.1558e- 2	1.558E-03.	0.01
2	Displacement component u _x	(0.6, 0,0)	Displacement X	М	0.2119e- 2	2.119E-03	0.01
3	Displacement component u _x	(0.7, 0,0)	Displacement X	М	0.2458e- 2	2.458E-03	0.01
4	Displacement component u _x	(0.8, 0,0)	Displacement X	М	0.2668e- 2	2.668E-03	0.01
5	Displacement component ux	(0.94, 0,0)	Displacement X	М	0.278e-2	2.780E-03	0.01
6	Displacement component u _x	(0.1, 0,0)	Displacement X	М	0.2765e- 2	2.765E-03	0.01
7	Plastic strain	(1, 0,0)	Plastic_Strain_ XX	-	-0.225e-3	-2.295e-04	1.84
8	Plastic strain	(0.9, 0,0)	Plastic_Strain_ XX	-	0.769e-4	7.678E-05	0.15
9	Plastic strain	(0.78, 0,0)	Plastic_Strain_ XX	-	0.267e-3	2.668E-04	0.09
10	Plastic strain	(0.7, 0,0)	Plastic_Strain_ XX	-	0.113e-3	1.133E-04	0.27
11	Plastic strain	(0.67, 0,0)	Plastic_Strain_ XX	-	0	-3.630E-07	0.00
12	Plastic strain	(1, 0,0)	Plastic_Strain_ YY	-	0.198e-2	1.980E-03	0.02
13	Plastic strain	(0.9, 0,0)	Plastic_Strain_ YY	_	0.15e-2	1.496E-03	0.25
14	Plastic strain	(0.8, 0,0)	Plastic_Strain_ YY	-	0.878e-3	8.786E-04	0.07

First order hexahedral mesh

No	Value	Point	Description	Unit	Target	CAE Fidesys result	Error, %
15	Plastic strain	(0.7, 0,0)	Plastic_Strain_ YY	-	0.175e-3	1.761E-04	0.60
16	Plastic strain	(0.67, 0,0)	Plastic_Strain_ YY	-	0	-5.081E-07	0.00
17	Plastic strain	(1, 0,0)	Plastic_Strain_ ZZ	-	0.1736e- 3	1.784E-04	2.78
18	Plastic strain	(0.9, 0,0)	Plastic_Strain_ ZZ	-	- 0.1243e- 3	-1.242E-04	0.05
19	Plastic strain	(0.8, 0,0)	Plastic_Strain_ ZZ	-	-0.23e-3	-2.300E-04	0.01
20	Plastic strain	(0.7, 0,0)	Plastic_Strain_ ZZ	-	-0.747e- 4	-7.519E-05	0.66
21	Plastic strain	(0.67, 0,0)	Plastic_Strain_ ZZ	-	0	2.339E-07	0.00
22	Elastic strain component ε_{xx}	(1, 0,0)	Elastic_Strain_ X	-	-0.303e- 3	-3.047E-04	0.54
23	Elastic strain component ε_{xx}	(0.9, 0,0)	Elastic_Strain_ X	-	-0.26e-3	-2.599E-04	0.05
24	Elastic strain component ε_{xx}	(0.8, 0,0)	Elastic_Strain_ X	-	-0.898e- 4	-8.983E-05	0.04
25	Elastic strain component ε_{xx}	(0.7, 0,0)	Elastic_Strain_ X	-	0.308e-3	3.081E-04	0.02
26	Elastic strain component ε_{xx}	(0.67, 0,0)	Elastic_Strain_ X	-	0.119e-2	1.190E-03	0.03
27	Elastic strain component ε_{xx}	(0.5, 0,0)	Elastic_Strain_ X	-	0.274e-2	2.734E-03	0.24
28	Elastic strain component ε_{yy}	(1, 0,0)	Elastic_Strain_ Y	-	0.787e-3	7.859E-04	0.01
29	Elastic strain component ε_{yy}	(0.9, 0,0)	Elastic_Strain_ Y	-	0.928e-3	9.282E-04	0.02
30	Elastic strain component ε_{yy}	(0.8, 0,0)	Elastic_Strain_ Y	-	0.107e-2	1.073E-03	0.28

No	Value	Point	Description	Unit	Target	CAE Fidesys result	Error, %
31	Elastic strain component ε_{yy}	(0.7, 0,0)	Elastic_Strain_ Y	-	0.112e-2	1.123E-03	0.31
32	Elastic strain component ε_{yy}	(0.67, 0,0)	Elastic_Strain_ Y	-	0.363e-3	3.629E-04	0.03
33	Elastic strain component ε _{yy}	(0.5, 0,0)	Elastic_Strain_ Y	-	- 0.1184e- 2	-1.185E-03	0.05
34	Elastic strain component ε_{zz}	(1, 0,0)	Elastic_Strain_ Z	-	-0.181e- 3	-1.784E-04	1.42
35	Elastic strain component ϵ_{zz}	(0.9, 0,0)	Elastic_Strain_ Z	-	-0.529e- 3	-5.294E-04	0.07
36	Elastic strain component ϵ_{zz}	(0.8, 0,0)	Elastic_Strain_ Z	-	-0.115e- 2	-1.154E-03	0.38
37	Elastic strain component ϵ_{zz}	(0.7, 0,0)	Elastic_Strain_ Z	-	-0.214e- 2	-2.137E-03	0.12
38	Elastic strain component ε_{zz}	(0.67, 0,0)	Elastic_Strain_ Z	-	-0.317e- 2	-3.169E-03	0.03
39	Elastic strain component ε_{zz}	(0.5, 0,0)	Elastic_Strain_ Z	-	-0.43e-2	-4.300E-03	0.00

CAE Fidesys script:

reset set default element hex create cylinder height 0.1 radius 0.5 create cylinder height 0.1 radius 1 subtract body 1 from body 2 webcut body 2 with plane xplane offset 0 webcut body 2 with plane yplane offset 0 delete body 2 delete body 3 create material 1 modify material 1 set property 'POISSON' value 0.3333 modify material 1 set property 'MODULUS' value 1.85e+04 modify material 1 set property 'DENSITY' value 1e-8 modify material 1 set property 'COHESION' value 11 modify material 1 set property 'DILATANCY_ANGLE' value 35 modify material 1 set property 'INT_FRICTION_ANGLE' value 35 modify material 1 set property 'SPECIFIC_HEAT' value 1.23 modify material 1 set property 'ISO_THERMAL_EXPANSION' value 1.72e-05 modify material 1 set property 'ISO_CONDUCTIVITY' value 1 set duplicate block elements off block 1 volume 4 block 1 material 1

block 1 element solid order 2 surface 31 size 0.025 mesh surface 31 curve 11 13 40 42 interval 1 mesh curve 11 13 40 42 mesh volume 4 create temperature on surface 30 value 250 create temperature on surface 28 value 0 create displacement on surface 11 dof 1 fix 0 create displacement on surface 27 dof 2 fix 0 create displacement on surface 29 31 dof 3 fix 0 analysis type static elasticity plasticity heattrans dim3 nonlinearopts maxiters 100 minloadsteps 10 maxloadsteps 1000 tolerance 0.01 targetiter 5

2.24. Test case No2.24

Problem Description

We consider the problem of slope stability taking into account the formation of plastic zones according to the Drucker-Prager criterion. The test case checks the correctness:

- taking into account the plastic properties of the material when calculating the stress-strain state of the medium;
- Drucker-Prager plasticity criterion with symmetric hardening;
- nonlinear model for calculating mechanical strength.

Input values

Fig 2.41 - Geometric model of the problem

Geometrical model:

• Typical dimensions are shown in Figure 2.41.

Material Properties:

- Elastic modulus E = 1e+8 Pa;
- Poisson's ratio v = 0.3;
- Density $\rho = 1918.37$;
- Cohesion = 12889;
- Internal friction angle = 9.189;
- Dilatancy angle = 0.

Boundary conditions:

- The body is affected by gravity;
- Fixing from symmetry conditions.

Mesh:

- Second order hexahedra.
- Hexahedrons of the second order.

Fig 2.42 - Finite element mesh model

Output Values

No	Value	Description	Unit	Target
1	Displacement component u _z at a point (12.595, -20, 17.584)	Displacement Z	m	-0.0366
2	Displacement component u_x at a point(27.389, -20, 7.190)	Displacement X	m	0.01199
3	Plastic strain at a point (18.411, -20, 6.7264)	Plasticity_strain YY	-	0.59e-3
4	Plastic strain at a point (18.411, -20, 6.7264)	Plasticity_strain XX	-	0.000888

Numerically approximate analytical solution

A numerically approximate solution is presented in [1] (figures 2.41-2.42).

Results

No	Value	Description	Unit	Target	CAE Fidesys result	Error, %
1	Displacement component u_z at a point (12.595, -20, 17.584)	Displacement Z	m	-0.0366	-3.656E-02	0.11
2	Displacement component u _x at a point(27.389, -20, 7.190)	Displacement X	m	0.01199	1.194E-02	0.43
3	Plastic strain at a point (18.411, -20, 6.7264)	Plasticity_strain YY	-	0.59e-3	5.906E-04	0.10
4	Plastic strain at a point (18.411, -20, 6.7264)	Plasticity_strain XX	-	0.000888	8.871E-04	0.10

CAE Fidesys script:

reset set node constraint on set default element hex create vertex 0 0 0 create vertex 50 0 0 create vertex 50 0 6.1 create vertex 42.7 0 6.1 create vertex 18.3 0 18.3 create vertex 0 0 18.3 create surface vertex 1 2 3 4 5 6 sweep surface 1 perpendicular distance 20 create material 1 modify material 1 name "dry" modify material 1 set property 'POISSON' value 0.3 modify material 1 set property 'MODULUS' value 1e+8 modify material 1 set property 'DENSITY' value 1918.367 modify material 1 set property 'DILATANCY_ANGLE' value 0 modify material 1 set property 'INT_FRICTION_ANGLE' value 9.189 modify material 1 set property 'COHESION' value 12889 set duplicate block elements off block 1 volume 1 block 1 material "dry" block 1 element solid order 2 curve all size 1.5 mesh curve all mesh volume 1 create displacement on surface 7 8 dof 1 dof 2 dof 3 fix 0 create displacement on surface 1 dof 2 fix 0 create displacement on surface 2 6 dof 1 fix 0 create gravity on volume 1 modify gravity 1 dof 3 value -9.8 analysis type static elasticity plasticity dim3 nonlinearopts maxiters 100 minloadsteps 10 maxloadsteps 30 tolerance 5e-2 calculation start path

Reference:

[1] Hom Nath Gharti1, Dimitri Komatitsch, Volker Oye1, Roland Martin and Jeroen Tromp Application of an elastoplastic spectral-element method to 3D slope stability analysis, INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING. Int. J. Numer. Meth. Engng 2011.

2.25. Test case No2.27

Problem Description

We consider the Hertz problem for the two-dimensional case [1] for three different values of the applied force (25 N, 50 N, 100 N). Half of the cylinder is located with a convex part on a rigid base, a load is applied to the sheared part of the cylinder. The test case checks the correctness:

- setting parameters of general contact without friction in the interface;
- static solution with general contact without friction;
- the correctness of the output of the fields Contact status, Stress in contact.

Input values

Fig 2.43 - Geometric model of the problem

Material Properties:

• $E_{cylinder}=500$ MPa, $v_{cylinder}=0.3$.

Boundary conditions:

- The base is fixed in all directions;
- The cylinder is fixed in the horizontal direction according to the symmetry condition;
- Three load cases: force F=25, 50, 100 N.

Contact:

- Nonconformal mesh;
- Friction µ=0;
- Type: general without friction.

Mesh:

• 8-node finite elements.

Fig 2.44 - Finite element mesh model

Calculation settings:

- Static analisys;
- 3D;

2

• Elasticity.

Output Values

No	Value	Description	Unit	Target
1	Contact status in the contact region at a point $(0,0,0)$	contact_status	-	2
2	Component of the stress tensor in the contact zone at a point $(0,0,0)$ for F=25 N	contact_stress	MPa	24
3	Component of the stress tensor in the contact zone at a point (0,0,0) for F=50 N	contact_stress	MPa	35
4	Component of the stress tensor in the contact zone at a point (0,0,0) for F=100 N	contact_stress	MPa	47.5

Numerically approximate analytical solution

Fig 2.45 - Results of the numerical solution of the problem

Results

No	Value	Description	Unit	Target	CAE Fidesys result	Error, %
1	Contact status in the contact region at a point $(0,0,0)$	contact_status	-	2	2	0.00
2	Components of the stress tensor in the contact zone at a point (0,0,0) for F=25 N	contact_stress	MPa	25	2.590E+01	3.60
3	Component of the stress tensor in the contact zone at a point (0,0,0) for F=50 N	contact_stress	MPa	35	3.644E+01	4.10
4	Component of the stress tensor in the contact zone at a point (0,0,0) for F=100 N	contact_stress	MPa	47	4.863E+01	3.47

CAE Fidesys script:

F=25 reset set default element hex create surface circle radius 8 zplane webcut body 1 with plane xplane webcut body 1 with plane yplane delete Body 3 delete Body 2 move Surface 4 y 8 include_merged create surface rectangle width 20 height 5 zplane move Surface 6 y -2.499 include merged partition create curve 8 position 3.716651 0.915756 0 partition create curve 8 position 1.061858 0.070785 0 curve 8 scheme bias fine size 0.1 factor 1.1 start vertex 3 curve 17 interval 8 curve 17 scheme equal curve 16 interval 9 curve 16 scheme equal curve 6 interval 8 curve 6 scheme equal curve 7 interval 9 curve 7 scheme bias factor 1.1 start vertex 3 surface 4 size auto factor 7 mesh surface 4 surface 6 size auto factor 7 mesh surface 6 create material 1 modify material 1 name 'mat_foun' modify material 1 set property 'MODULUS' value 5e6 modify material 1 set property 'POISSON' value 0.3 create material 2 modify material 2 name 'mat_cyl' modify material 2 set property 'MODULUS' value 500 modify material 2 set property 'POISSON' value 0.3 block 1 add surface 6 block 2 add surface 4 block all element plane order 2 block 1 material 'mat_foun' block 2 material 'mat_cyl' create displacement on surface 6 dof all fix create displacement on curve 7 dof 1 fix #25/2/17=0.705882353 create force on curve 6 force value 0.705882353 direction ny create contact master curve 12 slave curve 8 tolerance 0.0005 type general friction 0.0 preload 0.0 offset 0.0 ignore_overlap off method mpc analysis type static findefs elasticity dim2 planestrain nonlinearopts maxiters 50 minloadsteps 1 maxloadsteps 100 tolerance 1e-3 targetiter 5 output nodalforce on energy off midresults on record3d on log on vtu on material off

F=50

reset set default element hex create surface circle radius 8 zplane webcut body 1 with plane xplane webcut body 1 with plane yplane delete Body 3 delete Body 2 move Surface 4 y 8 include_merged create surface rectangle width 20 height 5 zplane move Surface 6 y -2.499 include_merged partition create curve 8 position 3.716651 0.915756 0 partition create curve 8 position 1.061858 0.070785 0 curve 8 scheme bias fine size 0.1 factor 1.1 start vertex 3 curve 17 interval 8 curve 17 scheme equal curve 16 interval 9

curve 16 scheme equal curve 6 interval 8 curve 6 scheme equal curve 7 interval 9 curve 7 scheme bias factor 1.1 start vertex 3 surface 4 size auto factor 7 mesh surface 4 surface 6 size auto factor 7 mesh surface 6 create material 1 modify material 1 name 'mat_foun' modify material 1 set property 'MODULUS' value 5e6 modify material 1 set property 'POISSON' value 0.3 create material 2 modify material 2 name 'mat_cyl' modify material 2 set property 'MODULUS' value 500 modify material 2 set property 'POISSON' value 0.3 block 1 add surface 6 block 2 add surface 4 block all element plane order 2 block 1 material 'mat foun' block 2 material 'mat cyl' create displacement on surface 6 dof all fix create displacement on curve 7 dof 1 fix #50/2/17=1.470589 create force on curve 6 force value 1.470589 direction ny create contact master curve 12 slave curve 8 tolerance 0.0005 type general friction 0.0 preload 0.0 offset 0.0 ignore_overlap off method mpc analysis type static findefs elasticity dim2 planestrain nonlinearopts maxiters 50 minloadsteps 1 maxloadsteps 100 tolerance 1e-3 targetiter 5 output nodalforce on energy off midresults on record3d on log on vtu on material off

F=100

reset set default element hex create surface circle radius 8 zplane webcut body 1 with plane xplane webcut body 1 with plane yplane delete Body 3 delete Body 2 move Surface 4 y 8 include_merged create surface rectangle width 20 height 5 zplane move Surface 6 y -2.499 include_merged partition create curve 8 position 3.716651 0.915756 0 partition create curve 8 position 1.061858 0.070785 0 curve 8 scheme bias fine size 0.1 factor 1.1 start vertex 3 curve 17 interval 8 curve 17 scheme equal curve 16 interval 9 curve 16 scheme equal curve 6 interval 8 curve 6 scheme equal curve 7 interval 9 curve 7 scheme bias factor 1.1 start vertex 3

surface 4 size auto factor 7 mesh surface 4 surface 6 size auto factor 7 mesh surface 6 create material 1 modify material 1 name 'mat_foun' modify material 1 set property 'MODULUS' value 5e6 modify material 1 set property 'POISSON' value 0.3 create material 2 modify material 2 name 'mat_cyl' modify material 2 set property 'MODULUS' value 500 modify material 2 set property 'POISSON' value 0.3 block 1 add surface 6 block 2 add surface 4 block all element plane order 2 block 1 material 'mat_foun' block 2 material 'mat_cyl' create displacement on surface 6 dof all fix create displacement on curve 7 dof 1 fix #100/2/17=2.9411765 create force on curve 6 force value 2.9411765 direction ny create contact master curve 12 slave curve 8 tolerance 0.0005 type general friction 0.0 preload 0.0 offset 0.0 ignore_overlap off method mpc analysis type static findefs elasticity dim2 planestrain nonlinearopts maxiters 50 minloadsteps 1 maxloadsteps 100 tolerance 1e-3 targetiter 5 output nodalforce on energy off midresults on record3d on log on vtu on material off

Reference:

[1] NAFEMS R0081 - Benchmark Tests for Finite Element Modelling of Contact, Gapping and Sliding (задача CGS3).

2.26. Test case No2.26

Problem Description

We consider the problem of finding the eigenfrequencies of a beam, which is divided into three parts, between which the condition of general contact is valid. The test case is intended to check the correctness of the result of the calculation of the modal analysis, taking into account the general contact.

Input values

Geometrical model:

- Length DD' = 10 m;
- Width AB = 2 m;
- Height AD = 2 m.

Fig 2.45 - Geometric model of a beam

Boundary conditions:

- Face BC is fixed to $u_x = u_z = 0$;
- Face B'C' is fixed to $u_z = 0$;
- Surface nodes DCD'C' are fixed to $u_y = 0$.

Material Properties:

- Elastic modulus E = 2e11 Pa;
- Poisson's ratio $\nu = 0.3$;
- Density $\rho = 8000 \text{ kg/m}^3$.

Mesh:

• Hexahedrons of the second order.

Fig 2.47 - Finite element mesh model

Contact:

- General;
- Method: mpc.

Calculation settings:

- Modal analysis;
- Search for the first lowest frequency.

Output Values

No	Value	Description	Target
1	Eigen Values	Eigen Values 1, Hz	38.254

Numerically approximate analytical solution

The solution from NAFEMS [1] acts as a reference. *Results*

No	Value	Description	Unit	Target	CAE Fidesys result	Error, %
1	Eigen Values	Eigen Values 1	Hz	38.254	3.677E+01	3.87

CAE Fidesys script:

reset set default element hex brick x 10 y 2 z 2 webcut volume 1 with plane xplane offset -2.5 webcut volume 1 with plane xplane offset 2.5

curve 28 41 36 26 43 35 25 44 33 28 27 42 34 size 1 curve 28 41 36 26 43 35 25 44 33 28 27 42 34 scheme equal curve 3 15 37 7 13 39 1 5 23 21 29 31 size 2 curve 3 15 37 7 13 39 1 5 23 21 29 31 scheme equal curve 11 16 40 12 9 14 38 10 22 24 32 30 size 0.67 curve 11 16 40 12 9 14 38 10 22 24 32 30 scheme equal volume all scheme Auto mesh volume all create material 1 modify material 1 set property 'DENSITY' value 8000 modify material 1 set property 'POISSON' value 0.3 modify material 1 set property 'MODULUS' value 2e11 set duplicate block elements off block 1 volume all block 1 material 1 create displacement on curve 7 dof 1 dof 3 fix 0 create displacement on curve 5 dof 3 fix 0 create displacement on node 56 59 60 53 55 63 64 57 58 62 61 54 33 80 79 38 74 92 91 84 83 89 90 75 76 88 87 82 81 85 86 77 2 7 8 6 14 30 29 25 26 31 32 13 12 28 27 24 dof 2 fix 0 block 1 element solid order 2 create contact master surface 17 slave surface 22 tolerance 0.0005 type general method auto create contact master surface 7 slave surface 12 tolerance 0.0005 type general method auto analysis type eigenfrequencies dim3 eigenvalue find 10 smallest

Reference:

[1] NAFEMS Selected Benchmarks for Natural Frequency Analysis, Test 51.

2.27. Test case No2.29

Problem Description

We consider the problem of the stability of a compressed bar with the addition of a rigid contact condition. The test case checks the correctness of the calculation for the analysis of the buckling of the model, taking into account the contact interaction "general contact".

Input values

Geometrical model:

- Height h = 1 m;
- Radius R = 0.156 m;
- Thickness t = 0.006 m.

Fig 2.48 - Geometric model of the problem

Boundary conditions:

- Bottom circle is fixed in all directions;
- Pressure applied to the top circle $p = 1 \text{ M}\Pi a$;
- Contact pair selection of main and secondary entity, Tied, Autoselect method.

Material Properties:

- Elastic modulus E = 200 GPa;
- Poisson's ratio v = 0.3.

Mesh:

• Hexahedral mesh.

Fig 2.49 - Finite element mesh model

Z

Calculation settings:

- Buckling analisys;
- 3D;
- Number of buckling forms: 1.

Output Values

No	Value	Description	Unit	Target
1	First coefficient of critical load	load multipliers(1)	-	44527

Numerically approximate analytical solution

The ANSYS solution acts as a reference.

Results

No	Value	Description	Unit	Target	CAE Fidesys result	Error, %
1	First coefficient of critical load	Critical Values 1	-	44527	4.458E+04	0.12

CAE Fidesys script:

reset set default element hex brick x 2.54 y 0.0508 z 0.0508 webcut volume 1 with plane yplane webcut volume all with plane zplane surface 19 26 33 31 scheme map mesh surface 19 26 33 31 curve 2 4 6 8 interval 50 curve 2 4 6 8 scheme equal mesh curve 2 4 6 8 volume all size auto factor 4 mesh volume all create material 1 modify material 1 set property 'POISSON' value 0.3 modify material 1 set property 'MODULUS' value 2.1e11 set duplicate block elements off block 1 volume all block 1 material 1 block 1 element solid order 2 create displacement on surface 23 35 29 21 dof all fix 0 create pressure on surface 19 26 33 31 magnitude 388 create contact autoselect tolerance 0.0005 type general method auto analysis type stability elasticity dim3 eigenvalue find 1 smallest
2.28. Test case No 2.28

Problem Description

The problem of moving a load over a surface is considered, taking into account friction.

When interacting, the load contacts the surface (sliding contact with friction). The control task checks the correctness of the calculation:

- contact interaction "sliding with friction";
- interactions of nonconformally connected grids of spectral elements.

Input Value

Figure 2.49 - Geometrical model

Geometrical model

- Base: rectangle (L=10 м, h=1 1);
- Cargo: rectangle (L=1 м, h=1 м);
- Coefficients of friction between base and load $\mu = 0,4$; 0,6.

Material:

• E=2e11 Па, v=0.3.

Boundary conditions:

- The base is fixed in all directions;
- The force acts on the load in the horizontal direction F(x) = 100t
- The force of gravity acts on the load

Mesh:

- Plane finite elements;
- Order 3.

Contact settings:

- General (master curve 6, slave curve 4);
- Friction 0.4/0.6;
- Tolerance 0.0005;
- Method Penalty.

Calculation settings:

- Transient;
- 2D;
- Planestrain;
- Full solution;
- Implicit;
- Max time 8 c;
- Steps 1000.

Output Value

No	Value	Description	Unit	Target
1	Contact Status	Contact_Status	-	2
2	Displacement vector component ux for cargo in $t = 1$	Displacement_XX	М	0
3	Displacement vector component ux for cargo in $t = 6$	Displacement_XX	М	0
4	Displacement vector component ux for cargo in $t = 8$	Displacement_XX	М	>0

Numerically approximate analytical solution

A numerical approximate solution is given in [1].

As a solution, the position of the cube at the final and intermediate moments of time is taken to check the correctness of the work of the static friction force (Fthrust = Ftr. rest) and sliding.

Fig 2.51 - Numerical solution for checking the correctness of the work of the force of static and sliding friction

Reference

[1] Полюшкин, Н.Г. Основы теории трения, износа и смазки: учеб. пособие / Н.Г. Полюшкин; Краснояр. гос. аграр. ун-т. – Красноярск, 2013 – 192 с.

.

Results

	Spectral Elements							
No	Value	Description	Unit	Target	CAE Fidesys result	Error, %		
1	Contact Status	Contact_Status	-	2	2	Критерий выполнен		
2	Displacement vector component ux for cargo in $t = 1$	Displacement_XX	М	0	0	0		
3	Displacement vector component ux for cargo in $t = 6$	Displacement_XX	М	0	0	0		
4	Displacement vector component ux for cargo in $t = 8$	Displacement_XX	М	>0	>0	Критерий выполнен		

CAE Fidesys script:

reset

create surface rectangle width 1 height 1 zplane

create surface rectangle width 4 height 1 zplane

Surface 1 copy move x 2 y 0.5

move Surface 2 x 1 y -1 include_merged

surface all size auto factor 4

mesh surface all

create material 1

modify material 1 name 'mat1'

modify material 1 set property 'MODULUS' value 2e+11

modify material 1 set property 'POISSON' value 0.3

modify material 1 set property 'DENSITY' value 100

block 1 add surface all

block 1 material 1 cs 1 element plane order 3

create displacement on surface 2 3 dof all fix

create contact autoselect type general friction 0.4 ignore_overlap off offset 0.0 tolerance 0.0005 method penalty normal_stiffness 1.0 tangent_stiffness 0.5

create contact master curve 10 slave curve 4 type general friction 0 ignore_overlap off offset 0.0 tolerance 0.0005 method penalty normal_stiffness 1.0 tangent_stiffness 0.5

move Surface 3 y -0.5 include_merged

create pressure on curve 1 magnitude 1000

create pressure on curve 2 magnitude 1000

bcdep pressure 2 value '1000 * t'

analysis type dynamic elasticity dim2 planestrain preload off dynamic method full_solution scheme implicit steps 200 newmark_gamma 0.005 maxtime 1

2.29. Test case No 2.29

Problem Description

Checking the correctness of the calculation of the interaction of a large elliptical hole with a small one, when the major axes of the ellipses are parallel. The center of the large ellipse is at (0,0). Holes are formed sequentially in an endless plate, previously uniaxially stretched. The solution results compare linear and non-linear formulations. The calculations were carried out for the Mooney material in a plane stress state.

Input Value

Geometrical model:

The plate has an inclusion. During the calculation, the properties of the inclusion material change.

- Length 100 м;
- Width 100 м;
- First ellipse: a₁=1, b₁=0.25, center's coordinate (0,0,0)
- Second ellipse: a₂=0.4, b₂=0.1, x₂=2, y₂=0.625, centers's coordinate (2, 0.625,0).

Boundary conditions:

- One node is fixed on the sides with the coordinate y=0 along the displacement u_y ;
- On the upper and lower sides, one node is fixed with the coordinate x=0 along the displacement u_x ;
- The plate is subjected to uniaxial incremental tensile pressure in increments:
 - о Step 1: 0.15 Па;
 - о Step 2: 0.15 Па;
 - о Step 3: 0.15 Па.

Materials:

• Mooney-Rivlin Material:

- C10=0.5;
- C01=0;
- D=1.04;
- β=1, G=1 Πa, ν=0.48.

Mesh:

- Conformal;
- 2D.

Fig 2.53 – Finite elements mesh near ellipses

Calculation settings:

- Static;
- 2D;
- Planestrain;
- Elasticity;
- Finite deformation (for case 2);
- Load step: 3.

Output Value

Case 1 (linear)

No	Шаги нагружения	Наименование переменной	Обозначение переменной	Размерн ость	Значение
1	Step 3	Stress $\sigma_{\phi\phi}$ at the point (1, 0, 0)	Stress_cylindrical_FF	Ра	1.15
2	Step 3	Stress σφφ at the point (-1, 0, 0)	Stress_cylindrical _FF	Ра	1
3	Step 3	Stress $\sigma\phi\phi$ at the point (2.4, 0.625, 0)	Stress_cylindrical _FF	Ра	1.55
4	Step 3	Stress $\sigma\phi\phi$ at the point (1.6, 0.625, 0)	Stress_cylindrical _FF	Pa	1.8

Вариант 2 (нелинейный случай)

No	Шаги нагружения	Наименование переменной	Обозначение переменной	Размерн ость	Значение
1	Step 3	Stress $\sigma_{\phi\phi}$ at the point (1, 0, 0)	Stress_cylindrical _FF	Ра	1.35
2	Step 3	Stress $\sigma_{\phi\phi}$ at the point (-1, 0, 0)	Stress_cylindrical _FF	Ра	1.25
3	Step 3	Stress $\sigma_{\phi\phi}$ at the point (2.4, 0.625, 0)	Stress_cylindrical _FF	Ра	1.75
4	Step 3	Stress $\sigma_{\phi\phi}$ at the point (1.6, 0.625, 0)	Stress_cylindrical _FF	Pa	2

Numerically approximate analytical solution

A numerical approximate solution is given in the source [1] (p. 183, Fig. 5.36) and is shown in Figure 2.54.

Fig 2.54 – The value of stresses at the tops of the holes according to [1]

Reference

[1] Левин В.А., Зингерман К.М. Плоские задачи теории многократного наложения больших деформаций. Методы решения. - М.: ФИЗМАТЛИТ, 2002. - 272 с. - ISBN 5-9221-0282-6

Results

Вариант 1 (линейный случай)

N o	Load step	Value	Description	Unit	Target	CAE Fidesys result	Error, %
1	Step 3	Stress $\sigma_{\phi\phi}$ at the point (1.01, 0, 0)	Stress_cylindrical _FF	Ра	1.15	1.171	1.83
2	Step 3	Stress $\sigma\phi\phi$ at the point (-1.0125, 0, 0)	Stress_cylindrical _FF	Ра	1	1.033	3.35
3	Step 3	Stress σφφ at the point (2.4015, 0.625, 0)	Stress_cylindrical _FF	Ра	1.55	1.556	0.37
4	Step 3	Stress σφφ at the point (1.599, 0.622934, 0)	Stress_cylindrical _FF	Pa	1.8	1.858	3.23

Case 2 (nonlinear geometry)

N o	Load step	Value	Description	Unit	Target	CAE Fidesys result	Error, %
1	Step 3	Stress $\sigma_{\phi\phi}$ at the point (1.00278, 0.00559868, 0)	Stress_cylindr ical _FF	Ра	1.35	1.407	4.2
2	Step 3	Stress $\sigma_{\phi\phi}$ at the point (-1.006, 0, 0)	Stress_cylindr ical _FF	Ра	1.25	1.311	4.9
3	Step 3	Stress $\sigma_{\phi\phi}$ at the point (2.4, 0.625, 0)	Stress_cylindr ical_FF	Ра	1.75	1.753	0.2
4	Step 3	Stress $\sigma_{\phi\phi}$ at the point (1.60009, 0.623, 0)	Stress_cylindr ical_FF	Ра	2	2.080	3.98

CAE Fidesys script:

linear:

reset

set node constrain on

create surface rectangle width 50 zplane

create surface ellipse major radius 1 minor radius 0.25 zplane

subtract surface 2 from surface 1 keep_tool

create surface ellipse major radius 0.4 minor radius 0.1 zplane

move Surface 4 x 2 y 0.625 include_merged preview

move Surface 4 x 2 y 0.625 include_merged

subtract surface 4 from surface 3 keep_tool

webcut body all with plane xplane offset 0

webcut body all with plane yplane offset 0

merge all

compress all #curve 12 9 scheme bias fine size 0.01 factor 1.05 start vertex 11 #curve 12 9 scheme bias fine size 0.01 factor 1.05 start vertex 11 #mesh curve 129 #curve 19 18 scheme bias fine size 0.01 factor 1.05 start vertex 13 #curve 19 18 scheme bias fine size 0.01 factor 1.05 start vertex 13 #mesh curve 19 18 surface all sizing function type skeleton min_size auto max_size auto max_gradient 1.5 min_num_layers_2d 1 min_num_layers_1d 1 mesh surface all refine surface all numsplit 1 bias 1.0 depth 1 #refine surface all numsplit 1 bias 1.0 depth 1 #refine surface all numsplit 1 bias 1.0 depth 1 #refine surface all numsplit 1 bias 1.0 depth 1 create material 1 modify material 1 name 'mat1' modify material 1 set property 'MOONEY_C01' value 0 modify material 1 set property 'MOONEY_C10' value 0.5 modify material 1 set property 'MOONEY_D' value 4e-06 block 1 add surface 3 2 6 7 set duplicate block elements off block 2 add surface 1 set duplicate block elements off block 3 add surface 8 4 5 9 block all material 1 block all element plane order 9 create displacement on vertex 6 9 dof 1 fix create displacement on vertex 14 10 dof 2 fix create pressure on curve 6 5 magnitude 1 create pressure on curve 7 4 magnitude 1 create table 1 modify table 1 dependency time modify table 1 insert row 1 modify table 1 insert row 1 modify table 1 insert row 1 modify table 1 cell 1 1 value 1 modify table 1 cell 2 1 value 2 modify table 1 cell 3 1 value 3 modify table 1 cell 1 2 value -0.15 modify table 1 cell 2 2 value -0.15

modify table 1 cell 3 2 value -0.15 bcdep pressure 1 table 1 create table 2 modify table 2 dependency time modify table 2 insert row 1 modify table 2 insert row 1 modify table 2 insert row 1 modify table 2 cell 1 1 value 1 modify table 2 cell 2 1 value 2 modify table 2 cell 3 1 value 3 modify table 2 cell 1 2 value -0.15 modify table 2 cell 2 2 value -0.15 modify table 2 cell 3 2 value -0.15 bcdep pressure 2 table 2 static steps 3 block 3 step 1 block 2 step 1 2 analysis type static elasticity dim2 planestress

Nonlinear geometry:

reset

set node constrain on create surface rectangle width 50 zplane create surface ellipse major radius 1 minor radius 0.25 zplane subtract surface 2 from surface 1 keep_tool create surface ellipse major radius 0.4 minor radius 0.1 zplane move Surface 4 x 2 y 0.625 include_merged preview move Surface 4 x 2 y 0.625 include_merged subtract surface 4 from surface 3 keep_tool webcut body all with plane xplane offset 0 webcut body all with plane yplane offset 0 merge all compress all #curve 12 9 scheme bias fine size 0.01 factor 1.05 start vertex 11 #curve 12 9 scheme bias fine size 0.01 factor 1.05 start vertex 11 #mesh curve 129 #curve 19 18 scheme bias fine size 0.01 factor 1.05 start vertex 13 #curve 19 18 scheme bias fine size 0.01 factor 1.05 start vertex 13 #mesh curve 19 18

surface all sizing function type skeleton min_size auto max_size auto max_gradient 1.5 min_num_layers_2d 1 min num layers 1d1 mesh surface all refine surface all numsplit 1 bias 1.0 depth 1 #refine surface all numsplit 1 bias 1.0 depth 1 #refine surface all numsplit 1 bias 1.0 depth 1 #refine surface all numsplit 1 bias 1.0 depth 1 create material 1 modify material 1 name 'mat1' modify material 1 set property 'MOONEY_C01' value 0 modify material 1 set property 'MOONEY_C10' value 0.5 modify material 1 set property 'MOONEY_D' value 4e-06 block 1 add surface 3 2 6 7 set duplicate block elements off block 2 add surface 1 set duplicate block elements off block 3 add surface 8 4 5 9 block all material 1 block all element plane order 9 create displacement on vertex 6 9 dof 1 fix create displacement on vertex 14 10 dof 2 fix create pressure on curve 6 5 magnitude 1 create pressure on curve 7 4 magnitude 1 create table 1 modify table 1 dependency time modify table 1 insert row 1 modify table 1 insert row 1 modify table 1 insert row 1 modify table 1 cell 1 1 value 1 modify table 1 cell 2 1 value 2 modify table 1 cell 3 1 value 3 modify table 1 cell 1 2 value -0.15 modify table 1 cell 2 2 value -0.15 modify table 1 cell 3 2 value -0.15 bcdep pressure 1 table 1 create table 2 modify table 2 dependency time modify table 2 insert row 1

modify table 2 insert row 1

modify table 2 insert row 1

modify table 2 cell 1 1 value 1 modify table 2 cell 2 1 value 2 modify table 2 cell 3 1 value 3 modify table 2 cell 1 2 value -0.15 modify table 2 cell 2 2 value -0.15 modify table 2 cell 3 2 value -0.15 bcdep pressure 2 table 2 static steps 3 block 3 step 1 block 2 step 1 2 analysis type static findefs elasticity dim2 planestress

2.30. Test case No 2.30

Problem Description

Verification of the correctness of the solution of the problem of equilibrium of a load on an inclined plane, taking into account friction in the contact and taking into account the stiffness of the springs. This setup checks for:

- setting the parameters of a sliding contact with friction in the interface;

- static solution taking into account sliding contact with friction.

Input Value

Fig 2.55 - Geometrical model

Material:

• E=206 ГПа, v=0.3.

Boundary conditions:

- The bottom face is fixed in all directions;
- The left side of the upper surface is fixed along the X axis using the spring element $[K(\mu)]$;
- The force of gravity G = 3058 N;
- Force $F_x=1500$ N acts on the left side.

Contact settings:

- Nonconformal mesh;
- Friction $\mu=0$;
- Type: Sliding with friction:
- Method: Penalty;
- Dependence of the spring stiffness coefficient on the coefficient of friction:
 - $\mu = 0.0; K = 132,6 \text{ N/m};$
 - $\mu = 0.1$; K = 98,0 N/m;
 - $\mu = 0.2; K = 62,6 \text{ N/m};$
 - $\mu = 0.3; K = 26,5 \text{ N/m}.$

Mesh:

• Plane finite elements.

Fig 2.56 – Finite elements mesh

Calculation settings:

- Static;
- 2D;
- Elasticity.

Output Value

No	Friction	Spring	Value	Unit	Target
		stiffness			
1	0	132.6	Horizontal offset U _x	m	1.0
2	0.1	98.0	Horizontal offset U _x	m	1.0
3	0.2	62.6	Horizontal offset U _x	m	1.67
4	0.3	26.5	Horizontal offset U _x	m	1.

Numerically approximate analytical solution

The problem has a numerical approximate solution published in NAFEMS [1]

Reference

[1] NAFEMS R0081 - Benchmark Tests for Finite Element Modelling of Contact, Gapping and Sliding (задача CGS4).

Results

	-						
No	Friction	Spring stiffness	Value	Unit	Target	CAE Fidesys Results	Error, %
1	0	132.6	Ux	М	1.0	0.9981	0.19
2	0.1	98.0	U _x	М	1.0	0.9995	0.05
3	0.2	62.6	Ux	М	1.0	0.908	0.92
4	0.3	26.5	U _x	М	1.0	0.9866	1.34

First order elements

Second order elements

No	Friction	Spring stiffness	Value	Unit	Target	CAE Fidesys Results	Error, %
1	0	132.6	U _x	М	1.0	0.97	0.3
2	0.1	98.0	U _x	М	1.0	1.006	0.61
3	0.2	62.6	U _x	М	1.0	0.9901	0.99
4	0.3	26.5	U _x	М	1.0	1.003	0.32

CAE Fidesys script:

First order mesh

reset

set default element hex

create surface rectangle width 6 height 1.3 zplane

create surface rectangle width 4 height 1.2 zplane

move Surface 2 y 0.8 include_merged

create vertex on curve 2 distance 0.7 from vertex 3

split surface 1 through vertex 1 9

delete Surface 3

create curve vertex 1 10

move Vertex 12 location vertex 7 include_merged

imprint surface 2 with curve 12

delete surface 6

delete curve 12

Vertex 6 copy move x -1 repeat 1 nomesh

Vertex 14 copy move y -0.15 repeat 8 nomesh

move Surface 5 $\,$ y -0.05 include_merged

create material 1

modify material 1 name 'mat1'

modify material 1 set property 'MODULUS' value 2.06e11

modify material 1 set property 'POISSON' value 0.3

modify material 1 set property 'DENSITY' value 1

set duplicate block elements off

block 1 add surface 4

block 1 material 1 cs 1 element plane order 1

set duplicate block elements off

block 2 add surface 5

block 2 material 1 cs 1 element plane order 1

set node constraint on

curve 4 6 11 14 interval 19

curve 4 6 11 14 scheme equal

mesh curve 4 6 11 14

curve 3 9 interval 115

curve 3 9 scheme equal mesh curve 39 curve 5 13 interval 79 curve 5 13 scheme equal mesh curve 5 13 surface 4 5 size auto factor 5 mesh surface 4 5 create displacement on curve 3 dof all fix 0 #1500/20=75 create force on curve 6 force value 75 direction x create gravity on surface 5 modify gravity 1 dof 2 value -764.5#==3058N/4=764.5 where 4 is area of wedge mesh vertex 14 to 22 create edge node 3921 21 create edge node 3922 24 create edge node 3923 27 create edge node 3924 29 create edge node 3925 31 create edge node 3926 34 create edge node 3927 36 create edge node 3928 38 create edge node 3929 22 create displacement on node 3921 to 3929 dof all fix 0 block 3 add edge 7605 to 7613 block 3 element type spring create spring properties 3 modify spring properties 3 type 'linear_spring' modify spring properties 3 spring_constant_damping 0 modify spring properties 3 spring_linear_damping 0 modify spring properties 3 spring_mass 0.00001 modify spring properties 3 stiffness 132.6 #friction 0 modify spring properties 3 stiffness_torsional 0 block 3 spring properties 3 block 4 add vertex 9 14 to 22 block 4 element lumpmass create lumpmass properties 4 modify lumpmass properties 4 mass 1e-16 modify lumpmass properties 4 mass_inertia 0 block 4 lumpmass properties 4

create contact master curve 9 slave curve 13 tolerance 0.0005 type general friction 0.0 ignore_overlap off offset 0.0 method auto

output nodalforce on midresults on record3d on log on vtu on analysis type static elasticity findefs dim2 planestrain Second order mesh reset set default element hex create surface rectangle width 6 height 1.3 zplane create surface rectangle width 4 height 1.2 zplane move Surface 2 y 0.8 include_merged create vertex on curve 2 distance 0.7 from vertex 3 split surface 1 through vertex 19 delete Surface 3 create curve vertex 1 10 move Vertex 12 location vertex 7 include_merged imprint surface 2 with curve 12 delete surface 6 delete curve 12 Vertex 6 copy move x -1 repeat 1 nomesh Vertex 14 copy move y -0.15 repeat 8 nomesh move Surface 5 y -0.05 include_merged create material 1 modify material 1 name 'mat1' modify material 1 set property 'MODULUS' value 2.06e11 modify material 1 set property 'POISSON' value 0.3 modify material 1 set property 'DENSITY' value 1 set duplicate block elements off block 1 add surface 4 block 1 material 1 cs 1 element plane order 2 set duplicate block elements off block 2 add surface 5 block 2 material 1 cs 1 element plane order 2 set node constraint on curve 4 6 11 14 interval 19 curve 4 6 11 14 scheme equal mesh curve 4 6 11 14 curve 3 9 interval 115 curve 3 9 scheme equal mesh curve 39 curve 5 13 interval 79 curve 5 13 scheme equal mesh curve 5 13

surface 4 5 size auto factor 5 mesh surface 4 5 create displacement on curve 3 dof all fix 0 #1500/20=75 create force on curve 6 force value 38.46154 direction x #create force on node 41 40 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 force value 75 direction x create gravity on surface 5 modify gravity 1 dof 2 value -764.5#==3058N/4=764.5 where 4 is area of wedge mesh vertex 9 mesh vertex 22 mesh vertex 21 mesh vertex 20 mesh vertex 19 mesh vertex 18 mesh vertex 17 mesh vertex 16 mesh vertex 15 mesh vertex 14 create edge node 11526 41 create edge node 11527 76 create edge node 11528 55 create edge node 11529 71 create edge node 11530 50 create edge node 11531 66 create edge node 11532 45 create edge node 11533 43 create edge node 11534 40 create displacement on node 11525 to 11534 dof all fix 0 block 3 add edge 7605 to 7614 block 3 element type spring create spring properties 3 modify spring properties 3 type 'linear_spring' modify spring properties 3 spring_constant_damping 0 modify spring properties 3 spring_linear_damping 0 modify spring properties 3 spring_mass 0.00001 modify spring properties 3 stiffness 132.6 #friction 0 modify spring properties 3 stiffness_torsional 0 block 3 spring properties 3 block 4 add vertex 22 21 20 15 18 19 17 9 14 16 block 4 element lumpmass

create lumpmass properties 4

modify lumpmass properties 4 mass 1e-16

modify lumpmass properties 4 mass_inertia 0

block 4 lumpmass properties 4

create contact master curve 9 slave curve 13 tolerance 0.0005 type general friction 0.0 ignore_overlap off offset 0.0 method penalty normal_stiffness 0.001 tangent_stiffness 0.05

output nodalforce on midresults on record3d on log on vtu on

analysis type static elasticity findefs dim2 planestrain

2.31. Test Case No 2.31

Problem Description

Verification of the correctness of the solution of the problem of calculating the plate for natural frequencies with the addition of the condition of sliding contact with friction. The control task checks the correctness of the calculation of the modal analysis, taking into account the contact interaction "sliding contact with friction".

Input Value

Geometrical model:

- See figure 2.57;
- Width b = 0,1 м;
- Thickness h = 0,002 м;
- Length a = 0,1 м.

Рисунок 2.57 - Geometrical model

Boundary conditions:

- Case 1: None;
- Case 2: One side is fixed;
- Contact General with friction, method Auto, Friction: 0, 0.2, 1.

Material:

- Elastic modulus $E = 7e10 \Pi a;$
- Poisson's ratio v=0.3;
- Density ρ=7850 кг/м3

Mesh:

• Hexhahedron.

Fig 2.58 – Finite elements mesh

Calculation settings:

- Modal;
- 3D;
- Number of modes: 7.

Output Value

Case 1: No boundary conditions

No	Value	Description	Unit	Target
1	Mode 1	Eigen Values	Hz	0
2	Mode 2	Eigen Values	Hz	0
3	Mode 3	Eigen Values	Hz	0
4	Mode 4	Eigen Values	Hz	0
5	Mode 5	Eigen Values	Hz	0
6	Mode 6	Eigen Values	Hz	0
7	Mode 7	Eigen Values	Hz	650

Case 2: one of the side faces is fixed

No	Value	Description	Unit	Target
1	Mode 1	Eigen Values	Hz	170
2	Mode 2	Eigen Values	Hz	412
3	Mode 3	Eigen Values	Hz	1038
4	Mode 4	Eigen Values	Hz	1318
5	Mode 5	Eigen Values	Hz	1501
6	Mode 6	Eigen Values	Hz	2616
7	Mode 7	Eigen Values	Hz	2983

CAE Fidesys script:

reset brick x 0.1 y 0.1 z 0.002 webcut volume 1 with plane zplane offset 0 webcut volume all with plane yplane offset 0 curve 18 26 20 25 interval 2 curve 18 26 20 25 scheme equal move Volume 3 4 y .02 include_merged merge all move Volume 3 4 y -.02 include_merged volume all size auto factor 7 mesh volume all create material 1 modify material 1 name 'mat1' modify material 1 set property 'POISSON' value 0.3 modify material 1 set property 'MODULUS' value 7.9e+10 block 1 add volume all block 1 material 1 cs 1 element solid order 2 create pressure on surface 8 16 magnitude 5000 create displacement on curve 13 dof 1 dof 2 dof 3 fix 0 create displacement on curve 15 dof 1 dof 3 fix 0 create contact master surface 17 27 slave surface 32 22 type general friction 0.1 ignore_overlap off offset 0.0 tolerance 0.0005 method auto analysis type buckling elasticity dim3 eigenvalue find 1 smallest

Numerically approximate analytical solution

The reference is the solution obtained in the ANSYS package.

Results

Case 1: No boundary conditions

No	Value	Description	Unit	Target	CAE Fidesys Result	Error, %
1	Mode 1	Eigen Values	Hz	0	0	<<0.01
2	Mode 2	Eigen Values	Hz	0	0	<<0.01
3	Mode 3	Eigen Values	Hz	0	0	<<0.01
4	Mode 4	Eigen Values	Hz	0	0	<<0.01
5	Mode 5	Eigen Values	Hz	0	0	<<0.01
6	Mode 6	Eigen Values	Hz	0	0	<<0.01
7	Mode 7	Eigen Values	Hz	650	649.4	0.01

Case 2: one of the side faces is fixed

No	Value	Description	Unit	Target	CAE Fidesys Result	Error, %
1	Mode 1	Eigen Values	Hz	170	169	0.62
2	Mode 2	Eigen Values	Hz	412	411.5	0.12
3	Mode 3	Eigen Values	Hz	1038	1034	0.4
4	Mode 4	Eigen Values	Hz	1318	1305	0.96
5	Mode 5	Eigen Values	Hz	1501	1496	0.32
6	Mode 6	Eigen Values	Hz	2616	2604	0.48
7	Mode 7	Eigen Values	Hz	2983	2968	0.49

CAE Fidesys script:

reset

brick x 0.1 y 0.1 z 0.002

webcut volume 1 with plane zplane offset 0

webcut volume all with plane yplane offset 0

curve 18 26 20 25 interval 2

curve 18 26 20 25 scheme equal

move Volume 3 4 y .02 include_merged

merge all

move Volume 3 4 y -.02 include_merged

volume all size auto factor 7

mesh volume all

create material 1

modify material 1 name 'mat1'

modify material 1 set property 'POISSON' value 0.3

modify material 1 set property 'MODULUS' value 7.9e+10

block 1 add volume all

block 1 material 1 cs 1 element solid order 2

create pressure on surface 8 16 magnitude 5000

create displacement on curve 13 dof 1 dof 2 dof 3 fix 0

create displacement on curve 15 dof 1 dof 3 fix 0

create contact master surface 17 27 slave surface 32 22 type general friction 0.1 ignore_overlap off offset 0.0 tolerance 0.0005 method auto

analysis type buckling elasticity dim3

eigenvalue find 1 smallest

3. Test Cases for cloud version

3.1.Test Case No.3.1

Problem Description

The problem of an infinite cylindrical pipe under the influence of internal pressure is considered.

Input Values

Fig 3.1 - Geometrical CAD-model

Geometric model:

- Due to the symmetry of the problem, a quarter of the wide cut of the pipe is considered;
- CAD-model 01.stp.

Boundary conditions:

- Symmetry condition: surface ABB'A' displacement $u_x = 0$;
- Symmetry condition: surface CDD'C' displacement $u_y = 0$;
- Symmetry condition: surfaces ABCD and A'B'C'D' displacement $u_z = 0$;
- A pressure p = 1 MPa is applied to the surface AA'D'D;
- A pressure p = 0.5 MPa is applied to the surface B'B'C'C.

Material Properties:

• Isotropic;

- Young's modulus E = 200 GPa;
- Poisson ratio v = 0.3.

Meshes:

Finite element mesh is shown in the figure 3.2

Fig 3.2 - Finite element mesh

Calculation Settings:

- Static;
- Elasticity.

Output Values

The stress values at point N (1,0,0) are given below.

No	Value	Description	Unit	Target
1	Component RR of the stress vector at the nodes	Stress RR	MPa	-1.00
2	Component TT of the stress vector at the nodes	Stress TT	MPa	0.33

No	Value	Description	Unit	Target
3	Component ZZ of the stress vector at the nodes	Stress ZZ	MPa	-0.2

Calculation method used for the reference solution

Analytical solutions are calculated by the following formulas:

$$\begin{split} \sigma_{rr} &= \sigma_{11} = \frac{a^2 p_a}{b^2 - a^2} \left(1 - \frac{b^2}{r^2} \right) - \frac{b^2 p_b}{b^2 - a^2} \left(1 - \frac{a^2}{r^2} \right) \\ \sigma_{\theta\theta} &= r^2 \ \sigma_{22} = \frac{a^2 p_a}{b^2 - a^2} \left(1 + \frac{b^2}{r^2} \right) - \frac{b^2 p_b}{b^2 - a^2} \left(1 + \frac{a^2}{r^2} \right) \\ \sigma_{zz} &= \sigma_{33} = \frac{\lambda}{\lambda + \mu} \frac{a^2 p_a - b^2 p_b}{b^2 - a^2} \end{split}$$

The values are taken at the point where the Cartesian coordinate system coincides with the cylindrical coordinate system.

Reference:

[1] Седов Л.И. "Механика сплошной среды, том 2". М.: Наука, 1970г., 568 стр.

Result comparison

No	Value	Description	Unit	Target	ProveDesig n Results	Error,%
1	Component XX of the stress vector at the nodes	Stress XX	МРа	-1.00	-0.95	5
2	Component YY of the stress vector at the nodes	Stress TT	МРа	0.33	0.34	3
3	Component ZZ of the stress vector at the nodes	Stress ZZ	МРа	-0.2	-0.195	5.0

The distribution of the stress field σ_{xx} is shown in Figure 3.3.

2

Fig 3.3 - Distribution of stress XX

3.2. Test Case No3.2

Problem Description

The cube is divided into 4 parts, each of which has its own element type. In view of symmetry, the 1/8 part of the cube is considered. A pressure of uniform compression was applied to the top face. The test case verifies tied contact condition.

Input Values

Geometric model:

• CAD-model 02.stp

Boundary conditions:

- Symmetry conditions;
- A pressure of 1e6 Pa is applied to the upper face.

Material Properties:

- Poisson ratio v = 0.3;
- Young's modulus E = 2e11 Pa.

The model is divided into 4 blocks:

• Finite element mesh is shown in the figure 3.4.

Fig 3.4 - Finite element mesh

Calculation Settings:

- Static;
- Elasticity.

Output Values

0

The values at	point (5	.55)	are given	below.
		, , , , , ,		

No	Value	Description	Unit	Target
1	Component Y of the displacement vector at the nodes	Displacement Y	m	-5.10-5
2	Component YY of the stress tensor at the nodes	Stress YY	MPa	-1
3	Component Mises YY of the stress tensor at the nodes	Stress Mises	MPa	1

Calculation method used for the reference solution

Analytical solutions are calculated by the following formulas [1]:

$$\sigma_{yy} = P, \sigma_{xx} = \sigma_{zz} = \sigma_{xy} = 0;$$
$$\varepsilon_{yy} = \sigma_{yy}E$$
$$u_y = \varepsilon_{yy}L$$

Reference:

[1] Седов Л.И. "Механика сплошной среды, том 2". М.: Наука, 1970г., 568 стр.

Result comparison

No	Value	Description	Unit	Target	ProveDesign Results	Error,%
1	Component Y of the displacement vector at the nodes	Displacement Y	m	-5•10 ⁻⁵	-4.997·10 ⁻⁵	0.06
2	Component YY of the stress tensor at the nodes	Stress YY	MPa	-1	-1	0
3	Component Mises YY of the stress tensor at the nodes	Stress Mises	MPa	1	1	0

3.3.Test Case No.3.3

Problem Description

The problem of uniaxial stretching of the cube is considered. In view of symmetry, the 1/8 part of the original model is viewed. A boundary movement condition is applied to the top face. This test case verifys the correct work of the model when the boundary condition Displacement is in effect.

Input Values

Geometric model:

• CAD-model 04.stp

Boundary conditions:

- Symmetry conditions;
- Surface for z = 5: $u_z = -1$ m.

Material Properties:

- Isotropic;
- Young's modulus $E = 200 \Gamma \pi a$;
- Poisson ratio v = 0.3.

Meshes:

Finite element mesh is shown in the figure 3.5.

Fig 3.5 - Finite element mesh

Calculation Settings:

- Static;
- Elasticity.

Output Values

The values for displacements, strain and stresses at point (10,10,0) are give

No	Value	Description	Unit	Target
1	Componentsofthedisplacementvectoratmesh nodes	Displacement Z	М	-1
2	Componentsofthedisplacementvectoratmesh nodes	Displacement X	М	0.3
3	Componentsofthedisplacementvectoratmesh nodes	Displacement Y	М	0.3
4	Components of the strain tensor at mesh nodes	Strain ZZ	-	-0.1
5	Components of the strain tensor at mesh nodes	Strain XX	-	0.03
6	Components of the strain tensor at mesh nodes	Strain YY	-	0.03
7	Components of the strain tensor at mesh nodes	Strain XY, Strain XZ, Strain YZ	-	0
8	Components of the stress tensor at mesh nodes	Stress ZZ	Па	-2e10
9	Components of the stress tensor at mesh nodes	Stress XX, Stress YY	Па	0

Calculation method used for the reference solution

Analytical solutions are calculated by the following formulas [1]:

$$\begin{split} \varepsilon_{zz} &= \frac{u_z}{L}; \, \varepsilon_{xx} = \varepsilon_{yy} = -v \frac{\sigma_{zz}}{E}; \\ \sigma_{zz} &= \varepsilon_{zz}E; \, \sigma_{xx} = \sigma_{yy} = 0; \\ u_z &= -1 \text{ m}; \, u_x = \frac{\varepsilon_{xx}}{L}; \, u_y = \frac{\varepsilon_{yy}}{L}. \end{split}$$

Where σ – the stress tensor, ϵ – the strain tensor, u – the displacement vector, E – Young's modulus, v - Poisson ratio, L – side of the cube.

Reference:

[1] Седов Л.И. "Механика сплошной среды, том 2". М.: Наука, 1970г., 568 стр.

Result comparison

No	Value	Description	Unit	Target	ProveDesign Results	Error,%
1	Componentsofthedisplacement vectorat meshnodes	Displacement Z	m	-1	-1	0
2	Componentsofthedisplacement vectorat meshnodes	Displacement X	m	0.3	0.3	0
3	Components of the displacement vector at mesh nodes	Displacement Y	m	0.3	0.3	0
4	Components of the strain tensor at mesh nodes	Strain ZZ	-	-0.1	-0.1	0
5	Components of the strain tensor at mesh nodes	Strain XX	-	0.03	0.03	0
6	Components of the strain tensor at mesh nodes	Strain YY	-	0.03	0.03	0
7	Components of the strain tensor at mesh nodes	Strain XY, Strain XZ, Strain YZ	-	0	0	0
8	Components of the stress tensor at mesh nodes	Stress ZZ	Ра	-2e10	-2e10	0
9	Components of the stress tensor at mesh nodes	Stress XX, Stress YY	Ра	0	0	0

The distribution of displacement u_z is shown in Figure 3.6.

Fig 3.6 - Distribution of displacement u_z

3.4. Test Case No.3.4

Problem Description

In the problem, a suspended beam with a square section, fixed in the upper sections, is applicable. An axial tensile force is applied to the free end of the beam.

Input Values

Geometrical model:

• 01_model.stp.

Fig 3.7 - Geometrical model

Boundary Conditions:

- Zero displacement along all axises in Y = 0 plane;
- Force $F = 10\ 000$ lb, applied to all nodes in Y = L plane.

Material properties:

- Young's modulus E = 10.4e + 6 psi;
- Poisson ratio v = 0.3.

Mesh:

• See figure 3.8.

Fig 3.8 - Finite-element mesh

Output Values

No	Value	Discription	Unit	Target
1	Component σ_{yy} at point (1, L/2, 1)	Stress YY	psi	4444

Calculation method used for the reference solution

The ANSYS solution VM37 problem acts as a reference [1].

Reference

[1] Verification Manual for the Mechanical APDL Application, SAS IP, Inc 2009

Result comparison

No	Value	Discription	Unit	Target	ProveDesign Results	Error, %
1	Component σ_{yy} at point (1, L/2, 1)	Stress YY	psi	4444	4466	0.5

The distribution of stress σ_{yy} is shown in Figure 3.9.

Fig 3.9 – The distribution of stress σ_{yy}
3.5.Test Case No.3.5

Problem Description

The problem of testing the ability of contact algorithms to transfer total displacements using a non-conformal irregular mesh with a rigid contact is considered.

Input Values

Geometrical model:

• 02_model.stp.

Fig 3.10 - Geometrical model

Fig 3.11 - Meshes and boundary conditions

Material:

- Isotropic;
- Young's modulus $E = 2e11 \Pi a;$
- Poisson ratio v = 0.3;
- Density $\rho = 7850 \text{ kg/m}^3$.

Mesh:

• See figure 70.

Настройки расчета:

• Static, elasticity.

Output Values

Below are the numerical values of the displacements.

No	Value	Description	Unit	Target
1	Maximum Displacement Sum	Displacement sum	М	3.2092e-6

Calculation method used for the reference solution

See Test Case 2.12.

Result comparison

No	Value	Description	Unit	Target	ProveDesign Results	Error, %
1	Maximum Displacement Sum	Displacement sum	М	3.2092e-6	3.095e-6	3.69

Fig 3.13 - The displacement Sum

3.6.Test case No3.6

Problem Description

We consider the problem of static temperature loading of a hollow sphere. The model is in two parts, between the separator, there is a contact. The test case checks the correctness of the calculation under static temperature loading, taking into account the tied contact.

Input values

Fig 3.14 - Geometric model for a hollow sphere

Geometrical model:

- Radius $R_1 = 4 m$;
- Radius $R_2 = 3 m$;
- In view of symmetry, we consider 1/8 of the sphere.

Boundary conditions:

- Zero displacements along the X-axis on the ABEF plane;
- Zero displacements along the Y-axis in the EFCD plane;
- Zero displacements along the Z axis in the ABCD plane;
- Solid temperature on the inner ACE surface of the sphere;
- Temperature $T = 30^{\circ}$ C.

Material Properties:

- Isotropic;
- Elastic modulus E = 200 GPa;
- Poisson's ratio v = 0.3;
- Thermal expansion $\mu = 0.0001 \text{ } 1/^{\circ}\text{C}.$

Mesh:

• Tetrahedrons of the second order.

Contact:

- Tied;
- Method: auto.

Calculation settings:

- Static calculation;
- Elasticity, thermal conductivity.

Output Values

No	Value	Description	Unit	Target
1	X-component of the displacement vector at the nodes of the grid at a point (4, 0, 0)	Displacement X	m	0.012

Analytical solution

The analytical solution is as follows [1]:

$$u_R = \mu T R_1$$

No	Value	Description	Unit	Target	ProveDesign Results	Error, %
1	X-component of the displacement vector at the nodes of the grid at a point (4, 0, 0)	Displacement X	m	0.012	0.012	0.00

Fig 3.15 - Result of displacements X

Reference:

0

[1] Боли Б., Дж. Уэйнер. Теория температурных напряжений. М., Наука, 1974 г. –259 стр.

3.7.Test case No3.7

Problem Description

We consider the problem of static temperature loading of a solid sphere. The model is divided into two parts, between which the rigid contact condition acts. The test task is designed to check the correctness of the calculation under static temperature loading, taking into account the tied contact.

Input values

Fig 3.16 - Geometric model for a hollow sphere

Geometrical model:

- Radius R = 4 m;
- In view of symmetry, we consider 1/8 of the sphere.

Boundary conditions:

- Zero displacements along the X-axis on the ABC surface;
- Zero displacements along the Y-axis in the DBC surface;
- Zero displacements along the Z-axis in the ABD surface;
- Solid temperature on the inner ACD surface of the sphere;
- Temperature $T = 30^{\circ}$ C.

Material Properties:

- Isotropic;
- Elastic modulus E = 200 GPa;
- Poisson's ratio v = 0.3;
- Thermal expansion $\mu = 0.0001 \ 1/^{\circ}C$.

Mesh:

• Tetrahedrons of the second order.

Contact:

- Tied;
- Method: auto.

Calculation settings:

- Static calculation;
- Elasticity, thermal conductivity.

Output Values

No	Value	Description	Unit	Target
1	X-component of the displacement vector at the nodes of the grid at a point $(0, 4, 0)$	Displacement X	m	0.012

Analytical solution

The analytical solution is as follows [1]:

$$u_R = \mu T R_1$$

No	Value	Description	Unit	Target	ProveDesign Results	Error, %
1	X-component of the displacement vector at the nodes of the grid at a point (0, 4, 0)	Displacement X	m	0.012	0.012	0.00

Fig 3.17 - Result of displacements X

Reference

[1] Боли Б., Дж. Уэйнер. Теория температурных напряжений. М., Наука, 1974 г. – 259 с.

3.8.Test case No3.3

Problem Description

We consider the problem a three-dimensional problem of a hollow cylinder under the influence of constant temperatures. The model is divided into two parts, between which the rigid contact condition acts. The test case is designed to check the correctness of the calculation under static temperature loading, taking into account the tied contact.

Input values

Fig 3.18 - Geometric model of a hollow cylinder

Geometrical model:

- Radius $R_i = 0.30 m$;
- Radius $R_e = 0.35 m$.

Boundary conditions:

- Internal temperature $T_i = 100 \text{ °C}$;
- External temperature $T_e = 20$ °C;
- The ends of the cylinder are fixed along Z.

Material Properties:

- Isotropic;
- Thermal conductivity coefficient $V = 1 W/(m \cdot {}^{\circ}C)$.

Mesh:

• Tetrahedrons of the first order.

Contact:

- Tied;
- Method: auto.

Calculation settings:

- Static calculation;
- Thermal conductivity.

Output Values

No	Value	Description	Unit	Target
1	Temperature at a point (0.3,0,0)	Temperature	°C	100.0
2	Heat flux at a point (0.3,0,0)	Heat Flux	W/m2	1730
3	Temperature at a point (0.31,0,0)	Temperature	°C	82.98
4	Heat flux at a point (0.31,0,0)	Heat Flux	W/m2	1674
5	Temperature at a point (0.32,0,0)	Temperature	°C	66.51
6	Heat flux at a point (0.32,0,0)	Heat Flux	W/m2	1622
7	Temperature at a point (0.33,0,0)	Temperature	°C	50.54
8	Heat flux at a point (0.33,0,0)	Heat Flux	W/m2	1 573
9	Temperature at a point (0.34,0,0)	Temperature	°C	35.04
10	Heat flux at a point (0.34,0,0)	Heat Flux	W/m2	1 526
11	Temperature at a point (0.35,0,0)	Temperature	°C	20.00
12	Heat flux at a point (0.35,0,0)	Heat Flux	W/m2	1 483

Numerically approximate analytical solution

The solution from the Nastran Verification Manual [1] acts as a reference.

No	Value	Description	Unit	Target	ProveDesign Results	Error, %
1	Temperature at a point (0.3,0,0)	Temperature	°C	100.0	100	0.00
2	Heat flux at a point (0.3,0,0)	Heat Flux	W/m2	1730	1717.36	0.74
3	Temperature at a point (0.31,0,0)	Temperature	°C	82.98	82.92	0.07
4	Heat flux at a point (0.31,0,0)	Heat Flux	W/m2	1674	1676	-0.12
5	Temperature at a point (0.32,0,0)	Temperature	°C	66.51	66.51	0.00
6	Heat flux at a point (0.32,0,0)	Heat Flux	W/m2	1622	1622	0.00
7	Temperature at a point (0.33,0,0)	Temperature	°C	50.54	50.44	0.2
8	Heat flux at a point (0.33,0,0)	Heat Flux	W/m2	1 573	1574	-0.10
9	Temperature at a point (0.34,0,0)	Temperature	°C	35.04	35.06	-0.06
10	Heat flux at a point (0.34,0,0)	Heat Flux	W/m2	1 526	1523.94	0.13
11	Temperature at a point (0.35,0,0)	Temperature	°C	20.00	20	0.00
12	Heat flux at a point (0.35,0,0)	Heat Flux	W/m2	1 483	1492.7	-0.65

Fig 3.19 - Temperature at a point (0.3, 0, 0)

Fig 3.20 - Heat flux at a point (0.3, 0, 0)

Fig 3.21 - Temperature at a point (0.31, 0, 0)

Fig 3.22 - Heat flux at a point (0.31, 0, 0)

Fig 3.23 - Temperature at a point (0.32, 0, 0)

Fig 3.24 - Heat flux at a point (0.32, 0, 0)

Fig 3.25 - Temperature at a point (0.33, 0, 0)

Fig 3.26 - Heat flux at a point (0.33, 0, 0)

Fig 3.27 - Temperature at a point (0.34, 0, 0)

Fig 3.28 - Heat flux at a point (0.34, 0, 0)

Fig 3.29 - Heat flux at a point (0.35, 0, 0)

Fig 3.30 - Temperature at a point (0.35, 0, 0)

Reference

[1] Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. TPLA01/89

3.9. Test case No3.9

Problem Description

We consider the problem a three-dimensional problem of a hollow cylinder under the influence of constant temperatures. The model is divided into two parts, between which the rigid contact condition acts. The test case is designed to check the correctness of the calculation under static temperature loading, taking into account the tied contact.

Input values

Fig 3.31 - Geometric model of a hollow cylinder

Geometrical model:

- Radius $R_i = 0.30 m$;
- Radius $R_e = 0.391 \, m$.

Boundary conditions:

- Convection on the internal surface $h_i = 150 \frac{\text{BT}}{\text{M}^2 \text{°C}}$;
- Internal temperature $T_i = 500 \text{ °C}$;
- Convection on the external surface $h_e = 142 \frac{B_T}{M^{2} \circ C}$;
- External temperature $T_e = 20$ °C;
- The ends of the cylinder are fixed along Z.

Material Properties:

- Isotropic;
- Thermal conductivity coefficient $V = 40 W/(m \cdot {}^{\circ}\text{C})$.

Mesh:

• Tetrahedrons of the second order.

Contact:

- Tied;
- Method: auto.

Calculation settings:

- Static calculation;
- Thermal conductivity.

Output Values

No	Value	Description	Unit	Target
1	Temperature at a point (0.3,0,0)	Temperature	Temperature °C	
2	Heat flux at a point (0.3,0,0)	Heat Flux	W/m2	3.416e4
3	Temperature at a point (0.391,0,0)	Temperature	°C	205.1
4	Heat flux at a point (0.391,0,0)	Heat Flux	W/m2	2.628e4

No	Value	Description	Unit	Target	ProveDesign Results	Error, %
1	Temperature at a point (0.3,0,0)	Temperature	°C	272.3	272.3	0.00
2	Heat flux at a point (0.3,0,0)	Heat Flux	W/m2	3.416e4	3.382 e4	0.1
3	Temperature at a point (0.391,0,0)	Temperature	Э°	205.1	205.1	0.00
4	Heat flux at a point (0.391,0,0)	Heat Flux	W/m2	2.628e4	2.642e4	-0.53

Fig 3.33 - Heat flux at a point (0.3, 0, 0)

Fig 3.34- Temperature at a point (0.391, 0, 0)

Fig 3.35 - Heat flux at a point (0.391, 0, 0)

Reference

[1] Societe Francaise des Mecaniciens. Guide de validation des progiciels de calcul de structures. Paris, Afnor Technique, 1990. Test No. TPLA03/89

3.10. Test Case No 3.10

Problem Description

Проверка правильности расчета нагружения полого цилиндра внутренним давлением 24 Н/мм². Для задания закона пластичности используется упрочнение. \

Input values

Fig 2.55 – Geometry model

Geometry model:

- Considered ¹/₄ of the model;
- Height H=100 mm;
- Radius $R_i = 100$ mm;
- Radius $R_e = 200$ mm.

Boundary condition:

- Pressure 24 MPa applied in the inner surface;
- Symmetry.

Material:

- Young's modulus E = 21000 Pa;
- Poisson ratio v = 0.3;
- Ultimate strangth = 4219.2;
- Yield strength = 24 Pa;
- Ultimate strain = 1.

Calculation settings:

- Static;
- Plasticity.

Output Values

N⁰	Value	Description	Unit	Target
1	Stress σ_{Mises} at the point (100, 0, 0)	σ_{Mises}	MPa	39.564
2	Displacement u_x at the point (100, 0, 0)	u _x	mm	0.4044
3	Stress σ_{Mises} at the point (100, 0, 0)	σ_{Mises}	MPa	24.027
4	Displacement u_x at the point (100, 0, 0)	u _x	mm	0.233

Numerically approximate analytical solution

The reference solution is from Nafems [1].

In addition, a comparison was made with the numerical solution in the Ansys package.

Ansys Script:

FINISH /CLEAR /PREP7 MPTEMP,1,0 et,1,plane183 **KEYOPT**,1,3,2 MPDATA,EX,1,,2.1e+4 MPDATA, PRXY, 1,, 0.3 TB,BISO,1,,, TBMODIF,1,1,0 TBMODIF,2,1,24 TBMODIF,3,1,4200 PCIRC,200,100,0,90 AESIZE,1,5 **!MSHAPE,1** AMESH,1 DL,2,1,UX,0

DL,4,1,UY,0 SFL,3,PRES,24 !500 for findefs

/SOL ANTYPE,0 NLGEOM,0 NSUBST,10,30,10 !OUTRES,ERASE !OUTRES,ALL,ALL

```
!RESCONTRL,DEFINE,ALL,ALL,1
TIME,1
SOLVE
```

Reference:

[1] NAFEMS R0072 Introduction to Non-Linear Finite Element Analysis (Plasticity example 2: 2D Plane stress, случай изотропного упрочнения)

№	Value	Description	Unit	Target	ProveDesign Results	Error, %
1	Stress σ_{Mises} at the point (100, 0, 0)	$\sigma_{\rm Mises}$	MPa	39.564	39.8472	0.72
2	Displacement u_x at the point (100, 0, 0)	u _x	mm	0.4044	0.403928	0.12
3	Stress σ_{Mises} at the point (100, 0, 0)	$\sigma_{\rm Mises}$	MPa	24.027	23.9906	0.15
4	Displacement u_x at the point (100, 0, 0)	u _x	mm	0.233	0.232638	0.16

3.11. Test Case No3.11.

Problem Description

The elastic-plastic equilibrium of a hollow ball under internal pressure is considered. By virtue of symmetry, the segment of the ball located in the first octant stands out.

Input values

Geometry model:

- Inner radius of the ball: a = 2.5 M
- Outer radius of the ball: b = 5 M;
- Due to the symmetry of the problem, 1/8 of the sphere is considered.

Boundary condition:

- On the coordinate planes, displacements along perpendiculars are equal to zero
- Pressure p = 30 Pa is applied on the inner surface

Material:

- Isotropic;
- $E = 21e3 \text{ H/m}^2;$
- v = 0.3;
- $\sigma y = 24 \text{ H/m}^2$.

Calculation Settings:

- Static;
- Elasticity, Plasticity.

Output Values

№	Value	Description	Unit	Target
1	The X component of the displacement vector in the mesh nodes at a point (3,0,0)	Displacement X	m	4.219.10-3
2	The XX component of the stress tensor in the mesh nodes at a point $(3,0,0)$	Stress XX	Ра	-21.249

N⁰	Value	Description	Unit	Target
3	The X component of the displacement vector in the mesh nodes at a point (4.5,0,0)	Displacement X	m	2.165.10-3
4	The XX component of the stress tensor in the mesh nodes at a point (3,0,0)	Stress XX	Ра	-2.908

Numerically approximate analytical solution

The stress-strain state is determined by the formulas [1]:

• In the plastic zone $(a \le r \le c)$

$$\begin{split} \sigma_{rr}(r) &= 2\sigma_{y}\ln(r/a) - p, \qquad \sigma_{\phi\phi} = \sigma_{rr}(r) + \sigma_{y}, \\ \varepsilon_{rr} &= \psi(r) \cdot \left(\sigma_{rr}(r) - \sigma(r)\right) + \mathbf{k} \cdot \sigma(r), \quad \varepsilon_{\phi\phi} = \psi(r) \cdot \left(\sigma_{\phi\phi}(r) - \sigma(r)\right) + \mathbf{k} \cdot \sigma(r), \\ u_{plast} &= \varepsilon_{\phi\phi} \cdot r \end{split}$$

where

$$\psi(r) = -2k + \left(\frac{1}{2G} + 2k\right) \cdot \left(\frac{c}{r}\right)^3, \qquad k = \frac{1-2\nu}{E}, \qquad \sigma(r) = \frac{1}{3} \left(\sigma_{rr}(r) + 2\sigma_{\phi\phi}(r)\right),$$

c – boundary of the plastic zone founded from the equation

$$\ln\left(\frac{c}{a}\right) - \frac{1}{3}\left(\frac{c}{b}\right)^3 = \frac{p}{2\sigma_y} - \frac{1}{3}$$

• In the elastic zone $(c \le r \le b)$ $\sigma_{rr}(r) = p^* \cdot (1 - (b/r)^3), \quad \sigma_{\phi\phi}(r) = p^* \cdot (1 + b^3/(2r^3))$ 1.1. $\varepsilon_{rr} = du_{elastic}/dr, \qquad \varepsilon_{\phi\phi} = u_{elastic}/r$,

where $p^* = \left(p - 2\sigma_y \ln(c/a)\right) \cdot \left(\frac{c^3}{b^3 - c^3}\right)$, $u_{elastic} = p^* \cdot \left(k + \frac{b^3}{4Gr^3}\right)$

Reference:

[1] Л.М. Качанов. Основы теории пластичности. М., 1969г., 420 стр

N⁰	Value	Description	Unit	Target	ProveDesign Results	Error, %
1	The X component of the displacement vector in the mesh nodes at a point (3,0,0)	Displacement X	m	4.219·10 ⁻³	4.1953·10 ⁻³	0.56
2	The XX component of the stress tensor in the mesh nodes at a point (3,0,0)	Stress XX	Ра	-21.249	-21.252	0.01
3	The X component of the displacement vector in the mesh nodes at a point (4.5,0,0)	Displacement X	m	2.165.10-3	2.150·10 ⁻³	0.71
4	The XX component of the stress tensor in the mesh nodes at a point (3,0,0)	Stress XX	Ра	-2.908	-2.90437	0.12

4. Contacts

http://www.cae-fidesys.com support@cae-fidesys.com +7 (495) 177-36-18